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Abstract

Data-intensive, interactive applications are an impor-
tant class of metacomputing (Grid) applications. They are
characterized by large, time-varying data flows between
data providers and consumers. The topic of this paper is the
runtime adaptation of data streams, in response to changes
in resource availability and/or in end user requirements,
with the goal of continually providing to consumers data at
the levels of quality they require. Our approach is one that
associates computational objects with data streams. Run-
time adaptation is achieved by adjusting objects’ actions on
streams, by splitting and merging objects, and by migrating
them (and the streams on which they operate) across ma-
chines and network links. Adaptive streams also react to
changes in resource availability detected by online moni-
toring.

1. Introduction

End users of high performance codes increasingly de-
sire to interact with their complex applications as they run,
perhaps simply to monitor their progress, or to perform
tasks like program steering, or to collaborate with fellow re-
searchers. For instance, in our own past research, we have
constructed a distributed scientific laboratory with 3D data
visualizations of atmospheric constituents and with parallel
computations that simulate the distribution of chemistries in
the earth’s atmosphere. While an experiment is being per-
formed, scientists collaborating within this laboratory may
jointly inspect certain outputs, may create alternative data
views on shared data or create new data streams, and may
steer the simulations themselves to affect the data being
generated. Similarly, for metacomputing environments, Al-
liance researchers are now investigating and developing the
Access Grid [13] framework for accessing and using com-
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putations that are spread across heterogeneous, distributed
machines.

The problem addressed by our research is the creation
and management of the large-scale data streams existing
in distributed high performance applications. The spe-
cific streams investigated in this paper are those emanating
from data stores or from running simulations and consumed
by visual displays that are employed by collaborating end
users. Each such stream consists of a sequence of data
events that flow from information providers to consumers,
generated in response to requests from the consuming user
interfaces and/or generated continuously by producers. This
event-based description of a data stream provides a natu-
ral vehicle for associating computations with event gener-
ation, transport, and receipt, via event handlers located in
producers, consumers, or in intermediate engines. The re-
sulting computational data streams constitute the basis of
our approach to online stream manipulation. Specifically,
we adapt the behavior of the streams’ event handlers in re-
sponse to changes in end user capabilities or needs and/or
in response to changes in resource availability.

This paper demonstrates how to adapt computational
data streams in order to gain and maintain high perfor-
mance. It also presents the ACDS framework for imple-
menting adaptive computational data streams. ACDS sup-
ports runtime configuration actions that include (1) the mi-
gration of stream computations, (2) the specialization of
these computations, and (3) the splitting and merging of
stream computations to increase and decrease concurrency
as per a stream’s runtime needs.

2. Related Work

The ACDS system and its support for computational
data streams rely on a high performance event infrastruc-
ture, called ECHo [2], layered directly on transport-level
communication protocols and capable of moving data at
rates exceeding those of high performance programming
platforms like MPI. In comparison to its prior use in sys-



tem monitoring and control, ACDS employs ECHo both for
transporting data and for controlling data transport. ECHo’s
event-based paradigm supports data streams with multiple
producing or consuming subscribers; it can deal with dy-
namic subscriber arrivals and departures; and it supports
runtime evolution for the types of data events a subscriber
produces or consumes.

The Interactivity Layer Infrastructure (IL1) [11] repre-
sents our previous approach to online data stream adapta-
tion. This paper extends that work by using Active User
Interfaces (AUIs) [7] that emit control events so that ACDS
can react to changes in end user needs as well as to changes
in underlying system loads in both LAN and WAN environ-
ments. Furthermore, the ACDS framework offers adapta-
tion capabilities and support beyond that provided by ILI,
including robust split and merge operations, decision algo-
rithms, monitoring support, etc.

ACDS-controlled computational data streams may be
used with arbitrary parallel applications, including those
written with meta-computing systems like Globus [4] or
Legion [5]. In these contexts, ACDS addresses only the
runtime control of the computational data streams link-
ing such Grid computations to end users. In compari-
son, the load-balancing and resource management mecha-
nisms included with the grid computing frameworks them-
selves concern the runtime management of the actual grid
procedures, threads, or processes. It would be interest-
ing to study how ACDS’ data stream management inter-
acts with load-balancing performed for grid computations.
Finally, both Cumulvs and ACDS customize task migra-
tion by use of application-specified knowledge. However,
as with the load-balancing performed in other metacomput-
ing environments, Cumulvs does not know about entire data
streams, nor does it support stream adaptations like com-
ponent splitting or merging. ACDS’ implementations of
the split and merge operations could take advantage of pre-
vious approaches to component checkpointing and migra-
tion, e.g. [9]. However, the restrictions imposed by such
approaches forced us to develop our own approach.

