
Power-Aware Video Decoding using Real-Time Event
Handlers

Christian Poellabauer
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

chris@cc.gatech.edu

Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

schwan@cc.gatech.edu

ABSTRACT
Multimedia applications have to receive sufficient resource
allocations to maintain their desired levels of Quality of Ser-
vice (QoS). On the other hand, in mobile environments, the
devices on which these applications must run have to mini-
mize power consumption to prolong battery life. Our work
focuses on the QoS issues in the event-driven distribution of
multimedia streams between mobile users, where a source
provides interactive video in the form of streams of data
events to multiple remote sinks. This paper addresses the
power-aware execution of event handlers at such event sinks.
In particular, an adaptive approach to the dynamic selec-
tion of a suitable CPU clock frequency of a mobile device
is shown superior to non-adaptive power management. This
approach (a) minimizes power consumption while also (b)
guaranteeing that a given event handler finishes its execu-
tion within application-specific timing constraints. This is
realized by dynamically measuring the progress of event han-
dler functions and then using this information to re-adjust
the clock frequency for the current event and to select ap-
propriate clock frequencies for future events.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time systems and
embedded systems

General Terms
Design, Performance

Keywords
energy, event service, mobile devices

1. INTRODUCTION
Mobile devices increasingly offer multimedia capabilities,

thereby enabling applications like video phones, mobile tele-
conferencing, video on demand, and distributed multi-player

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoWMoM’02 September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-474-6/02/0009 ...$5.00.

games. However, a mobile device has to minimize its power
consumption to prolong battery life. At the same time, to
attain suitable levels of quality of service, distributed mul-
timedia applications typically require the dynamic manage-
ment of underlying computing resources, including CPU,
network, disks, and displays. The challenge, therefore, is to
build power-aware systems that combine two often compet-
ing requirements: (1) to minimize overall power consump-
tion and (2) to maintain applications’ desired service quali-
ties.
Fortunately, multimedia applications can take advantage

of the fact that modern mobile device hardware increas-
ingly supports software-accessible power management mech-
anisms for its resources. At the CPU level, consider current
StrongARM SA11xx processors, the Intel XScale 80200, the
AMD Mobile K6-II+ with PowerNOW, or the Transmeta
Crusoe with LongRun, all of which support the run-time se-
lection of different frequency levels or voltage levels. They
also offer the use of alternative CPU instructions, with more
advanced power management support under development.
At the network level, wireless cards support different trans-
mit/receive power levels and transmission rates. And at the
display level, there are different settings for brightness or
backlight intensity.
As an example, consider a video conferencing application

in which a mobile device receives multiple video streams
that have to be displayed with certain frame rates and with
small jitter to ensure sufficient video quality. This requires
that the device allocates sufficient processor and network
resources to the video decoding application. However, espe-
cially with wireless communications, it is likely that video
frames will arrive with varying inter-frame gaps (e.g., bursty
traffic), so that these frames have to be buffered until their
display time has arrived to maintain minimal jitter.
Jitter is a well-understood problem, and frame buffering

is a known solution, of course. The novel work presented
in this paper focuses on a different aspect of this problem
and its solution: online power management to increase the
device’s battery life. The idea is simple: if the device has
resources beyond those needed for video decoding, why not
‘slow it down’ to match its CPU resources offered with those
needed, assuming the device has knowledge of the desired
frame rate.

The device under consideration in this paper is a Compaq
iPAQ H3870 handheld with an Intel StrongARM SA1110
processor, 32MB RAM, 32MB Flash, and a PCMCIA ex-

72

tension sleeve carrying a Lucent Technologies Orinoco Gold
wireless card with 11Mbps. The StrongARM SA1110 sup-
ports 12 clock frequencies (59Mhz to 221.2MHz in 14.7MHz
steps), however, the Linux kernel used (familiar version 0.5.2)
supports only 11 frequencies (59MHz to 206.4MHz). Dy-
namic frequency scaling on this device is possible for multi-
media applications, with the limitation that when the clock
frequency on the SA1110 is changed, the clock and all de-
vices fed by it (LCD controller, DMA controller, serial con-
trollers, and the OS timer) are stopped for a duration of
150µs. This leads to some implementation inefficiencies on
this device, but these difficulties are likely to be reduced for
future devices supporting frequency or voltage scaling, par-
ticularly for more power-optimized architectures like Intel’s
80200 processors based on the XScale microarchitecture.
Motivation. Power consumption is a key issue in wireless
and mobile systems, and so is Quality of Service (QoS) for
multimedia applications. Our work attempts to combine
adaptive QoS support for multimedia with power manage-
ment, i.e., to preserve energy and to prolong battery life.
This paper focuses on the receiving side of a media stream
(e.g., a video decoding process), as experienced in handheld
devices participating in a video conference.

