

Modeling the Effect of Short-term Rate Variations on TCP-Friendly
Congestion Control Behavior

Kang Li℘ , Molly H. ShorΨ, Jonathan Walpole℘ , Calton Pu⊗ , David C. Steere℘

℘ Dept. of Computer Science and Engineering, Oregon Graduate Institute, Beaverton, Oregon 97921-1000 USA. This
work was supported in part by DARPA/ITO under the Information Technology Expeditions, Ubiquitous Computing,
Quorum, and PCES programs, and in part by NSF Grant CCR-9988440.
Ψ Dept. of Electrical and Computer Engineering, Oregon State University, Corvallis, Oregon 97331-3211 USA. Research
was supported in part by NSF Grant ECS-9988435
⊗ College of Computing, CCB Room 261, Georgia Institute of Technology, Atlanta, Georgia 30332-0280 USA

Abstract:
Transmission Control Protocol (TCP) is the dominant
transport protocol in today’s Internet. To maintain
stability of the Internet, flows other than TCP must be
“friendly” to TCP flows, or share network bandwidth
fairly with TCP traffic. Usually a flow is claimed to be
TCP-friendly when its throughput is theoretically the
same as the throughput of a TCP flow when they
experience the same congestion signals. However, when
flows compete for bandwidth, they may not have the same
perception of congestion. Therefore, measured bandwidth
shares of flows are not necessarily equal, even when all
flows are theoretically designed to be TCP-friendly.

To study the effect on bandwidth sharing of interactions
among a set of competing TCP-friendly flows, we built a
hybrid state-space-based model of TCP using differential
equations and event-driven switches. We modified the
TCP model, using TCP’s additive-increase multiplicative-
decrease (AIMD) congestion avoidance algorithm with
different increase and decrease parameters, to create
theoretically TCP-friendly protocols with various short-
term transmission rates. We prove that TCP-friendly
flows result in a stable attractor if the backing off of flow
transmission rates is synchronized. Experiments using our
model and using ns simulator with unsynchronized
backing off show unfairness among competing flows with
different short-term behaviors.

1. Introduction
One of the most common “protocols” used to control the
transmission of data in a reliable fashion on the Internet is
the Transmission Control Protocol (TCP) [1]. This
protocol adjusts how much data may be sent for a
particular connection between end applications over each
interval of time. TCP is designed to "back off" the rate of
transmission when network congestion occurs and to
increase the rate over time when there is no congestion.
The increase is TCP's mechanism to probe the network to
determine if excess capacity is available.

TCP congestion control can be viewed as a nonlinear
feedback control system that dynamically adjusts its

transmission rate according to the network’s congestion
state. A significant amount of research work has been
done on this system. For example, Jain and Chiu [2]
proved that multiple TCPs converge to fair bandwidth
share by analyzing TCP's additive-increase multiplicative-
decrease (AIMD) algorithm. Padhye, et al., [3, 4, 5]
derived equations for TCP's average transmission rate
from the system assuming that the TCP's feedback delay
(round-trip-time) and packet loss rate are known.

Recently, new “TCP-friendly” protocols were proposed to
serve the emerging class of multimedia applications.
While TCP is appropriate for applications such as bulk
data transfer, it does not support the requirements of
streaming multimedia applications. TCP's variable delay,
caused by retransmission and rate variations, may reduce
a user’s perceived quality [6]. Various TCP-friendly
congestion controls have been proposed as alternatives to
TCP. A flow is generally claimed to be TCP-friendly if its
long-term average transmission rate is equal to that of a
normal TCP under the same conditions (e.g., round-trip-
time (RTT) and packet loss rate).

In this paper, we use a hybrid state-space-based model to
investigate the bandwidth-sharing behavior of TCP-
friendly flows. We choose the transmission rates of TCP-
friendly flows, as well as the network buffer fill level, as
system states to describe the bandwidth sharing behavior,
and we prove that the system state converges to a stable
limit cycle under the assumption of synchronous backing
off of all flows.