3. Sample Application

The sample application used in our research is a global
atmospheric climate model [8]. The data streams of princi-
pal interest to this paper link the running model and/or data
stored from previous model runs to visualizations employed
by end users.

From our users’ perspectives, useful views of this data
display information about species concentration in grid
form, where a grid point represents an area of approxi-
mately 5.6 x 5.6 degrees of latitude and longitude on the
earth’s surface. In order to provide this data view, how-
ever, the computational data stream producing it must first

transform data from its model-resident or stored ‘spectral’
form to the grid-based form meaningful to end users. This
transformation (termed ‘Spec2Grid’) may be performed on
the receiving machine, on some intermediate node, or by
the data producer. The resulting pipeline-structured compu-
tational data stream linking a single producer to two con-
sumers is shown in Figure 1. This figure also shows an ad-
ditional computation (termed ‘Gridred’) that filters the data
being sent to the Ul so that only those grid points currently
requested by the end user are actually sent. The actual dis-
play processing is done in the elements termed AUI.

Datafil
Orat,\jfc')dz Spec2Grid GridRed

Figure 1. Sample Access Grid Application

Some of these computations are substantial, and so are
their effects on the sizes of data events being transported.
For instance, a typical spectral to grid transformation can
be performed at the rate of 213 levels per second on a Sun
Ultra 30, and the data expansion implied by this conversion
increases the size of spectral data by a factor of 4.04 when
producing grid data. This implies that it would be advan-
tageous to postpone conversion until the data reaches the
consumer, in order to preserve bandwidth. However, even
high performance graphical rendering machines, like our
OpenGL-based, feature-poor active Ul running on an SGI
Octane, can be overwhelmed by the processing and stor-
age demands of a visualization that must render large data
sets. This is one of the interesting problems to be addressed
by the runtime methods for data stream configuration pre-
sented next.

4. ACDS: Concepts

ACDS supports the construction and adaptation of com-
putational data streams used in scientific applications. Since
stream computations may themselves be computationally
intensive, they can benefit from parallelization. This mo-
tivates ACDS’ “split” and ‘merge’ adaptations described be-
low. Since the amounts of data being streamed may be
large, data cannot be viewed in its entirety at all times. This
implies the need for data filtering and the need to change
filtering at runtime in accordance with current user behav-
ior or needs; these needs motivate ACDS’ support for the
runtime adaptation of parameters in single or sets of stream
components. Finally, ACDS supports the runtime migra-
tion of stream components, in order to deal with dynamic
variations in the node and network loads of the underlying
computational and access grids.



Parameter Changes are actions that alter the behaviour
of individual stream components. ACDS supports such
changes with control events consumed by stream compo-
nents and generated by user interfaces, by the ACDS moni-
toring and steering tool (MST), or by other stream compo-
nents.

Task Migration. Dynamic load-balancing algorithms [14,
12] may be classified by the distribution levels of their al-
gorithms and by the ways in which they can affect appli-
cation behaviour, ranging from local knowledge and local
changes to global knowledge and global changes. ACDS
enables task migration based on both local or global mi-
gration methods, by supporting the movement of individ-
ual and/or of multiple stream components, and by permit-
ting such movements to be initiated by stream components
themselves or by remote sites. Our implementation of task
migration assumes that stream components offer explicit
operations for state saving and migration, as commonly
done in restart files for scientific applications.

