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Abstract. Applications that process continuous information flows are
challenging to write because the application programmer must deal with
flow-specific concurrency and timing requirements, necessitating the ex-
plicit management of threads, synchronization, scheduling and timing.
We believe that middleware can ease this burden, but middleware that
supports control-flow centric interaction models such as remote method
invocation does not match the structure of these applications. Indeed,
it abstracts away from the very things that the information-flow centric
programmer must control.
We are defining Infopipes as a high-level abstraction for information
flow, and we are developing a middleware framework that supports this
abstraction directly. Infopipes handle the complexities associated with
control flow and multi-threading, relieving the programmer of this task.
Starting from a high-level description of an information flow configura-
tion, the framework determines which parts of a pipeline require separate
threads or coroutines, and handles synchronization transparently to the
application programmer. The framework also gives the programmer the
freedom to write or reuse components in a passive style, even though
the configuration will actually require the use of a thread or coroutine.
Conversely, it is possible to write a component using a thread and know
that the thread will be eliminated if it is not needed in a pipeline. This
allows the most appropriate programming model to be chosen for a given
task, and existing code to be reused irrespective of its activity model.

1 Introduction

The benefit of middleware platforms is that they handle application-independent
problems transparently to the programmer and hide underlying complexity.
CORBA or RPC, for instance, provide location transparency by hiding mes-
sage passing and marshalling. Hiding of complexity relieves programmers from
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tedious tasks and allows them to focus on the important aspects of their appli-
cations.

The way that a middleware platform can hide complexity without hiding
power is to provide higher-level abstractions that are appropriate for the sup-
ported class of applications. In order to choose a suitable abstraction, it is neces-
sary to make some assumptions about the functionality that typical applications
require. For example, a common abstraction provided by current middleware is
the client-server architecture and request-response interaction, where control
flows to the server and back to the client.

However, this model is inappropriate for an emerging class of information-
flow applications that pass continuous streams of data among producers and
consumers. Building these applications on existing middleware requires program-
mers to specify control-flow behaviors, which are not key aspects of the applica-
tion. Moreover, existing middleware has inadequate abstractions for specifying
data-flow behaviors, including quality of service and timing, which are key as-
pects of the application.

We propose a new middleware platform for information-flow applications that
is based on a producer-consumer architectural model and the Infopipe abstrac-
tion. Infopipes simplify the task of building distributed streaming applications
by providing basic components such as pipes, filters, buffers, and pumps [2, 28].
Each component specifies the properties of the flows that it can support, includ-
ing data formats and QoS parameters. When stages of a pipeline are connected,
flow properties for the composite can be derived, facilitating the composition of
larger building blocks and the construction of incremental pipelines.

The need for concurrently active pipeline stages introduces significant com-
plexity in the area of thread management that can be hidden in the middleware.
Hence, our platform frees the programmer from the need to deal with thread
creation, destruction, and synchronization. Moreover, the actual control flow is
managed by the middleware and is decoupled from the way pipeline components
are implemented, be they active or passive objects. We call this approach thread

transparency. It simplifies programs and allows reuse of infopipe components.
In the same way that RPC systems automatically generate code for parameter
marshalling and message handling, our middleware handles thread management
and generates glue code that allows Infopipe components to be reused in different
activity contexts.

Section 2 describes the Infopipe middleware platform we are developing.
Thread transparency is discussed in Section 3. Section 4 describes the current
implementation. Related work is summarized in Section 5 before the conclusions
in Section 6.

2 Infopipe Middleware

The Infopipe abstraction has emerged from our experience building continu-
ous media applications [6, 13, 16, 36]. Currently we are building a middleware
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Fig. 1. Infopipe example

framework in C++ based on these concepts. On top of this platform we are
reimplementing our video pipelines to facilitate further experimentation.

2.1 Overview

Infopipes let us build information flow pipelines from pre-defined components in
a way that is analogous to the way that a plumber builds a water flow system
from off-the-shelf parts.

The most common components have one input port and one output port.
Such pipes can transport information, filter certain information items, or trans-

form the information. Buffers provide temporary storage and remove rate fluctu-
ations. Pumps are used to keep the information flowing. Corresponding to these
roles each port has a appropriate polaritiy. Pumps have two ports with positive

polarity, one pulling items from upstream and one pushing them downstream.
Buffers, in contrast, have two negative ports being pulled from or pushed into.
Filters and transformers have two ports of opposite polarity [1, 2]. Sources and
sinks have only one port, which can be either positive or negative.