We then compare TCP-friendly flow behaviors under
other assumptions on congestion signals. We made
simulation experiments with our model, as well as with ns
simulator [7]. Our experiments with asynchronous
backing off indicate that theoretically TCP-friendly flows
do not share bandwidth fairly in practice, because they do
not perceive congestion in the same way.

This result confirms that a theoretical TCP-friendly
throughput prediction does not guarantee even bandwidth
share among competing flows in reality, and indicates that

we need additional metrics beyond theoretical throughput
to determine whether a flow will share bandwidth evenly
with competing TCP traffic.

Section 2 provides an overview of the TCP congestion
control system. Section 3 presents the current definition
and models for TCP-friendliness. Section 4 describes our
state-space model, our theoretical analysis of the stability
of bandwidth sharing among TCP-friendly flows, and our
experiments through simulations. Sections 5 and 6 discuss
future work and conclusions.

2. TCP AIMD Control as a Nonlinear Feedback-based
Control System
TCP is an adaptive protocol, using the additive-increase
multiplicative-decrease algorithm. TCP adjusts the
sender’s data output rate according to the network path
characteristics and the receiver side behaviors.

We can represent TCP congestion control as a feedback
control system that outputs a signal onto the network to
probe the network state, which is then used to control the
data output rate. This feedback control system is
illustrated in Figure 2.1. The feedback loop is composed
of the rate controller, the probing signal that goes across
the network, and the feedback monitor that monitors the
sampling results and sends them to the rate controller.

Figure 2.1: TCP Congestion Control System

TCP probes the network’s state with the data it sends.
Data packets travel from the sender to the receiver, and
acknowledgments for each packet travel back from the
receiver to the sender.

The time from sending a packet to receiving its
acknowledgment is the round-trip time (RTT). The RTT
is an important state variable in this system. This is the
delay around the feedback loop, as well. The RTT varies
primarily as a function of the buffer fill levels in the
network path along which the data travels. The longer the
packets must wait in buffers, the longer it takes them to
traverse that path. A significant increase in RTT may be a
useful indicator of network congestion.

If a packet arrives somewhere and the buffer is full, then
it is lost. Each time the rate controller probes the
network, the feedback monitor determines if the packet’s
acknowledgment returns or not. TCP detects this packet

loss by looking at out-of-order acknowledgments. If
acknowledgments have arrived for three packets that are
sent out later than a certain packet that has not been
acknowledged, then TCP decides that that packet is lost.

TCP controls the rate at which data is sent out on the
network by using a congestion window. The congestion
window size defines the maximum amount of outstanding
data, data that has been sent but not yet acknowledged;
hence, the amount that is sent out in one round-trip-time.
The congestion window size is an important state variable
in this system. The rate controller uses an AIMD
algorithm to control the congestion window size, or out-
going data rate. If acknowledgments are received for all
packets that are sent during one RTT, then TCP increases
its congestion window size by α (default is one packet);

otherwise TCP decreases its congestion window to β

times (default is half) the current window size.

3. TCP-friendliness
TCP-friendliness is proposed because TCP is not well
suited for emerging applications such as streaming media.
TCP integrates congestion control and reliability control
together. The reliability control usually causes too much
latency for applications that are very sensitive to delay
and delay variations but can tolerate some data loss.
When transferring streaming media with TCP, TCP’s
saw-tooth rate variation may also cause undesired delay
and delay variations. TCP-friendly congestion controls
are suited for these timing sensitive applications and
interact well with TCP. They ensure that normal TCP
flows get their fair allocation of bandwidth in the
presence of these protocols, and vice versa.

Right now, TCP-friendliness [3, 8, 9, and 10] is defined
based on TCP’s long-term average throughput behavior.
A well-known behavior of TCP is that the long-term (at
least several seconds) average throughput of a flow with
TCP AIMD congestion control is related to its loss rate,
round-trip-time, and maximum packet size [8, 11, and 5]
according to the formula:

pRTT

M
r

*

22.1= (3.1).

The terms used in Equation (3.1) are defined in Table 3.1.