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200 250 300 350 400

Po
we

r (W
)

Time (ms)

Power Consumption

Power Consumption

Figure 1: Video decoding on a mobile device.

Figure 1 shows a snapshot of a video decoding process on
the iPAQ H3870 handheld. A video stream is received at a
rate of 10 frames per second, giving the decoder 100ms for
the display of each individual frame. If the device is under-
utilized, frame decoding can be performed faster than that,
resulting in ‘idle times’. It is possible to reduce such idle
times by reducing the CPU clock frequency, while still meet-
ing each frame’s soft deadline for decoding [8, 15]. To enable
such per-frame device power management, measurements in
Figure 2 compare the energy consumption of the iPAQ with
the execution time of a simple for-loop with 107 iterations
(simulating a video decoding process) at 11 different clock
frequencies. The iPAQ is run without any extension or net-
work cards and with the LCD screen turned off. The energy
consumption

E(Joule) = Pactive ∗ Tactive + Pidle ∗ Tidle

is the sum of the ‘active’ period of the device (Pactive ∗
Tactive) and the ‘inactive’ (or idle) period of the device

1

1.2

1.4

1.6

1.8

2

050100150200250
0.5

1

1.5

2

2.5

3

3.5

En
erg

y (
Jo

ule
)

Ru
n-T

im
e (

se
co

nd
s)

Clock Frequency (MHz)

Energy Consumption versus Execution Time

Energy Consumption
Run-Time

Figure 2: Energy consumption versus execution
time for clock frequencies between 59MHz and
206MHz.

(Pidle ∗ Tidle). The energy consumption depicted in Fig-
ure 2 and in all subsequent energy graphs is computed over
the period of the worst-case execution time (WCET) of the
emulated function handling video frame decoding; in this ex-
periment the handler function has a WCET of 3.09s running
at 59MHz. The idle power of the iPAQ is 0.29W.
The key result depicted in Figure 2 is that although the

run-time of the examined code increases by more than 2
seconds when CPU frequency is scaled from 206MHz to
59MHz, energy consumption is reduced by 200mJ (Pactive

for 206MHz: 0.92W, Pactive for 59MHz: 0.41W). These
graphs indicate that there is a possibility to save energy by
‘intelligently’ slowing down processing on a mobile device.
You can also observe that at some frequencies the energy
consumption rises. We disregard this behavior in this pa-
per, but point out that others (e.g., in [9]) have investigated
this issue.
Solution Approach. Event services or publish-subscribe
mechanisms [2, 4, 7, 16] are increasingly being deployed in
applications that range from remote sensing, to multimedia
and video streaming [1, 10], to transactional systems [3]. We
adopt this approach to enable per-frame power management
for multimedia applications. That is, video or audio frames
are distributed as data events from an event source – or
publisher – to an event sink – or subscriber. Upon reception
of an event, the event service invokes a handler function.
For example, in a video conferencing application, the event
handler can have the task of uncompressing, decoding, and
displaying a video frame. Real-time events have deadlines
associated with them, that is, the execution of the associated
event handler has to terminate within defined time limits.
Deadlines can be part of the received event (explicit dead-
lines), which means that they are determined by the event
producer; or they can be derived from the application’s de-
sired quality of service (i.e., implicit deadlines), e.g., derived
from the desired frame rate of a video stream.
This paper utilizes implicit event deadlines along with

knowledge about the execution times of handler functions.
The idea is to reduce power for event handling by choos-
ing clock frequencies that permit handlers to execute within