Task Splitting. We call the set of parallel tasks generated
through splitting a program, while its individual compo-
nents are called tasks. Splitting is difficult when performed
for a stream component (i.e., a program) that communicates
with other programs, each of which may itself consist of
multiple tasks. To address these difficulties, the split opera-
tion may be used in three different modes.

programl program3 programl program3

program2

Figure 2. Start Position and Distribution Mode

Parallel Mode. Each copy of the source task performs a
different job, with tasks negotiating for jobs. This mode
is used to increase the level of parallelism of the stream
component being split. Sample uses of this mode include
executing the same code on different data (SPMD) or exe-
cuting different codes on shared parts of the data (MIMD).
Stream components split in this fashion must make the cor-
rect assumptions concerning the necessary synchronization
at their respective inputs and outputs. Figure 2 depicts a
situation in which ‘Program?2’ is split into two tasks, with
each task operating on half the data. Three alternative syn-
chronization methods can be employed by the parallelized
version of ‘Program?2’: (1) synchronization at the inputs of
‘Program2’, (2) synchronization at its outputs, and (3) syn-
chronization at both its inputs and outputs. A typical use of
the split operation is one in which some particular stream

component is parallelized, followed by the reassembly of
results in a subsequent component. Cost models resident
in the MST can provide estimates of the potential benefits
of split operations, as shown with the experimental results
described in Section 6.

Redundant Mode. A program “split’ in ‘redundant mode’
generates two parallel tasks (from one initial task) that both
execute the same operations on the same data, and that send
their outputs to the same target(s) as the initial task. This
mode is useful when splitting is performed to improve com-
ponent reliability.

Configuration Mode. A program ‘split” in “‘configuration
mode’ again results in two identical tasks. However, their
outputs may be directed at different targets. This mode is
useful when dynamically creating a ‘branch’ in a compu-
tational data stream, perhaps to process and visualize the
same data as the original branch, but using different pro-
cessing methods and displays. An example drawn from the
sample application presented in Section 3 is one in which
one stream branch extracts physical information from at-
mospheric data (e.g., wind velocities), whereas the second,
new branch extracts chemistry information (e.g., 0zone con-
centrations).

Merging is the inverse operation of splitting. The only diffi-
culty with merging concerns connection reconfiguration for
adjacent stream components. ACDS’ buffer management
and communication facilities integrated with stream com-
ponents automatically deal with such reconfiguration.
Adaptation Transactions. The implementation of these
operations is based on a technique called adaptation trans-
actions. It is a distributed version of the multiprocessor
mechanism first described in [1] and is based on a 2-phase
transaction protocol. Additional detail appears in [6], in-
cluding possible optimizations, graph analysis methods and
the fashion in which cycles are removed, failure recovery,
and how to deal with concurrent adaptation requests.

5. ACDS: Architecture and I mplementation

Framework for Stream Components. Given a code mod-
ule that implements the basic functionality of a stream com-
ponent, it should be straightforward to construct a new
stream component and integrate it into existing streams. In
particular, component programmers should not have to be
concerned about the underlying ACDS structure that mon-
itors component behavior, supports splitting and merging,
implements adaptation transactions, and handles compo-
nent connections. Toward these ends, the implementation of
ACDS stream components utilizes two basic C++ classes,
as depicted in Figure 3: (1) the basic stream component
class provides communication support via its event channel
interface class and other basic utilities like monitoring. This
class uses ECHo event channels for inter-component com-



munications. (2) The adaptable stream component class
provides everything that is necessary to carry out adapta-
tions.

Relationships:
ECHo 1 eventchannel | | basic stream - Hionsnips:
event channel interface class component class isa
library T ouses
adaptable stream general buffer
component class template

GridReduction| AUl
class

class

MST
class

Shadow, Spectral file Spec2Grid matching or OpenGL/GLUT
decision parser conversion dQuUOB library

algorithms... library library

Provider
class

Spec2Grid
class

Figure 3. Class Hierarchy and Libraries

A new stream component is created by deriving a new

application class from the adaptable stream component
class. The computational code must be provided in the stubs
and the internal state that should be transferred in case of
component migration must be identified. Finally, informa-
tion about the manner in which the new component may be
split into multiple tasks (and merged) must be supplied. For
the sample application described in this paper, each stream
component is derived from the adaptable class, even the
data provider, the AUI, and the monitoring and steering tool
(MST) itself, (see Figure 3).
Internal Component Structure. The internal structure of
a stream component is not visible to application program-
mers, but it is useful to describe it to place into context the
performance results presented in Section 6.

Each stream component consists of four different
threads. The monitoring thread gathers timing information
about the performance of this stream component and counts
events, including incoming events, computation times, and
outgoing events. This information is sent over the monitor-
ing channel to the MST. Monitoring events can also serve
as acknowledgments for completed adaptations. The enact-
ment thread carries out adaptation transactions, and it inter-
acts with the MST and with other stream components, as
necessary. Both of these threads are run periodically. Most
of the actual 'work’ in a stream component is performed
by the network thread accepting inputs and the computa-
tion thread running the component’s code and issuing out-
put events. Since event communications are asynchronous,
each stream component can take advantage of communica-
tion/computation overlap in its operation.