TCP-friendliness is generally defined by the average
throughput specified in Equation (3.1). If a non-TCP
flow’s long-term average throughput is equal to the
throughput specified by Equation (3.1), then it is called
TCP-friendly. The short-term behavior of a TCP-friendly
flow is left unspecified, because one motivation for
proposing TCP-friendly protocols is to provide alternative
short-term transmission rates that differ from TCP’s saw-
tooth rate variation.

 Rate
Controller

Feedback
Monitor

Network

Output Data Input Data

Congestion
- Sampling Packet loss

Table 3.1: Term Definitions
r : A TCP’s average throughput;
p: A TCP’s packet loss rate;
r(t): A TCP’s transmission rate at time t;
fl(t): Network leaky bucket queue fill-level at time t;
α : TCP AIMD’s linear increment parameter

(default 1), and 0≥α ;

β : TCP AIMD’s exponential decrement parameter

(default ½), and 10 << β ;

M: TCP’s maximum segment size (We assume all
TCP packets are this size);
RTT: TCP’s round-trip-time (We assume RTT is a
constant for a flow);
R: Network leaky bucket’s leaking rate;
B: Network leaky bucket’s bucket size;
N: Number of competing flows.

According to the above definition of TCP-friendliness,
various mechanisms have been proposed to implement
TCP-friendly congestion controls. One way to implement
a TCP-friendly congestion control with a different short-
term rate behavior is to use TCP’s AIMD algorithm with
different increment α and decrement parameters β

with the parameters related by equations such as [17]

β
βα

+
−=

1

)1(3
 (3.2).

Another way to implement a TCP-friendly congestion
control is to monitor the packet loss rate and round-trip-
time and calculate the average throughput according to
Equation (3.1). Once the desired average rate is known,
the congestion control can use the inverse of the rate to
control the interval between outgoing packets.

The TCP-friendliness definition based on the long-term
average throughput of a flow operating with a given loss
rate makes the assumption that a flow’s packet loss rate is
independent on its short-term rate variations. If loss event
(congestion signal) distributions were the same for all the
competing flows, they would certainly get the same
bandwidth share according to the equation. However,
reality may differ from this assumption. Some existing
TCP-friendly congestion control protocols do not use the
throughput equation (e.g., TCP using different AIMD
parameters), and some use the throughput equation but
have different ways to measure the packet loss rate.
Experiments [10] have shown that various “TCP-friendly”
flows actually will not share bandwidth equally with each
other even when the network set up for those flows are
the same (same RTT and same bottleneck link), although
they are supposed to share bandwidth evenly in long-term
according to the friendliness definition. Therefore, we
think it worthwhile to study the behavior of bandwidth
sharing among multiple competing TCP flows.

4. State Space Based Model of TCP
This section presents a state-space-based model for TCP,
a result derived using the model, and simulation results.

We chose to derive a state-space model to study the
bandwidth-sharing behavior under the effect of short-term
rate variation. We believe that the congestion signal
distribution is related to the instantaneous transmission
rates when congestion occurs. Therefore, we required a
model that includes every competing flow’s instantaneous
transmission rate and the queue fill-level of the bottleneck
link1.

Our state-space based model includes all the important
states that determine the bandwidth-sharing behavior. The
essential feature of the concept of state for a dynamical
system is that it should contain all information about the
past history of the system that is relevant to its future
behavior. That is to say, if the state at a given instance is
known, then its subsequent evolution can be predicted
without any other knowledge of what has previously
happened to the system. For a system with N competing
flows, the system’s state at time t in our model is a vector

T
N tfltrtrtrtS)](),(,),(),([)(21 �= , where the terms

are defined in Table 3.1.

For each individual flow, we chose the following state
equations to describe the dynamic states of a TCP-
friendly flow that uses the AIMD algorithm. We assume
TCP has a constant RTT2, and we use a continuous model
for the increase to approximate the rate increment by one
packet per RTT. Since the AIMD algorithm switches its
rate control according to the existence of a congestion
signal, we use the following equations (transitions) to
describe the system behavior:

When no congestion occurs (uncongested state):

2

)(

i

i

RTT

M

dt

tdr α= (4.1),

When congestion occurs:

ii rr ×← β (4.2).