73

their deadlines while also reducing power usage. Since han-
dler execution times cannot be assumed to be static, how-
ever, we also dynamically measure these times to attain a
handler execution history, and we then use this history to
dynamically adjust clock frequencies and to predict future
run-times of handler executions, resulting in what we call
power-aware event handling.
Contributions and Related Work. Frequency scaling [6,
9] and voltage scaling [11, 18] have been investigated in re-
cent research. Both have been shown to be useful to reduce
power consumption for a variety of application scenarios,
including real-time systems [5, 11]. In [17], the authors ex-
ploit slack times to integrate fixed priority scheduling with
power-awareness. The exploitation of idle times to preserve
power in video decoding applications has been shown feasi-
ble in previous work [8, 15]. Our work distinguishes itself
from these papers by dynamically measuring the decoding
progress and re-adjusting the frequency level as required.
We base the distribution of media streams on a novel pub-
lish/subscribe mechanism, where event handlers are invoked
at event arrival. We modify the event service to dynamically
measure the progress of the handler and allow it to select
an appropriate frequency level according to experience and
handler-feedback. Further, we modify the CPU scheduler
in the Linux operating system to initiate re-computations
of handler progress and re-adjustments of frequency lev-
els. However, our approach works independently from the
chosen CPU scheduling policy and is able to re-adjust the
frequency level of a handler function while it is executed.
Further, with power breakpoints, the executed code can it-
self provide feedback to the power management mechanism.
Previous approaches [11, 19, 20] address the combination of
power management with CPU scheduling, while our focus is
message-oriented, that is, power management activities are
triggered by message (or event) arrival.

2. POWER-AWARE REAL-TIME EVENTS
This work addresses multimedia applications that are sub-

ject to dynamic variations in underlying resources and in
current user needs. Examples include networked mobile sen-
sors cooperating to deliver remotely captured data to certain
sinks in real-time, adhoc-networked PDAs operating in dy-
namically changing contexts, and embedded computers in
mobile platforms like cars and airplanes that interact to ex-
change time-critical information. Applications investigated
by our group are ones that (1) remotely capture certain
sensor data (e.g., video capturing), (2) forward such data
to sinks that need it, via a shared wireless communication
medium, and (3) permit sinks to dynamically specialize sen-
sor/media information to suit their current needs and capa-
bilities. The element of such applications explicitly studied
in this paper is a video decoding process on mobile devices,
focusing on sink-side event handling on power-limited de-
vices.

2.1 KECho Event Service
The event-based approach to distributing data between

remote event sources and sinks has been used in applications
such as scientific computation, virtual worlds, sensor net-
works, or multimedia applications. KECho [12] is an anony-
mous and asynchronous event service semantically similar
to the CORBA Event Service [4], but implemented directly
on top of a network stack within the Linux kernel. The rea-

son for its all-kernel implementation is the use of KECho for
highly dynamic functions like QoS management or resource
monitoring, where we (1) need low overheads and high per-
formance (e.g., by avoiding costly system calls) and (2) need
direct and fine-grained access to all kernel resources, data
structures, and devices. For instance, KECho supports the
cooperation between its event service and the Linux CPU
scheduler to maximize event responsiveness, such as mini-
mizing the jitter of multimedia applications [13]. Further, to
integrate kernel-based with user-level resource management,
KECho also offers an interface to user-level applications (via
ECalls [14]).

2.2 Event Handling and Power-Awareness
Once a distributed application has established an event

channel, events can be submitted anonymously to all chan-
nel subscribers. A subscriber has to indicate an event han-
dler function at subscription time, which will be called once
for each incoming event. If there is a deadline associated
with an arriving event, the event service has to ensure that
the handler function terminates within this deadline. Ex-
plicit deadlines are determined by the event publisher and
are piggybacked onto an event at submission time. Implicit
deadlines are determined by the application at the event sub-
scriber and are derived from the context or desired quality of
service of the application. Video decoders, for example, can
derive event deadlines from the desired frame replay rate:
all events (assuming that an event carries exactly one video
frame) have deadlines exactly 1

framerate
seconds apart.

In mobile systems, we not only need to ensure the desired
quality of service for each application, but have to preserve
power of the overall device. Power-awareness in the KECho
event service is achieved by prolonging handler execution
such that deadlines are still met, but power consumption
is minimized. Although handler execution times at differ-
ent frequency levels can be measured offline, ‘outside’ fac-
tors such as preemptions by other tasks or events can make
run-times unpredictable. To react to the dynamics in event
handler execution, an adaptive approach to power manage-
ment is required. Note that in this work we address soft
real-time applications, that is, applications where real-time
requirements can be softened in some situations (e.g., “90%
of all deadlines have to be met”).