More complex components have more ports. Examples are tees for splitting
and merging information flows. Splitting includes splitting an information item
into parts that are sent different ways, copying items to each output (multicast),
and selecting an output for each item (routing). Merge tees can combine items
from different sources into one item or pass on information to the output in the
order in which it arrives at any input.

In combining components of a pipeline it is important to check the compat-
ibility of supported flows and to evaluate the characteristics of the composite
Infopipe. Each basic or composite Infopipe has a Typespec that describes the
flows that it supports. Typespecs provide information about supported formats
of data items, interaction properties such as the capability of operating in push
or pull mode, and ranges of QoS parameters that can be handled.

Transport protocols can be integrated into the Infopipe framework by en-
capsulating them as netpipes. These netpipes support plain data flows and may
manage low-level properties such as bandwidth and latency. Marshalling filters
on either side translate the raw data flow to and from a higher-level information
flow. These components also encapsulate the mapping of QoS properties, which
is described in more detail in Section 2.4.

In building an Infopipe an application developer needs to combine appro-
priate filters, buffers, pumps, network pipes, feedback sensors and actuators as
well as control components. To facilitate this task, our framework provides a



set of basic components to control the timing and a feedback toolkit for adap-
tation control [8]. Components for processing specific types of flow need to be
developed by application programmers, but can easily be reused in various ap-
plications. For instance, developers of video on demand, video conferencing, and
surveillance tools can all use any available video codec components.

Figure 1 shows a simple video pipeline from a source producing compressed
data to a display. At the producer side frames are pumped through a filter
into a netpipe encapsulating a best-effort transport protocol. The filter drops
frames when the network is congested. The dropping is controlled by a feedback
mechanism using a sensor on the consumer side. This lets us control which data is
dropped rather than suffering arbitrary dropping in the network. After decoding
the frames, they are buffered to reduce jitter. A second pump controlling the
output timing finally releases the frames to the display.

2.2 Interaction

filter A filter B filter C

pull push

Fig. 2. Polarity

With respect to polarity, there are three classes of components:

– Positive components have only positive ports and cause information to flow
in the pipeline. Pumps and active sources and sinks belong to this class.

– Negative components have only negative ports. Buffers and passive sources
and sinks belong to this class.

– Neutral components have positive and negative ports. They do not initiate
any activity but may pass it on to other components. Common components
with one positive and one negative port belong to this class.

The processing of the information items is driven by a thread that originates
from a positive component as shown in Figure 2. Negative and neutral objects
can be implemented as objects with methods that are called through a negative
port and may call out through a positive port, making inter-object communi-
cation particularly efficient. Because pumps originate the threads, they regulate
the timing of the data flow and can themselves be controlled by timers or feed-
back mechanisms. Each thread is responsible for calling through all the neutral
pipeline stages as far as the next negative components up- or downstream. Hence,
Pumps encapsulate the interaction with the underlying scheduler.



Besides exchanging data items, Infopipe components can exchange control
messages. These messages are used to represent local interaction between ad-
jacent components as well as global broadcast events. As an example of local
interaction, consider an MPEG-decoder that passes on decoded video frames
but must still keep them as reference frames. Communication between the de-
coder and downstream components must be used to determine when the shared
frames can be deleted. Another case is a video resizing component that needs
to be informed by the video display whenever the user changes the window size.
Control interaction between remote components of a pipeline includes commu-
nication between feedback sensors, controllers, and actuators. Other events such
as user commands to start or stop playing need to be broadcast to potentially
many components. While control events to adjacent components can easily be
sent directly, we use a simple event service to facilitate global distribution of
control events.

The current approach to handling control events is based on the assumption
that handling these events does not require much time. Hence, there is no explicit
control of timing and buffering of these events and their handlers are executed
with higher priority than potentially long-running data processing.

2.3 Infopipe Typespecs

The ability to construct composite pipes from simpler components is an impor-
tant feature of the Infopipe platform. Automatic inference of flow properties,
glue code for joining different types of components, and automatic allocation
of threads help the application programmer and simplify binding protocols for
setting up an Infopipe.