We simulate a bottleneck link with a leaky
bucket model. The bucket fill-level is controlled
by:

1 We assume only one, common, bottleneck for all the
competing flows.
2 RTT is composed of propagation delay, which is a
constant, and queueing delay, which is related to queue
fill-level. Here we assume the propagation delay is much
larger than queueing delay to simplify the description. An
extended model with RTT as a variable is in [12].










=−=

>−=

∑

∑

=

=

0)(if)0,max(
)(

0)(if
)(

1

1

tflRr
dt

tdfl

tflRr
dt

tdfl

N

i
i

N

i
i

 (4.3).

When fl(t) = B, a congestion signal is produced.

Since fl(t) is the fill-level of the bottleneck, we expect
fl(t) > 0 always and hence neglect the fl(t) = 0 case in
Equation (4.3) in our analysis.

4.1 Trajectory, limit cycle, and attractor
We start this section by introducing some terms that are
widely used in describing nonlinear control systems. The
state space defined by system states is called the phase
plane. A system’s trajectory describes how the system
states migrate in the phase plane. If the system states can
fully capture the system’s dynamics (e.g., in a
deterministic, homogenous, time-invariant system), then
any point in the phase plane determines the system’s
future behavior, and the next state. Therefore trajectories
cannot cross. Some special trajectories take the form of
closed loops, which we call limit cycles. A limit cycle is
called stable, or an attractor, when its nearby trajectories
converge to the limit cycle. Figure 4.1 provides an
example of a trajectory of the system of interest with two
competing flows. The system state starts at a random
point in the state space, and the trajectory converges to a
stable limit cycle (attractor).

Figure 4.1: The trajectory of a system that has two

competing flows.

4.2 The attractor of competing TCP-friendly flows
under synchronized backing off
Next, we present a theorem on the stability of the limit
cycle that results under synchronized backing off.

Theorem 1:
When multiple TCP-friendly flows compete for a
constant available bandwidth, the system states
converge to a limit cycle that passes through the

point T
N BrrrP],,,,[21 �= , in which

∑
=

××
+

=
N

j j

i

i

RTT

R

RTT
r

1
2

2 1
1

1

2

β
β

 (4.4).

The long-term average throughput of a flow is

∑
=

×=
N

j j

i

i

RTT

R

RTT
r

1
2

2 1
1

 (4.5).

When all the flows have the same RTT, they get
even bandwidth share.

Here, we argue that the above limit cycle is stable. The
full proof for the theorem is presented in a complete
version of this paper [12].

To show that the limit cycle is stable, we divide the
system trajectory into rounds. Each round starts with a
backing off upon a congestion signal, and ends with
producing the next congestion signal. We compare the
distance of the system state from the above limit cycle at
the beginning of every two consecutive rounds. If the
distance is converging to zero, it indicates that the system
state vector is approaching the limit cycle. Furthermore,
we know if the system state ever reaches the above limit
cycle, it will stay on it, unless there is noise to cause the
system state to leave the limit cycle again.

We assume that the system states of the flows start from a
random initial condition

T
NN BrrrP],,,,[2211 ∆′+∆′+∆′+=′ � , and the system

states arrive at T
NN BrrrP],,,,[2211 ∆′′+∆′′+∆′′+=′′ �

after one more round. We can derive the following
relation:

∑
∑ =

=

∆′×−∆′=∆ ′′
N

j
jN

j j

i
ii

RTT
RTT 1

1
2

2 1
21 ββ (4.6)

We can prove that 1
)(

)(

1

2

1

2

<
∆′

∆ ′′

∑

∑

=

=
N

i
j

N

i
j

 when 10 << β ,

which indicates that the distance to the limit cycle
becomes smaller as time goes by. Therefore, we know
that the product of that formula with the next formula,
etc., will result in the product of various numbers that are

all less than one. As time goes to infinity, the distance to
the limit cycle approaches zero. Thus, the limit cycle is
stable.