KECho has been modified with the following extensions:
(1) it dynamically measures the execution time of its event
handlers and computes an average over recent handler exe-
cutions for each available clock frequency; (2) it dynamically
selects the clock frequency by comparing event deadlines
with average handler run-times; (3) the CPU scheduler is
modified so that it restores a task’s frequency level when
the task is being scheduled, thereby allowing per-task fre-
quency levels; and (4) the handler functions and the CPU
scheduler have the ability to call back into KECho to request
re-consideration of the selected frequency level, thereby im-
plementing power breakpoints for event handlers.

At each power breakpoint, the actual progress of a handler
is compared with its predicted run-time and the clock fre-
quency is adjusted if necessary. These adjustment are made
because slowing down a handler’s execution also brings the
handler closer to its deadline, thereby increasing the risk of
missing the deadline. Delays or preemptions of a handler

74

function can easily result in a missed deadline in such sit-
uations. ‘Internal’ delays are caused by varying content of
an event, perhaps due to the increased quality or size of an
image. ‘External’ delays are caused by other tasks compet-
ing for the same resources, as exemplified by the arrival of
a higher-priority event that causes its handler function to
preempt the currently running handler.
We address these situations with different approaches:

(i) KECho reacts to possible delays by re-adjusting the fre-
quency level and maintaining desired levels of loss tolerances
(i.e., it adaptively controls the number of missed deadlines).
(ii) Call-backs (or power breakpoints) in the handler code are
used to initiate re-consideration of the selected frequency
level, and the handler can pass event-specific information
(e.g., size or complexity of an image) to KECho.
(iii) Call-backs from the CPU scheduler are used to re-
consider the selected frequency (as in (ii)), but without the
ability to pass event-specific information along with the call-
back.

The following sections describe in detail the modifica-
tions to the KECho event service. All measurements are
performed with a PicoTech dual-channel PC oscilloscope
(sampling rate 100kS/s and 12 bit resolution). The bat-
teries in both the iPAQ and the extension sleeve are dis-
connected, which means that the only power source is the
DC adapter. A 1Ω resistor is inserted into the ground line
between adapter and iPAQ to allow for the measurement of
the current and therefore the power of the iPAQ. A Linux-
based x86 desktop with a dual-Pentium III (each 800 MHz)
and 1GB RAM is used to ‘feed’ video frames to the iPAQ.
The kernels on both the desktop and the iPAQ are a mod-
ified Linux 2.4.17 kernel (’familiar 0.5.2’ on the iPAQ and
’Redhat 7.3’ on the desktop).

3. DYNAMIC CLOCK SPEED SELECTION
The KECho event service has been modified to be able

to measure handler execution times and to store averages
for each ‘handler-frequency level’ (more conservative ap-
proaches could prefer to store WCETs instead). These av-
erages are used to select the appropriate frequency level for
future events. The tables in Figure 3 store the average ex-

HANDLER H1

86 ms

111 ms

135 ms

156 ms

Event Queue

Set

206 MHz

192 MHz

177 MHz

162 MHz

155 MHz

141 MHz

deadline
event +

Run
Handler

Clock
Frequency

Frequency
Clock
ResetT2

T1

SUB
update

SCAN

Figure 3: Clock frequency selection.

ecution times for each individual frequency level and each
handler function. When an event is taken from the event
queue, its associated deadline is used to find the appropri-

ate entry in the handler-specific table. The clock frequency
is set to its new value and then the handler function is exe-
cuted. Before and after handler execution, timestamps (T1
and T2 in Figure 3) are obtained and used to update the
average execution time in the table for the used clock fre-
quency. Finally, after the handler function has terminated,
the clock frequency is reset to its original value.
The following pseudo-code shows the frequency level se-

lection described above. In lines 4-7, we compare the aver-
age run-time of the handler function at different frequency
levels until we find either (a) the largest run-time smaller
than the deadline or (b) a ’0’ entry. A ’0’ entry means that
no run-times at this level have been measured yet. After
the appropriate level has been found, the time is measured
and the handler invoked (lines 9 and 10). Note that the
default ’level’ is 10 corresponding to 206.4MHz and level 0
corresponds to the slowest clock frequency of 59MHz.