MST Structure. The Monitoring and Steering Tool (MST)
supervises ACDS’ stream operation and adaptation. Its
main components are the data management system, adap-
tation decision algorithm, and adaptation enactment mech-
anism. Data management keeps track of the stream’s task
graph, of the node graph of available processors, and of the

mapping of tasks to processors. Associated with each task
is a monitoring trace window and other attributes like map-
ping constraints, available adaptation actions, and operating
system. The MST also performs resource management, by
keeping track of previously created local and remote pro-
cesses. These processes act as ‘containers’ for newly cre-
ated stream components and their tasks. Once created, such
containers are ‘acquired’ in response to ‘split’ operations
and ’released’ when tasks are ‘merged’.

At startup time, each stream component sends a registra-
tion message to the MST via the system’s monitoring chan-
nel; the message contains application-specific information
with which data management in the MST constructs its own
‘shadow’ of each stream component. Runtime component
registration with the MST is coupled with the fact that the
MST decides on changes like ‘split” and ‘merge’ and guar-
antees the consistency of the resulting ‘view’ of the com-
putational stream maintained in the MST. The MST uses its
internal view of the computational stream when executing
its decision algorithms to make suitable stream adaptations.
A detailed description of the decision algorithms employed
in the MST appears in [6]. Discussions concerning the ef-
fects of monitoring rates and detail on the performance of
MST decision algorithms appear in Section 6. Currently,
the main bottleneck for large data volumes is the MST as
shown by experiments in [6], where we also discuss in de-
tail our solution to this problem. Briefly, since the MST is
a stream component itself, it can also be split, merged, mi-
grated, and changed in terms of internal parameters, thereby
permitting us to dynamically build a hierarchy of MSTs.

6. Evaluation

This section utilizes output data from the atmospheric
simulation described in Section 3. The measurements re-
ported here use a cluster of Sun Ultra 30 workstations
(128MB RAM, 247MHz, Solaris 2.5.1). These machines
are connected via switched 100MBit/s Ethernet links. Data
is displayed with an OpenGL-based visualization tool run-
ning on SGI O2 machines (64MB RAM, 195MHz, Irix 6.3).
The SGls are connected to the Suns via 10 MBit/s Ethernet.

The atmospheric data used in our experiments is orga-
nized by simulation time steps and by the 3D nature of
this data set. Specifically, each time step simulates 2 hours
of real time; atmospheric data is comprised of 9 different
species, each having 64 longitudes, 32 latitudes, and 37
level values, where each value is represented by a floating
point number. This results in roughly 2.7MB of data per
time step in grid format. For long term storage, this data
is compressed into spectral form, with a resulting constant
compression rate of 4.04, thereby reducing data size for one
time step to roughly 675KB.

A ‘debugging’ model run simulates at least 6 weeks of



real-time and generates a total of about 340MB of spectral
data. A run used for interesting scientific inquiries might
simulate 1-2 years of real-time and produces about 1.5 to
3GB of spectral data, which translates to about 12GB in grid
format. Compared to other scientific applications, these
data amounts are still small. Today’s large data sets can eas-
ily reach the order of several TB and are continually grow-
ing. The atmospheric data file used in our experiments re-
sides on the local disk of one of the Sun machines on which
the provider runs.

ACDS’ utility for high performance data streams has two
sources: (1) its ability to react to changes in the availability
of underlying computing resources and (2) its ability to re-
act to changes in end user needs. This differentiates ACDS
from traditional research in load balancing and migration.
Migration experiments. The main purpose of this experi-
ment is to show that ACDS is able to move a system from
a bad initial situation to a better one. However, this ini-
tial configuration can occur during normal operation due to
dynamic changes in system load or end user requirements.
The “Initial Configuration’ shown in Figure 4 does not ex-
hibit good performance because the AUI and two stream
transformation and filtering components are all mapped to
a single machine, and because this machine is not ‘well-
connected’ to the computational cluster generating data.

Remote Provider SGI

Figure 4. Initial Configuration

The MST discovers these facts by monitoring stream
performance. In response, it first migrates the Spec2Grid
stream component to the Sun cluster, followed by the migra-
tion of the GridRed component, the latter being the stream
component that reduces network bandwidth needs by filter-
ing the stream in response to changes in end user behavior
seen by the AUI.