A Typespec describes the properties of an information flow. Typespecs are
extensible and new properties can be added as needed. Undefined properties may
be interpreted as meaning either don’t know or don’t care as discussed below.
The following list describes some parts of a Typespec.

– The item type describes the format of the information items and the flow.
– The polarity of ports in the information the flow determines whether items

are pushed or pulled. Polarity is represented in the Typespec by assigning
each port a positive or negative polarity. A positive out-port will make calls
to the push method of the downstream components, while a negative out-
port has the ability to receive a pull. Correspondingly, a positive in-port
will make calls to pull, while a negative in-port represents the willingness to
receive a push. With this representation, ports with opposite polarity may
be connected, but an attempt to connect two ports with the same polarity
is an error.
Some components do not have a fixed polarity. For example, filters can op-
erate in push or pull mode, as can chains of filters. These components are
given the polymorphic polarity α → α. When one port is connected to a
port with a fixed polarity, the other port of the filter or filter chain acquires
the opposite “induced” polarity [2, 9].



– A third property specifies the blocking behavior if an operation cannot be
performed immediately. For instance, if a buffer is full, the push operation
can either be blocked or can drop the pushed item. Likewise, if a buffer is
empty, a pull operation can either be blocked or return a nil item.

– While push and pull are the only data transmission functions, control events

between connected components may be needed to exchange meta-data of the
flow. The capability of components to send or react to these control events is
included in the Typespec to ensure that the resulting pipeline is operational.

– QoS parameters may include video frame rates and sizes, latency, or jitter.
While processing a flow with specific values for these parameters requires
elaborate resource management and binding protocols, QoS parameters may
provide valuable hints to the rest of the pipeline even if guarantees are not
available. For instance, feedback mechanisms can trade one quality dimen-
sion for another, for instance, trade frame rate for timely delivery, which
again can be reflected in the Typespec.

– For distributed pipelines, the location indicates that a flow, from a source or
to a sink, for instance, must be produced or consumed at a particular node.

Properties can originate from sources, sinks, and intermediate pipes. Sources
typically supply one or more possible data formats along with information on the
achievable QoS. Likewise, sinks support certain data formats and ranges of QoS
parameters reflecting user preferences. Hence, source properties indicate what
can be produced, sink properties indicate what the user likes to consume.

If for any stage in a pipeline a Typespec for an input or output port is given,
Typespecs for other ports can be derived from that information. The derived
Typespecs may support only a subset of the flow types in the given Typespec,
reflecting restrictions imposed by that stage. These restrictions might originate
because the stage supports only pull-interaction, fewer data types, or a smaller
range for a QoS parameter. Moreover, stages can add or update properties.

Because of this incremental nature of Typespecs, we do not associate a fixed
Typespec with each component, but let each pipeline component transform a
Typespec on each port to Typespecs on its other ports. That is, the component
analyzes the information about the flow at one port and derives information
about flows at other ports. These Typespec transformations are the basis for
dynamic type-checking and evaluation of possible compositions.

2.4 Distribution

Any single protocol built into a middleware platform is inadequate for remote
transmission of information flows with a variety of QoS requirements. However,
different transport protocols, can be easily integrated into the Infopipe frame-
work as netpipes. These netpipes support plain data flows and may manage
low-level properties such as bandwidth and latency. Marshalling filters on either
side translate the raw data flow to a higher-level information flow and vice-versa.
These components also encapsulate the QoS mapping, translating between net-
pipe properties and flow-specific properties.
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Fig. 3. Distributed Infopipe

In addition to netpipes, the Infopipe platform provides protocols and factories
for the creation of remote Infopipe components. Remote Typespec queries also
require a middleware protocol as well as a mechanism for property marshalling.
The location itself can be integrated in the type checking by adding a location
property that is changed only by netpipes. Finally, control events are delivered
to remote components through the platform.

3 Transparent Thread Management

Different timing requirements and computation times at different stages of a
pipeline require multiple asynchronous threads. Unfortunately, handling multi-
threading and synchronization mechanisms is difficult for many programmers
and frequently leads to errors [26,33]. However, because the interaction between
components in an Infopipe framework is restricted to well known interfaces, it
is possible to hide the complexity of low-level concurrency control in the mid-
dleware platform. This is similar to the way in which RPC or CORBA hide the
complexity of low-level remote communication from the programmer.