1: loop {
2: if new_event_available {
3: level = 10;
4: while avg_runtime(level) < deadline &&
5: level >= 0 &&
6: avg_runtime(level) != 0
7: level--;
8: if avg_runtime(level) > deadline level++;
9: t1 = get_timestamp;

10: invoke_handler;
11: t2 = get_timestamp;
12: update_avg_runtime(level, t2-t1);
13: }
14: }

After the handler terminates, we again measure the time
(line 11) and then update the stored average run-time of
this frequency level (line 12). In our current implementa-
tion, the average is computed using the 5 most recent han-
dler executions. Note that the average run-time is the time
from handler invocation until handler termination, i.e, in-
cluding all preemptions. Using this scheme, we exploit the

0

50

100

150

200

050100150200250

Ev
en

ts

Clock Frequency (MHz)

Event Distribution

Figure 4: Event distribution.

fact that reduced frequency levels result in extended handler
run-times, while also reducing power usage. For instance,
Figure 4 shows the event distribution using this mechanism:
1000 events are being received and a simple handler func-
tion (in the kernel) performing a for-loop 10 million times
is invoked for each event. The event deadline is randomly

75

chosen between 20 and 60ms. Without dynamic clock se-
lection, all handler invocations would be executed at the
highest frequency level (206.4MHz). With dynamic clock
selection, however, almost all handler invocations are run
at lower frequency levels, with the average being 107MHz.
Figure 5 shows the power consumed by the handheld de-

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

Po
we

r (W
)

Time (s)

Power Consumption

Figure 5: Power consumption without adaptive fre-
quency selection.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

Po
we

r (W
)

Time (s)

Power Consumption

Figure 6: Power consumption with adaptive fre-
quency selection.

vice during execution of this handler function. Events are
being transmitted with a rate of 10 events per second. The
first 14s show the power when the iPAQ is idle. The peak
at 14s occurs when we start the KECho event service, af-
ter which the power drops to approximately 1.5W since we
turn off the LCD display (to achieve higher accuracy in our
measurements). For the next 7 seconds, event channel cre-
ation, subscription, etc., take place, until after 21s, the de-
vice starts receiving events. The power fluctuates between
1.4W and 2.25W, with an average of 1.8W. Figure 6 shows
the same situation again, this time with adaptive power level
selection. Here, the power fluctuates between 1.4W and 2W,
with an average of 1.6W. Note that the channel creation time

varies between both graphs, which is caused by varying re-
sponse delays from a user-level session manager on a remote
host. The session manager is contacted by each subscriber
once to store or obtain a channel identifier.

4. RUN-TIME VARIATIONS
Although we dynamically measure and update the aver-

age run-time length of a handler function, variations in run-
time can be large due to external and internal influences.
External influences are outside of the control of the KE-
Cho event service, e.g., handler functions can be delayed or
preempted by other tasks with higher priorities. Internal
invariants are under the control of KECho and are caused
by variations in event size or complexity (e.g., changing size
or resolution of images). The handling of such variations is
the topic of the following sections.

4.1 Conservative Clock Speed Selection
A first approach to prevent missed deadlines caused by

internal and external delays is to choose a more conservative
approach in clock speed selection. A modification to the
frequency selection algorithm is to compare average handler
run-times with a fraction of the deadline. The following
pseudo code shows this modification, where OFFSET is a
real number in the range]0..1]:

1: while avg_runtime(level) < OFFSET * deadline &&
2: level >= 0 &&
3: avg_runtime(level) != 0
4: level--;

The smaller the value of OFFSET, the smaller the proba-
bility of missed deadlines. The selection of OFFSET can by
made dynamically. For example, soft real-time data streams
(such as video streams) often can tolerate a limited number
of missed or late packets. If a user wants a video stream with
a loss tolerance of 10%, KECho can keep track of the num-
ber of missed deadlines and can adjust OFFSET accordingly
(i.e., decrease OFFSET if the number of missed deadlines is
larger than the allowable loss tolerance). Figure 7 shows

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

Mi
sse

d D
ea

dlin
es

Run-Time Variation

Missed Deadlines

Without Adaptation
20% Loss Tolerance
10% Loss Tolerance

Figure 7: Missed deadlines.

the number of missed deadlines over run-time variations (in
the range of 0 to 100% of the original run-time) for the han-
dler function used in Section 1 for three different scenarios:

76

100

120

140

160

180

200

0 20 40 60 80 100 120

Av
era

ge
 Cl

oc
k F

req
ue

nc
y (

MH
z)

Run-Time Variation

Average Clock Frequency

Without Adaptation
20% Loss Tolerance
10% Loss Tolerance

Figure 8: Average clock frequencies.