Configuration | Timeins
Middleware on Sun 109
Middleware on SGI 437
Migration with MST 118

Table 1. Improved Performance — Migration

Table 1 presents the results for a ‘debugging’ model run.
The first two rows represent the best and the worst cases
without the MST enabled and the stream configured by
hand. The times shown are the total stream execution times
for both cases. The third row depicts total stream execution

time when using ACDS’ stream monitoring and adaptation
and the decision algorithm currently embedded in the MST.
These results are encouraging, since performance with
MST is only 8.3% worse than the best possible perfor-
mance attained by manual component placement. Specif-
ically, these results demonstrate that the current delays and
overheads due to MST usage are acceptable for the compu-
tational data streams addressed by the ACDS system.

Configuration | Timeins
No load 109
Load on GridReduction, no migration 337
Load on Spec2Grid, no migration 328
Load on Spec2Grid node, migration 134
Load on GridReduction node, migration 151

Table 2. External Load

The previous experiment demonstrated MST’s ability to

deal with heterogeneity in the underlying computing infras-
tructure. In comparison, the experimental results depicted
in Table 2 concern performance improvements derived from
ACDS and the MST in response to runtime changes in sys-
tem loads. Specifically, in these experiments, we impose
large additional loads on the respective computational en-
gines. With a small delay due to monitoring and steer-
ing overheads, the stream components are migrated to idle
nodes, and the stream asymptotically reaches its optimal
performance.
Dynamic stream behavior. Changes in machine loads and
in user requirements are two causes of stream adaptations.
A third cause are runtime variations of the execution times
or the communication bandwidths due to the dynamic be-
havior of stream components themselves. Such dynamic
behaviors are common in complex components with many
internal branches taken in response to the data values re-
ceived as inputs.

The experiment described next simulates such compo-
nent behavior, by varying the computation time of the
‘Spec2Grid’ component in relation to the types of atmo-
spheric species being transformed. For experiment pur-
poses, we assume that the most ‘expensive’ species requires
30 times the execution time of the ‘normal’ species. Run-
time changes in computation times are due to users’ dy-
namic selections of the species being viewed.

This experiment demonstrates the utility of the “split’ op-
eration on stream components, where a user’s switch from
the normal to the expensive species results in a component
split and therefore, in the reduction of stream component
execution time due to parallelization. Figure 5 depicts the
situation after the Spec2Grid element has been split once
and when the expensive species is being transformed.

The MST tool currently determines suitable stream con-
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Figure 5. Situation after Splitting Spec2Grid

figurations by trial and error. The resulting stream perfor-
mance for one sample data run is depicted in Table 3. In
this run, the computationally expensive species is requested
for 100 time steps. Four different scenarios are measured.
In the first scenario, the stream is not adapted at all, so that
a single instance of Spec2Grid is used throughout. In the
second scenario, the stream always uses two instances of
Spec2Grid. Due to workload imbalances, using three in-
stances of Spec2Grid (shown in the third row) leads to a
performance drop. Finally, performance for the same run
with MST enabled appears in the fourth row. Throughout
this run, the level of parallelism for Spec2Grid varies from 2
to 3, resulting in repeated split and merge operations. Meth-
ods to avoid this thrashing in general are left out for brevity.

Configuration | Timeins
Single instance of Spec2Grid 127
Two instances of Spec2Grid 84
Three instances of Spec2Grid 157
Adaptations turned on 115

Table 3. Improved Performance — Splitting

Enactment Costs. The enactment of adaptation decisions,
that is, the execution of adaptation transactions, typically
takes only a few seconds, thereby making it feasible to adapt
computational data streams with delays suitable for end
users operating user interfaces via a keyboard or a mouse.
We characterize these costs in detail in [6].

7. Future Work

Future research should address the scalability of systems
like ACDS to the large-scale, wide area “‘access grid’ com-
putations and ‘portals’ now being envisioned by HPC re-
searchers. Specific topics include the hierarchical structur-
ing of system monitoring and steering methods and tools,
additional support for system reliability, and the integration
and use of multiple system and network monitoring tools,
including MOSS [3] or OMIS [10] for individual stream
components, and ReMoS for network monitoring.
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