While some aspects such as timing behavior need to be exposed to the pro-
grammer, as described in Section 3.1, other aspects such as scheduler interfaces,
inter-thread synchronization, wrappers and the adaptation of implementation
styles can largely be hidden in the middleware platform, as described in the
following three subsections.

3.1 Timing Control and Scheduling

Pumps encapsulate the timing control of the data stream. Each pump has a
thread that operates the pipeline as far as the next negative component up- and
downstream. Interaction with the underlying scheduler is also implemented in
pumps. At setup, they can make reservations, if supported, according to esti-
mated or worst case execution time of the pipeline stages they run. Moreover,
they can select and adjust thread scheduling parameters as the pipeline runs.

From our experience building multimedia pipelines we can identify at least
two classes of pumps. Clock-driven pumps typically operate at a constant rate
and are often used with passive sinks and sources. Both pumps in Figure 1 belong
to this category. Audio output devices that have their own timing control can be
implemented as clock-driven active sinks. Environment-sensitive pumps adjust
their speed according to the state of other pipeline components. The simplest



version does not limit its rate at all and relies on other components to block the
thread when a buffer is full or empty. More elaborate approaches adjust CPU
allocations among pipeline stages according to feedback from buffer fill levels [31].
Another kind of environment-sensitive pump is used on the producer node of a
distributed pipeline [6, 36]. Its speed is adjusted by a feedback mechanism to
compensate for clock drift and variation in network latency between producer
and consumer.

The choice of the right pump depends on application requirements as well as
the capabilities of the scheduler. While it is not yet clear to what extent pump
selection and placement can be automated, pumps do hide thread creation and
scheduling mechanisms. The programmer does not need to deal with these low-
level details but can choose timing and scheduling policies by choosing pumps
and by setting appropriate parameters.

If existing pumps do not provide the required functionality, it can be cleanly
added by implementing new pumps. While a pump developer needs to deal with
threads and scheduling, the pump encapsulates threading mechanisms similarly
to the way that a decoder encapsulates compression mechanisms. In both cases,
the complexity is hidden from the application programmers who use the new
components.

3.2 Synchronization

Infopipe components need to process information (possibly from different ports)
and control events. While information items and control events may arrive in
any order, the middleware ensures synchronized access to shared data in its high-
level communication mechanisms. The component developer does not need to
deal with inter-thread synchronization explicitly, but just provides data process-
ing and event handling functions. Hence, inter-thread synchronization is based
on passing on data items and control events rather than on more error-prone
primitive mechanisms such as locks and semaphores.

The pipeline components are implemented as monitors, also known as syn-
chronized objects [4]: each component may contain at most one active thread at
any time. However, we allow threads to be preempted because running functions
such as video decoders non-preemptively can introduce unacceptable delay. A
data processing function of one component is never called before the previous
invocation completes or while a control event handler of the same component
is running. Control events that arrive while data processing is in progress are
queued and delivered as soon as the data processing is done. Note, however,
that control events can be delivered while threads are blocked in a push or pull.
Hence, the programmer needs to make sure that the component is in a consistent
state with respect to control handlers when these operations are called.

3.3 Implementation Styles in Pipeline Components

In this section we discuss several styles with respect to activity that can be
used in implementing pipeline components. The main distinction is between



active objects that have an associated thread and passive objects that are called
by external threads [4]. To make a clear distinction between the polarity of a
component as introduced in Section 2.2 and its implementation style, we call
implementations as active objects thread-style components and implementations
as passive objects function-style components. We focus on neutral components
with one input and one output port, which are most common. As a simple
example we use a defragmenter that combines two data items into one. The
actual merging is performed by the function y=assemble(x1,x2).

The middleware platform assumes components such as filters to be neutral,
having a positive and a negative port. The external interface is an item pull()

operation that can be called by downstream components and void push(item)

operation that can be called by upstream components. Which of these is used
in a particular pipeline component depends on the position of the component
relative to pumps and buffers. Components between buffer and pump operate
in pull mode, components between pump and buffer in push mode, as shown in
Figure 2.

void push(item x) {
if (saved!=NULL) {
y=assemble(saved,x);

this->put(y);

saved=NULL;

}
else

saved=x;

}

1234
item pull() {
x1=this->get();

x2=this->get();

y=assemble(x1,x2);

return y;