(i) OFFSET is fixed at 1.0, (ii) OFFSET is adjusted dy-
namically such that a loss tolerance of 20% is achieved, and
(iii) OFFSET is adjusted dynamically such that a loss tol-
erance of 10% is achieved. It can be seen that the dynamic
adjustment of the OFFSET value for loss-tolerant streams
succeeds in limiting the number of missed deadlines to the
desired values. In Figure 8 we compare the average clock
frequencies for these three scenarios. The maximum devi-
ation for the ’loss-tolerant’ cases (10% and 20%) from the
original case is 15MHz in this example.

4.2 Power Breakpoints
With power breakpoints, clock frequency adjustments can

be made while a handler executes, that is, we introduce
adaptivity at a finer granularity. Two types of breakpoints
are supported in our implementation: (i) handler break-
points and (ii) scheduler breakpoints.

Handler Breakpoints. Handler breakpoints (Figure 9)
are placed directly in the handler function by the handler
developer. Each time a breakpoint is reached, the handler
execution is interrupted and a call-back into KECho is per-
formed. KECho then compares the actual run-time of the

KECho

HANDLER EXECUTION BREAKPOINTSEVENTQUEUE

get_next_event

CLOCK

DIFF(Run time, Predicted time)

Clock adjustment

preemption

Figure 9: Handler breakpoints.

handler with the predicted run-time and changes the clock
frequency if necessary. This is useful for situations where ex-
ternal influences delay the execution of the handler function.
The positioning of a power breakpoint has an influence on

the usefulness of the breakpoint. For example, a breakpoint
placed in the second half of the handler code may be more
useful than a breakpoint in the first half. Further, a handler
breakpoint has one argument which is a simple integer in
the range from 0 to 10. This argument allows the handler
function to inform KECho about the complexity of the cur-
rently handled event, which allows then KECho to choose
a more conservative frequency level if required. As exam-
ple, a video decoding handler function can ‘inform’ KECho
about an image size or quality that deviates from the size
or quality of previous images. KECho determines the clock
frequency level as described before, however, it takes the
breakpoint argument into consideration. For example, an
argument of ‘2’ indicates that KECho should choose a clock
frequency of at least 2 levels higher than it would choose
without this argument. This allows the handler to force
KECho to be more conservative in frequency scaling. Fig-

Missed Deadlines/Power Adaptations

0

100

200

300

400

500

600

700

Number of Breakpoints

Mi
ss

ed
 D

ea
dli

ne
s/P

ow
er

Ad
ap

tat
ion

s

Missed Deadlines
Power Adjustments

0 1 2 3 4

Figure 10: Missed deadlines/number of frequency
adaptations.

Average Clock Frequency

139

140

141

142

143

144

145

146

147

148

149

0 1 2 3 4 5

Number of Breakpoints

Cl
oc

k F
req

ue
nc

y (
MH

z)

Figure 11: Average clock frequencies.

ure 10 compares the number of missed deadlines with differ-
ent breakpoints. The first bar indicates that 215 events out
of 1000 miss their deadlines in this experiment. Note that

77

some of these events have such early deadlines that they are
not able to meet them even running at the highest possi-
ble clock frequency (in this experiment about 60-70 of all
events fall into this category). The following bars then indi-
cate the missed deadlines for 1,2,3, and 4 breakpoints, which
are set at equal intervals in the handler code. It can be seen
that the number of missed deadlines drops from 215 with no
breakpoints to 80 with 4 breakpoints. The second set of bars
show the number of power adjustments that were necessary,
the more breakpoints the more adjustments are being made.
Figure 11 shows that the average clock frequency increases
with the number of breakpoints, however, the change here is
only about 10MHz between 0 and 4 breakpoints. Note that
in our implementation, only if a handler finished without
clock frequency adjustment during run-time, the measured
run-time will be used for re-computation of the run-time av-
erage.