We have presented elsewhere that the trajectory of a
system composed by a single TCP is a limit cycle [13].
Here we have proved that a system with multiple flows
converges to a stable limit cycle when the flows’ average
throughputs are equal to a normal TCP’s throughput,
assuming all the flows back off together. This indicates
that the TCP-friendliness definition is enough to
guarantee fair bandwidth share among competing traffic
under a synchronized feedback.

4.3 Asynchronous backing off
In this section, we discuss the bandwidth sharing behavior
of competing TCP-friendly flows under asynchronous
backing off.

We adjust TCP’s AIMD parameters according to
Equation (3.2) to create a TCP-friendly flow with
different short-term rate behavior but the same long-term
throughput in theory [17]. A larger α causes a more
aggressive short-term rate increase. Due to the theoretical
limitation of keeping the same throughput as normal TCP,
β must also be larger, which causes a greater short-term

rate decrement when congestion occurs.

Figure 4.2: Simulation Topology

We study the impact of these short-term rate behaviors
under asynchronous backing off using simulations of our
model, implementing it in Matlab/Simulink [15]. The
simulation files are available through the web [16].

The simulations use the network setup shown in Figure
4.2. In this setup, two TCP flows share a bottleneck link
with some competing traffic. One TCP flow uses the
standard AIMD parameters (1,1/2). The other TCP uses
the modified AIMD parameters. We conducted the
experiment with the following pairs of AIMD parameters
(α , β): (1/3, 4/5), (2/3, 7/11), (4/3, 5/13), and (5/3, 2/7).

The bottleneck link was set to 10Mbps with a 5ms delay.
The simulation runs 1000 seconds.

We simulate real competing traffic to produce congestion
events. A significant amount of traffic in today’s Internet
is web-related traffic, which is reported to be self-similar

in nature. Research in [14] shows that self-similar traffic
can be modeled with ON/OFF UDP sources with output
rates drawn from a heavy-tailed distribution, such as the
Pareto distribution. Thus we use ON/OFF sources as
competing traffic.

In our simulation, a random process that generates rate
using the Pareto distribution produces the competing
traffic. We have two parameters for this random process,
the Pareto distribution shape parameter, and the number
of sources. The shape parameter of the Pareto distribution
is set to be 1.5, which is also used to simulate web traffic
in other network simulator [7]. The number of
simultaneous sources used to simulate the competing
traffic is up to 300 in this simulation, with each source
sending at 10Kbps during an ON time. We vary the
number of simultaneous sources from 0 to 300 to produce
different degree of congestions.

Our model for TCP is based on continuous rates. Since
there is no notion of packets in the model, it can not
distinguish which flow should back off based on which
flow loses packets. Therefore, we require an additional
component to decide which flow would experience packet
losses when congestions occur. This is the cost of
simplifying the system states to continuous rates and
ignoring other more detailed states, such as inter-packets
intervals. In general, a flow with a higher rate at the time
of congestion is more likely to get packets dropped than a
flow with a lower rate. We decided to use a random
process with a Bernoulli distribution to control whether a
flow experiences packet losses or not. The output of this
Bernoulli process is either a flow experiencing congestion
or not. When congestion occurs, a flow’s probability of
experiencing a congestion event is equal to the ratio of the
flow’s instant rate to the bottleneck rate.

Figure 4.3: Simulink Result - Bandwidth Sharing

Ratio between Normal TCP and AIMD TCP

Figure 4.3 shows our simulation results with various
amounts of competing traffic. It shows the bandwidth-
sharing ratio between the two competing flows. One flow

Normal TCP

R1
10M 5ms

R2
AIMD-TCP AIMD-TCP

Normal TCP

Competing
Traffic

Competing
Traffic

is a normal AIMD TCP; another one is a TCP-friendly
flow produced by an AIMD TCP with a different pair of
α and β parameters. From our simulation results, the

different α and β parameters (which produce different

short-term rate behaviors) had an effect on the bandwidth
sharing result, as did the amount of competing traffic
(which affects the bottleneck link’s data loss rate).