}

1 2

a) push-mode b) pull-mode

Fig. 4. Function-style defragmenter

To implement these components in function style, push or pull must be
provided by the programmer. By convention, the programmer does not directly
call push or pull methods on other components. He instead uses put and get

methods, which are inherited from a base class provided by the middleware
platform. In this case, the implementation of put and get is as follows:

void put(item x) {next->push(x);}

item get() {return prev->pull();}

For the defragmenter example, the push and pull methods are shown in
Figure 4. Each numbered group of arrows shows the control flow for one call to
the method that it annotates. In Figure 4b, each invocation of pull travels all the
way through the code triggering two get calls and, hence, two pull calls to the
upstream pipeline component. For push in Figure 4a every other call (2 and 4)
causes a put and, hence, a downstream push. If no output item can be produced
the call returns directly. This example shows that the pull operation for the
defragmenter can be implemented more easily than push. The latter requires



the programmer to explicitly maintain state between two invocations, which is
done in this example using the variable saved. Conversely, for a fragmenter,
push would be the simpler operation.

There are several reasons for integrating thread-style components that are
written as active objects into this framework. One reason is the reuse of code
from older pipeline implementations that used an active object model or imple-
mented each stage as a process. Another reason is the flexibility that thread-
style implementations provide. The programmer can freely mix statements for
sending and receiving data items as is most convenient for a given component.
Finally, more programmers are familiar with the thread-style model than with
the function-style model.

while (running) {
x=this->get();

...

this->put(y);

}

while (running) {
x=this->get();

...

this->put(y);

}

control flow loop back

1

8

2

7

3

6

4

5

Fig. 5. Synchronous threads

The way to give these thread-style components the facade of a neutral com-
ponent is to use coroutines, that is, threads interacting synchronously in such a
way that they provide suspendable control flow but are not a unit of schedul-
ing [5]. The communication mechanism between the threads does not buffer
data; instead the activity travels with the data. All but one of the coroutines in
a given set are blocked at any time. Figure 5 gives an example of two coroutines
interacting in push mode. An item is pushed into the first component deblocking
it from a this->get call (1). The component then processes the data and calls
this->put, which passes the item to the next component (2), which deblocks
from its get (3). It again does some processing and a put (4). When put re-
turns (5), the control flow loops back to the get call. This blocks the second
component (6) and unblocks the first component from its put (7). Finally the
control flow reaches a get call again and returns to the upstream component (8).

The coroutine behavior described above is implemented by inheriting dif-
ferent put and get methods from appropriate superclasses. Consider a pipeline
running in push mode. If the target of a put is a function-style component pro-
viding a push-method, then put can simply call next->push. However, if the
target is a thread-style component, then put performs a switch to the corou-
tine of the target component, which is blocked in its get method. Pull mode is
handled analogously.

Figure 6 shows an thread-style implementation of the defragmenter example.
Here again, each numbered group of arrows denotes the control flow for one



while (running) {
x1=this->get();

x2=this->get();

y=assemble(x1,x2);

this->put(y);

}

1234 1 2

a) push-mode b) pull-mode

Fig. 6. Thread-style defragmenter

while (running) {

x=this->pull();

this->put(x):

}

a) Push-mode wrapper for pull

while (running) {

x=this->get();

this->push(x):

}

b) Push-mode wrapper for push

Fig. 7. Coroutine wrappers

push call (in Figure 6a) or one pull call (in Figure 6b) to the component. When
operating in push mode, upstream get calls block the defragmenter and each
invocation executes from get to get. As an exception, the first push call invokes
the main function of the component, enters its loop, and satisfies the first call
to get. Again, the pull mode works analogously.

The function-style implementation shown in Figure 4 has a major drawback.
Components have to provide both a push and a pull operation that imple-
ment the same functionality. Alternatively, components could provide only one
of these operations, but then could be used in either pull or push mode only,
making building the pipeline more difficult. These restrictions can be avoided
with middleware support that allows push functions to be used in pull mode
and vice-versa. Our Infopipe middleware generates glue code for this purpose
and converts the functions into coroutines as illustrated in Figure 7. Figure 8
shows the resulting control flow for the defragmenter example.

item pull() {
x1=this->get();

x2=this->get();

y=assemble(x1,x2);

return y;

}

1234
void push(item x) {

if (saved!=NULL) {
y=assemble(saved,x);

this->put(y);

saved=NULL;

}
else

saved=x;

}

1 2

a) push-mode b) pull-mode

Fig. 8. Function-style defragmenters, used other way
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Fig. 9. Pipelines and coroutines

Note that the information flow is the same in Figures 4, 6, and 8. The number
of incoming and outgoing arrows is the same for each invocation and for all three
implementations. Every other push triggers a downstream push in Part a of the
figure and every pull triggers two upstream pulls in Part b.