Scheduler Breakpoints. A second approach to the break-
point solution relieves the handler developer from finding ap-
propriate places in the code for the breakpoint placement.
Instead, we modified the Linux CPU scheduler such that
each time the scheduler is about to schedule a KECho han-
dler, it first calls back into KECho. The advantage here is
that the breakpoints are set ‘automatically’ by the scheduler.
However, the handler is not able to inform KECho about
increased complexity of an event. Further, with scheduler
breakpoints the clock frequency is only re-considered when
the scheduler runs and when the handler function actually is
being preempted. Figure 12 shows this scenario. Each time

EVENTQUEUE

KECho

HANDLER EXECUTION BREAKPOINTS

get_next_event

DIFF(Run time, Predicted time)

Clock adjustment

CPU
Scheduler

CLOCK

Figure 12: Scheduler breakpoints.

the CPU scheduler selects the event handler as the next task
to run (after it got previously preempted by another task),
the scheduler calls back into KECho, which then re-adjusts
the clock frequency if necessary. The call-back functionality
is independent from the scheduling policy used. To enable
any CPU scheduler to make use of per-task frequency levels
and to make call-backs into KECho the following changes
have been applied to the Linux kernel:
(a) The task structure in linux/sched.h (struct task struct)
has been extended with two new entries: clock frequency,
which is used to store the most recently used clock frequency
in kHz for this task and kecho task, which is a flag that
indicates if a task is a KECho event handler.
(b) After the CPU scheduler selected the next task to be
run it first inspects the kecho task variable in the task
structure of this task and makes a call back into KECho if
the entry indicates that the task is an event handler. This

gives KECho the opportunity to re-compute the required
clock frequency.
(c) Finally, the CPU scheduler checks the clock frequency
entry (which might have been modified by KECho in the
previous step) and re-adjusts the clock speed if the entry
differs from the current value of the clock speed.

In the case of scheduler breakpoints, the actual number
of breakpoints can vary and depends on the run-time of
the handler function, the number of preemptions, and the
frequency of scheduler invocations.

Breakpoint Placement

0

50

100

150

200

250

1 2 3 4 5 6

Number of Breakpoints

Mi
ss

ed
 D

ea
dli

ne
s

'Bad' Breakpoint Placement
'Good' Breakpoint Placement
Scheduler Breakpoints

Figure 13: Comparison of ’bad’, ’good’, and sched-
uler breakpoint placement.

While in the case of scheduler breakpoints the breakpoint
placement is ‘performed’ by the CPU scheduler, with han-
dler breakpoints the handler developer has to identify ap-
propriate places in the code for such call-backs. Figure 13
compares the effect of ‘bad’ breakpoint placement (e.g., sit-
uations where breakpoints are placed only in the first half of
a handler function) with ‘good’ breakpoint placement (e.g.,
situations where the breakpoints are evenly distributed in
the handler function). The latter case shows greater re-
ductions in missed deadlines with larger numbers of break-
points. In addition, we compare the scheduler breakpoint
approach with the handler breakpoint approach: the results
are comparable to the ‘good’ placement policy for the han-
dler breakpoints.

5. CONCLUSIONS
Mobile devices have to coordinate the resource utilization

of their applications with power management such that both
are satisfied: all applications receive their desired QoS, and
battery life is prolonged. This paper presents enhancements
to an event-based media delivery service to support power-
awareness: (1) the event service dynamically measures the
execution time of its event handlers and computes an aver-
age over recent handler executions for each frequency level;
(2) the event service is able to dynamically change clock fre-
quency and does so by comparing event deadlines with av-
erage handler run-times; (3) the CPU scheduler is modified
so that it restores a task’s frequency level when the task is
being scheduled; and (4) the handler functions and the CPU
scheduler have the ability to call back into the event service

78

to request re-consideration of the selected frequency level.

These modifications exploit idle times of the mobile device
to preserve power and do this in a manner that dynamically
reacts to variations in the run-time (or progress) of han-
dler functions. Our results show (1) power can be saved by
selecting slower clock frequencies depending on event dead-
lines, and (2) that real-time behavior can be improved by
dynamically re-adjusting the chosen clock frequency during
handler execution.

6. FUTURE WORK
Future work will focus on the effects of multi-dimensional

resource management (several resources have to be man-
aged cooperatively) on power management. Further, filter-
ing is an important feature of event services. That is, pro-
cessing of an event at the sending side can reduce network
overheads and also power consumption of the network de-
vices. As shown before, the iPAQ consumes about 1.5W
(0.29W idle) for processing, whereas wireless cards such as
the Orinoco Gold require 0.9W/1.4W for message recep-
tion/transmission. We will investigate the trade-off between
added processing overhead and reduced network overhead,
and we will implement an adaptive scheme to dynamically
select appropriate filtering functions to minimize power con-
sumption.
Although frequency or clock scaling can reduce power con-

sumption, as shown in this paper, voltage scaling is prefer-
able because of its greater impact on power reduction. By
reducing frequency, the power consumption reduces linearly
to the frequency. However, by reducing voltage, the power
consumption reduces quadratic (i.e., P ∼ (V 2, f)). There-
fore, our future work will use newer architectures, such as
the Intel XScale processor (which will be used in HP’s iPAQs
H3950 and H3970), which offers both voltage and frequency
scaling.