As the two flows’ short-term behaviors diverge (e.g.,
AIMD(1/3, 4/5) differs more from AIMD(1,1/2) than
AIMD(2/3, 7/11) does), the bandwidth share diverges
from equal share. For similar short-term behaviors, the
two flows receive close to even bandwidth share, because
the two flows have similar transmission rates.

Our simulations also show that, as the amount of
competing traffic increases, the bandwidth share ratio
varies significantly. We plan to quantify the effect of the
amount of competing traffic (which affects the data loss
rate) on bandwidth share ratio.

Our model of congestion experiences could be too simple
to model reality. To verify our result, we used network
simulator ns2 to simulate the same TCP flows and
competing traffic. Ns2 simulator generates asynchronous
congestion signals directly by simulating the network in
units of packets. Only flows that lose packets back off.
The rest of the set up is the same as the Simulink set up.

Figure 4.4 and Figure 4.5 show our experimental results
with ns2. Figure 4.4 shows the bottleneck link packet loss
rate versus the number of competing sources. Figure 4.5
shows the bandwidth share ratio between a TCP flow and
an AIMD flow.

As shown in Figure 4.5, ns2 produces a similar result to
the Simulink simulation, although not the exact result. It
shows a similar uneven bandwidth share between AIMD
TCP and normal TCP, but the effect of the AIMD
parameters’ adjustment on the bandwidth sharing is more
dramatic (uneven bandwidth share ratio ranges up to 1.5
rather than only up to 1.15 in the Simulink experiment).

Many factors contribute to the difference between these
two simulations. Ns2 mimics reality closer than our
Simulink model and thus introduces more random events.
One significant difference is that TCP slow-start and
time-outs are considered in the ns2 simulation, while in
the Simulink model, we only account for the AIMD
algorithm that models TCP’s congestion control.

Even with these differences, one common result is
reached  a fixed AIMD parameter relation, such as
Equation (3.2), does not guarantee bandwidth shared
evenly among TCP flows. Additional factors, such as
timeout and slow-start stages, merely reinforce this result.

Figure 4.4: NS2 Result: Packet Loss Rate

Figure 4.5: NS2 Result - Bandwidth Share Ratio

Between Normal TCP and AIMD TCP

5. Factors beyond TCP-friendliness
From our experimental results, the condition currently
used to judge TCP-friendliness of flows is not adequate to
determine which congestion controls will share network
bandwidth fairly with one another and with TCP. That
condition was the basis for AIMD-based “TCP-friendly”
protocols (based on an algebraic relation between AIMD
parameters α and β). That raises the question: what

factors beyond TCP-friendliness have a significant impact
on bandwidth sharing behavior?

Differing loss event distributions cause a congestion-
controlled flow to consume a different bandwidth share
than another flow. The only factor that could affect the
loss process of an ordinary FCFS queue differently for
two flows is their rates.

Floyd, et al., [9] proposed the notion of TCP-friendliness,
which is a first order rule to keep fair bandwidth share
between new flows and traditional TCP traffic, but is
based only on the average of a flow’s transmission rate.

Other aspects of the transmission rate related to its short-
term variation behavior – such as burst and oscillation
frequency – may be important factors that could be used
to predict or control the bandwidth-sharing behavior.

Burst can be measured by the maximum accumulated
mismatch of a flow’s real transmission rate and the “TCP-
friendly” average throughput. A flow can burst out some
data and keep the same average throughput by borrowing
some amount from the average and returning it later (by
sending less than average). Limits on burst are limits on
the maximum amount that a flow can borrow, which we
believe may be a factor affecting flow bandwidth sharing.

Oscillation frequency describes how frequently a flow
varies (borrows and returns) from its average throughput,
which we believe may be another factor affecting flow
bandwidth sharing.

We are working to quantify the effect on bandwidth
sharing caused by aspects of short-term rate variations,
such as the factors listed above. Other future work
includes how to control AIMD parameters to obtain a
user’s preferred result (such as proportional bandwidth
share rather than equal share).