In the common case of a component that produces exactly one output for
each input, an additional, particularly simple, implementation is possible. All the
programmer needs to do is provide a conversion function: item convert(item

x). While the functionality is restricted by this one-to-one mapping, this type
of component can easily be used in pull as well as push mode.

The push and pull methods are provided by the middleware:

void push(item x) {next->push(convert(x));}

item pull() {return convert(prev->pull());}

While we have used a defragmenter as an example, the different ways of imple-
menting components that we have described also apply to fragmenters, decoders,
filters, and transformers. By supporting all these styles, we provide flexibility in
developing and reusing components, but for efficiency it is nonetheless impor-
tant to avoid context switches and use direct calls whenever possible. Hence, the
framework detects which components can share a thread and for which ones ad-
ditional coroutines are needed. Figure 9 shows several pipelines between a passive
source and a passive sink with the associated threads and coroutines depicted as
dashed boxes. The same coroutine boundaries would apply to pipeline sections
between two negative components. Altogether, there are four styles of neutral
components. Thread-style implementations provide a thread-like main function.
Function-style components are consumers implementing push, producers imple-
menting pull, or are based on a conversion function. In push mode, consumers
and conversion functions are called directly, and in pull mode producers and
conversion functions are called directly. Otherwise, a coroutine is required. In



each case, all threads operate synchronously as one coroutine set and the pump
controls timing and scheduling in all components.

3.4 Complex Components

The behavior of components with more than two ports is more complex. Not all
styles of implementation can be supported for all components. Sometimes the
functionality of the component makes a particular style inappropriate. To see
this, consider a switch with one in-port and two out-ports. Incoming packets are
routed to one of the out-ports depending on the data in the packet. Now consider
this switch in pull mode, that is, packets are pulled from either out-port. A pull
request arrives at out-port 1 triggering an upstream pull-request at the in-port.
Suppose that the incoming packet is routed to out-port 2. Now there is a pending
call without a reply packet and a packet nobody asked for. Suspending the call
would require buffering potentially many requests on out-port 1 and buffering
packets at out-port 2 until all packets at out-port 2 are pulled. This approach
leads to unpredictable implicit buffering behavior and complex dependencies. To
avoid these problems the Infopipe framework generally allows only one negative
port in a non-buffering component. However, there are exceptions. For instance
a different type of switch may route the packet not according to the value of the
packet, but based on the activity. A pull on either out-port triggers an upstream
pull and returns the item to the caller. In this case, the out-ports must both be
negative and the in-port must be positive. This component could not work in
push mode.

4 Implementation

The development of the Infopipe middleware described in Section 2 is still in
progress. We have implemented the activity-related functionality discussed in
the previous section and part of the Typespec processing. A local video player
has been built on top of it.

The platform is built on a message-based user-level thread package [12,13,15]
implemented in C++. Each thread consists of a code function and a queue for
incoming messages. Unlike conventional threads, the code function is not called
at thread creation time but each time a message is received. After processing
a message, the code function returns, but the thread is terminated only when
the return value is -1. In this way, code functions resemble event handlers, but
may be suspended waiting for other messages or may be preempted. Inter-thread
communication is performed by sending messages to other threads, either syn-
chronously if there remains nothing to do for a thread until a reply is received,
or asynchronously whenever a reply is not needed immediately, or no reply is re-
quired at all. Network packets and signals from the operating system are mapped
to messages by the platform, allowing all kinds of events to be handled by a uni-
form message interface.



The Infopipe platform creates a thread for each pump. If there is no need for
coroutines in the section of a pipeline that is controlled by a particular pump,
the thread calls the pull methods of all components upstream of the pump,
then calls push with the returned item on the components downstream of the
pump, and finally returns to the pump, which schedules the next pull. This is
the situation in configurations a), b), and c) in Figure 9. For configurations d),
g), and h) there are two coroutines and for configurations e) and f) there are
three coroutines associated with the pump. If such coroutines are needed, each of
them is implemented by an additional thread of the underlying thread package.
Their synchronous interaction is implemented on top of it.