7. REFERENCES
[1] D. Chambers, G. Lyons, and J. Duggan. Stream

Enhancements for the CORBA Event Service. In Proc.
of the 9th ACM Multimedia Conference, Ottawa,
Ontario, Canada, October 2001.

[2] G. Eisenhauer, F. Bustamante, and K. Schwan. Event
Services for High Performance Computing. In
Proceedings of High Performance Distributed
Computing (HPDC), 2000.

[3] A. Gavrilovska, K. Schwan, and V. Oleson. A
Practical Approach for ’Zero’ Downtime in an
Operational Information System. In Proc. of 22nd
Intl. Conference on Distributed Computing Systems
(ICDCS-2002), Vienna, Austria, 2002.

[4] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The
Design and Performance of a Real-time CORBA
Object Event Service. In Proc. of OOPSLA, October
1997.

[5] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi.
Power-Aware Scheduling under Timing Constraints
for Mission-Critical Embedded Systems. In Proc. of
Design Automation Conference, 2001.

[6] J. R. Lorch and A. J. Smith. Improving Dynamic
Voltage Scaling Algorithms with PACE. In Proc. of
the ACM SIGMETRICS Conference, 2001.

[7] C. Ma and J. Bacon. COBEA: A CORBA-Based
Event Architecture. In Proc. of the 4th USENIX
Conference on Object-Oriented Technologies, Santa
Fe, NM, April 1998.

[8] M. Mesarina and Y. Turner. Reduced Energy
Decoding of MPEG Streams. In Proc. of Multimedia
Computing and Networking, San Jose, CA, 2002.

[9] A. Miyoshi, C. Lefurgy, E. V. Hensbergen,
R. Rajamony, and R. Rajkumar. Critical Power Slope:
Understanding the Runtime Effects of Frequency
Scaling. In Proc. of the 16th Annual Intl. Conference
on Supercomputing, 2002.

[10] S. Mungee, N. Surendran, and D. C. Schmidt. The
Design and Performance of a CORBA Audio/Video
Streaming Service. In Proc. of the 32nd Annual
Hawaii Intl. Conference on System Sciences, 1998.

[11] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating Systems.
In Proc. of the 18th SOSP, Canada, 2001.

[12] C. Poellabauer, K. Schwan, G. Eisenhauer, and
J. Kong. KECho - Event Communication for
Distributed Kernel Services. In Proc. of the Intl.
Conference on Architecture of Computing Systems
(ARCS’02), Karlsruhe, Germany, April 2002.

[13] C. Poellabauer, K. Schwan, and R. West. Coordinated
CPU and Event Scheduling for Distributed
Multimedia Applications. In Proc. of the 9th ACM
Multimedia Conf., Ottawa, Canada, October 2001.

[14] C. Poellabauer, K. Schwan, and R. West. Lightweight
Kernel/User Communication for Real-Time and
Multimedia Applications. In Proc. of the 11th Intl.
Workshop on Network and Operating System Support
for Digital Audio and Video, June 2001.

[15] J. Pouwelse, K. Langendoen, R. Lagendijk, and
H. Sips. Power-Aware Video Decoding. In Proc. of
Picture Coding Symposium 2001, Seoul, Korea, 2001.

[16] R. Rajkumar, M. Gagliardi, and L. Sha. The
Real-Time Publisher/Subscriber Inter-Process
Communication Model for Distributed Real-Time
Systems: Design and Implementation. In Proc. of the
1st IEEE Real-Time Technology and Applications
Symposium, May 1995.

[17] Y. Shin and K. Choi. Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems. In Proc. of
Design Automation Conference, 1999.

[18] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and
G. D. Micheli. Dynamic Voltage Scaling and Power
Management for Portable Systems. In Proc. of Design
Automation Conference, 2001.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for Reduced CPU Energy. In Proc. of the
1st Symposium on Operating Systems Design and
Implementation (OSDI), Monterey, CA, 1994.

[20] F. Yao, A. Demers, and S. Shenker. A Scheduling
Model for Reduced CPU Energy. In Proc. of IEEE
Annual Foundations of Computer Science, 1995.

79