6. Conclusion
In this paper, we focused on studying the effect of short-
term rate variations on bandwidth sharing behavior.
Currently, TCP-friendliness is the well accepted notion
used to build new congestion-control protocols to keep
bandwidth fair share. At the same time, several research
works have shown that the notion itself is not enough to
guarantee bandwidth fair share. In our work, we built a
state-space-based model and proved the stability of
bandwidth sharing behavior under the assumption of
synchronized backing off and using the same model
observed experimentally unfair bandwidth sharing under
asynchronous backing off. We verified the observed
result using ns2 simulations.

We sought to understand the unfair share of bandwidth
under asynchronous backing off and to propose some
possible factors to study in the future. As we have seen,
understanding bandwidth sharing among competing
traffic is complicated. We believe that the problem of
predicting and controlling the bandwidth sharing among
competing flows is an important task for both the current
and future Internet as long as the network resources are
shared among users. To fully understand the problem
requires more research work.

Reference
[1] Van Jacobson and Michael J. Karels. Congestion
avoidance and control. Proc. ACM SIGCOMM’88, pp. 79-
88, Aug. 1988.

[2] D. Chiu and R. Jain. Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks. Computer Networks ISDN Systems, 17, 1989
[3] Jitendra Padhye, Jim Kurose, Don Towsley and
Rajeev Koodli. A Model Based TCP-Friendly Rate
Control Protocol. UMass-CMPSCI Tech. Report TR 98-
04, Oct. 1998.
[4] Jitendra Padhye, Victor Firoiu, and Don Towsley. A
Stochastic Model of TCP Reno Congestion Avoidance
and Control. CMPSCI Tech. Report 99-02.
[5] Jitendra Padhye, Victor Firoiu, Don Towsley and Jim
Kurose. Modeling TCP throughput: a simple model and
its empirical validation. Proc. ACM SIGCOMM’98.
[6] S. Cen, C. Pu and J. Walpole. Flow and congestion
control for Internet streaming applications, Proc.
Multimedia Computing Networking, (MMCN98), 1998
[7] NS2 simulator. Available at http://www-
mash.CS.Berkeley.EDU/ns/
[8] S. Floyd, M. Handley and J. Padhye. Equation-based
congestion control for unicast applications. Proc. ACM
SIGCOMM 2000.
[9] Sally Floyd and Kevin Fall. Promoting the use of end-
to-end congestion control in the Internet. IEEE/ACM
Trans. Networking, Aug. 1999.
[10] S. Floyd, M. Handley and J. Padhye. A Comparison
of Equation-based and AIMD Congestion Control, May
2000, http://www.aciri.org/tfrc/
[11] Matthew Mathis, Jeffrey Semke and Jamshid
Mahdavi. The macroscopic behavior of the TCP
congestion avoidance algorithm. ACM Computer
Communication Review, vol. 27 no. 3, July 1997.
[12] K. Li, M. Shor and J. Walpole. Modeling the
Transient Rate Behavior of Bandwidth Sharing as a
Hybrid Control System. Oregon Graduate Institute Tech.
Report CSE-01-02. Dec. 2000.
[13] M. Shor, K. Li, J. Walpole, D. C. Steere and C. Pu.
Application of control theory to modeling and analysis of
computer systems. RESCCE’2000: Japan - USA -
Vietnam Workshop on Research and Education in
Systems, Computation and Control Engineering,
HoChiMinh City, Vietnam , June 7-9, 2000.
[14] A. Feldmann, A. C. Gilbert, P. Huang and W.
Willinger. Dynamics of IP traffic: A study of the role of
variability and the impact of control. Proc. ACM
SIGCOMM’99. Cambridge, Massachusetts, August 1999.
[15] Matlab Simulink. The MathWorks Inc.
http://www.mathworks.com/products/simulink/
[16] Simulation files for the state-space model.
http://www.cse.ogi.edu/~kangli/simulink.html.
[17] K. Lee, R. Puri, T. Kim, K. Ramchandran and V.
Bharghavan. An integrated source coding and congestion
control framework for video streaming in the Internet.
IEEE Infocom 2000, Tel Aviv, Israel, Mar. 2000.