Infopipe push and pull calls between coroutines and control events are
mapped to asynchronous inter-thread messages. Although push and pull are
synchronous to the Infopipe programmer, synchronous messages cannot be used,
because then the thread would not be responsive to control events. Instead, the
thread blocks waiting for either a control message or the data reply message.
A control event is dispatched to the appropriate handler and then the thread
blocks again. After receiving the reply message the code function of the thread
is resumed. In this way the middleware implementation establishes synchronous
communication of data items between coroutines, while control events can be
handled even if the component is blocked in a pull or push.

The thread package supports scheduling by attaching priorities to threads
as well as by attaching constraints to messages. In the latter case, the effective
priority of a thread is derived by the scheduler from the constraint of the message
that the thread is currently processing or, if the thread is waiting for the CPU,
on the constraint of the first message in its queue. If no constraint is specified
for the message, a static priority is used that is assigned to the thread when it is
created. The package provides a priority inheritance scheme that modifies this
behavior as necessary to avoid priority inversion, for instance, when a thread
receives a message with a higher priority than that of the message it is currently
processing.

In the Infopipe framework, message constraints are assigned by the pumps.
Messages between coroutines inherit the constraint from the message received
by the sending component, applying the constraint to the entire coroutine set.
In this way, the pump controls the scheduling in its part of the pipeline across
coroutine boundaries.

While other systems for concurrency such as µC++ provide coroutines di-
rectly [5], this message-based approach facilitates the processing of control events
and the scheduling of concurrent activities according to different timing con-
straints [13].

The component developer indicates his choice of implementation style by
inheriting from the appropriate base class and by overriding a run method for
a thread-style component, a push method for a consumer, a pull method for a
producer, and a convert method for a function-style component. Additionally,
a handler for control events needs to be provided. For pipeline components that



change the Typespec of flows the inherited implementation of the type query
must be overridden.

Pipelines are configured by a high-level C++ interface. Composition and start
of a simple video player could be implemented by

mpeg_file source("test.mpg");

mpeg_decoder decode;

clocked_pump pump(30); // 30 Hz

video_display sink;

source>>decode>>pump>>sink;

main_channel.send_event(START);

If the components were not compatible, the composition operator >> would throw
an exception. This simple example does not compensate for jitter caused by
varying decoding times. The last line starts the pipeline by broadcasting a control
event, to which the pump reacts. In a video player for complex presentations
consisting of several streams, an additional control component would register for
global control events such as START and in response dispatch START events to
individual pipelines at the start time of their stream relative to the start time
of the overall presentation.

A context switch between the user level threads takes about 1 µs; the time
for a mere function call is two orders of magnitude shorter. Hence, the approach
that we have presented in which threads and coroutines are introduced only when
necessary is mostly important for pipelines that handle many control events or
many small data items, such as a MIDI mixer. For these applications, and if
kernel-level threads are used, allocating a thread for each pipeline component
would introduce a significant context switching overhead.

5 Related Work

Some related work aims at integrating streaming services with middleware plat-
forms based on remote method invocations such as CORBA. The CORBA tele-
coms specification [25] defines stream management interfaces, but not the data
transmission. Only extensions to CORBA such as TAO’s pluggable protocol
framework [17] allow the efficient implementation of audio and video applica-
tions [24].

One approach for adding quality of service support to CORBA has been
introduced by the QuO architecture [35]. It complements the IDL descriptions
with specifications of QoS parameters and adaptive behavior in domain specific
languages. From these declarative descriptions so called delegates are generated
and linked to the client application in a similar way to that in which stubs
are generated from an IDL. QuO, however, has not been built for streaming
applications and interaction is based on remote method invocations.

A model for specifying flow quality and interfaces has been proposed as part
of the MULTE project [29]. Compatibility and conformance rules are used for



type checking and stream binding. This model is more formal, but less flexible,
than our current approach using Typespecs.

Similarly to Infopipes, the Regis environment [20] separates the configuration
of distributed programs from the implementation of the program components.
The Darwin language is used to describe and verify the configurations. Com-
ponents, which execute as threads or processes, are implemented in C++ with
headers generated from Darwin declarations. While the Infopipe implementation
described here also uses C++ for pipeline setup, there are plans for developing
an Infopipe Composition and Restructuring Microlanguage [28].

Open middleware platforms and communications frameworks such as Open-
ORB [3] and Bossa Nova [14] offer a flexible infrastructure that supports QoS-
aware composition and reflection. While these frameworks do not provide specific
streaming support, they can serve as a basis for building information flow mid-
dleware.

Event-based middleware such as Echo [7, 11] provides a type-safe and effi-
cient way of communicating data and control information in a distributed and
heterogeneous environment. A higher-level Infopipe layer can also be built on
top of these platforms.

Ensemble [34] and Da CaPo [27] are protocol frameworks that support the
composition and reconfiguration of protocol stacks from modules. Both provide
mechanisms to check the usability of configurations and use heuristics to build
the stacks. Unlike these frameworks for local protocols, Infopipes use a uniform
abstraction for handling information flow from source to sink, possibly across
several network nodes.

The x-kernel protocol architecture [10] associates processes with messages
rather than protocols. In this way, messages can be shepherded through the
entire protocol stack without incurring any context switch overhead. We support
this thread-per-packet approach for Infopipe components that are implemented
in a way that allows direct method calls. Alternatively, developers may choose
to program in an thread-like style if this simplifies the program structure.

The Scout operating system [23] generalizes from the x-kernel by combining
linear flows of data into paths. Paths provide an abstraction to which the invari-
ants associated with the flow can be attached. These invariants represent infor-
mation that is true of the path as a whole, but which may not be apparent to any
particular component acting only on local information. This idea — providing an
abstraction that can be used to transmit non-local information — is applicable
to many aspects of information flows, and is one of the principles that Infopipes
seek to exploit. For instance, in Scout paths are the unit of scheduling, and a
path, representing all of the processing steps along its length, makes informa-
tion about all of those steps available to the scheduler. This is similar to the way
that a section of an Infopipe between two passive components is scheduled by
one pump.

Structuring data processing applications as components that run asynchro-
nously and communicate by passing on streams of data items is a common
pattern in concurrent programming [e.g. 18]. Flow-Based Programming applies



this concept to the development of business applications [22]. While the flow-
based structure is well-suited for building multimedia applications, it must be
supplemented by support for timing requirements. Besides integrating this tim-
ing control via pumps and buffers, Infopipes facilitate component development
and pipeline setup by providing a framework for communication and threading.

The VuSystem [19] is a multimedia platform that has several similarities to
Infopipes: applications are structured as pipeline components processing infor-
mation flows, there are interfaces for flow and control communication, and no
particular real-time support from the operating system is needed. VuSystem,
however, is single-threaded and timing and flow are controlled by the data pro-
cessing components themselves. Infopipes, in contrast, support multiple threads,
preemptive scheduling, and a choice of several programming styles for compo-
nents and more elaborate consistency checks for pipeline setup.

For constructing streaming applications from components, there are also
free and commercial frameworks [21, 30, 32]. GStreamer and DirectShow sup-
port setup of local pipelines without timing and QoS control. They provide ser-
vices to automatically configure components for the conversion of data formats.
GStreamer supports component function-style push and thread-style implemen-
tations, but does not have pumps to encapsulate timing control. RealSystem is a
distributed framework that allows file source components to be used in servers as
well as in local clients. The actual transmission is hardcoded into the RealServer
and may be configured by adaptation rules.

6 Conclusions

Infopipes provide a framework for building information flow pipelines from com-
ponents. This abstraction extends uniformly from source to sink. The application
controls the setup of the pipeline, configuring its behavior based on QoS param-
eters and other properties exposed by the components.

The Infopipe platform manages concurrent activity in the pipeline and en-
capsulates synchronization in high-level communication mechanisms. To specify
scheduling policies the application programmer needs only to choose appropriate
pumps, which interact with the underlying scheduler and control the actual tim-
ing. Neutral components such as filters can be implemenented as active objects,
passive consumers, passive producers, or conversion functions, whichever is most
suitable for a given task, and existing code can be reused regardless of its imple-
mentation style with respect to threading. The Infopipe platform transparently
handles creation of and communication between threads and coroutines. This is
very much like the way in which CORBA transparently handles marshalling and
remote communication.

We have implemented most middleware functionality for local pipelines. Us-
ing this platform, we have built several video processing components and con-
figured a simple video player application. The supported functionality is being
extended by distributed setup, resource reservations, and feedback mechanisms.
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