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Abstract: 
Transmission Control Protocol (TCP) is the dominant 
transport protocol in today’s Internet. To maintain 
stability of the Internet, flows other than TCP must be 
“friendly” to TCP flows, or share network bandwidth 
fairly with TCP traffic. Usually a flow is claimed to be 
TCP-friendly when its throughput is theoretically the 
same as the throughput of a TCP flow when they 
experience the same congestion signals. However, when 
flows compete for bandwidth, they may not have the same 
perception of congestion. Therefore, measured bandwidth 
shares of flows are not necessarily equal, even when all 
flows are theoretically designed to be TCP-friendly. 
 
To study the effect on bandwidth sharing of interactions 
among a set of competing TCP-friendly flows, we built a 
hybrid state-space-based model of TCP using differential 
equations and event-driven switches. We modified the 
TCP model, using TCP’s additive-increase multiplicative-
decrease (AIMD) congestion avoidance algorithm with 
different increase and decrease parameters, to create 
theoretically TCP-friendly protocols with various short-
term transmission rates. We prove that TCP-friendly 
flows result in a stable attractor if the backing off of flow 
transmission rates is synchronized. Experiments using our 
model and using ns simulator with unsynchronized 
backing off show unfairness among competing flows with 
different short-term behaviors.  
 
1. Introduction 
One of the most common “protocols” used to control the 
transmission of data in a reliable fashion on the Internet is 
the Transmission Control Protocol (TCP) [1]. This 
protocol adjusts how much data may be sent for a 
particular connection between end applications over each 
interval of time. TCP is designed to "back off" the rate of 
transmission when network congestion occurs and to 
increase the rate over time when there is no congestion. 
The increase is TCP's mechanism to probe the network to 
determine if excess capacity is available. 
 
TCP congestion control can be viewed as a nonlinear 
feedback control system that dynamically adjusts its 

transmission rate according to the network’s congestion 
state. A significant amount of research work has been 
done on this system. For example, Jain and Chiu [2] 
proved that multiple TCPs converge to fair bandwidth 
share by analyzing TCP's additive-increase multiplicative-
decrease (AIMD) algorithm. Padhye, et al., [3, 4, 5] 
derived equations for TCP's average transmission rate 
from the system assuming that the TCP's feedback delay 
(round-trip-time) and packet loss rate are known. 
 
Recently, new “TCP-friendly” protocols were proposed to 
serve the emerging class of multimedia applications. 
While TCP is appropriate for applications such as bulk 
data transfer, it does not support the requirements of 
streaming multimedia applications. TCP's variable delay, 
caused by retransmission and rate variations, may reduce 
a user’s perceived quality [6]. Various TCP-friendly 
congestion controls have been proposed as alternatives to 
TCP. A flow is generally claimed to be TCP-friendly if its 
long-term average transmission rate is equal to that of a 
normal TCP under the same conditions (e.g., round-trip-
time (RTT) and packet loss rate). 
 
In this paper, we use a hybrid state-space-based model to 
investigate the bandwidth-sharing behavior of TCP-
friendly flows. We choose the transmission rates of TCP-
friendly flows, as well as the network buffer fill level, as 
system states to describe the bandwidth sharing behavior, 
and we prove that the system state converges to a stable 
limit cycle under the assumption of synchronous backing 
off of all flows. 
 
We then compare TCP-friendly flow behaviors under 
other assumptions on congestion signals. We made 
simulation experiments with our model, as well as with ns 
simulator [7]. Our experiments with asynchronous 
backing off indicate that theoretically TCP-friendly flows 
do not share bandwidth fairly in practice, because they do 
not perceive congestion in the same way. 
 
This result confirms that a theoretical TCP-friendly 
throughput prediction does not guarantee even bandwidth 
share among competing flows in reality, and indicates that 



 

 

we need additional metrics beyond theoretical throughput 
to determine whether a flow will share bandwidth evenly 
with competing TCP traffic. 
 
Section 2 provides an overview of the TCP congestion 
control system. Section 3 presents the current definition 
and models for TCP-friendliness. Section 4 describes our 
state-space model, our theoretical analysis of the stability 
of bandwidth sharing among TCP-friendly flows, and our 
experiments through simulations. Sections 5 and 6 discuss 
future work and conclusions. 
 
2. TCP AIMD Control as a Nonlinear Feedback-based 
Control System 
TCP is an adaptive protocol, using the additive-increase 
multiplicative-decrease algorithm. TCP adjusts the 
sender’s data output rate according to the network path 
characteristics and the receiver side behaviors. 
 
We can represent TCP congestion control as a feedback 
control system that outputs a signal onto the network to 
probe the network state, which is then used to control the 
data output rate. This feedback control system is 
illustrated in Figure 2.1. The feedback loop is composed 
of the rate controller, the probing signal that goes across 
the network, and the feedback monitor that monitors the 
sampling results and sends them to the rate controller. 
 
 
 
 
 
 
 
 
 

Figure 2.1: TCP Congestion Control System 
 
TCP probes the network’s state with the data it sends. 
Data packets travel from the sender to the receiver, and 
acknowledgments for each packet travel back from the 
receiver to the sender. 
 
The time from sending a packet to receiving its 
acknowledgment is the round-trip time (RTT). The RTT 
is an important state variable in this system. This is the 
delay around the feedback loop, as well. The RTT varies 
primarily as a function of the buffer fill levels in the 
network path along which the data travels. The longer the 
packets must wait in buffers, the longer it takes them to 
traverse that path. A significant increase in RTT may be a 
useful indicator of network congestion. 
 
If a packet arrives somewhere and the buffer is full, then 
it is lost.  Each time the rate controller probes the 
network, the feedback monitor determines if the packet’s 
acknowledgment returns or not. TCP detects this packet 

loss by looking at out-of-order acknowledgments. If 
acknowledgments have arrived for three packets that are 
sent out later than a certain packet that has not been 
acknowledged, then TCP decides that that packet is lost. 
 
TCP controls the rate at which data is sent out on the 
network by using a congestion window. The congestion 
window size defines the maximum amount of outstanding 
data, data that has been sent but not yet acknowledged; 
hence, the amount that is sent out in one round-trip-time. 
The congestion window size is an important state variable 
in this system. The rate controller uses an AIMD 
algorithm to control the congestion window size, or out-
going data rate. If acknowledgments are received for all 
packets that are sent during one RTT, then TCP increases 
its congestion window size by α (default is one packet); 

otherwise TCP decreases its congestion window to β  

times (default is half) the current window size. 
 
3. TCP-friendliness 
TCP-friendliness is proposed because TCP is not well 
suited for emerging applications such as streaming media. 
TCP integrates congestion control and reliability control 
together. The reliability control usually causes too much 
latency for applications that are very sensitive to delay 
and delay variations but can tolerate some data loss. 
When transferring streaming media with TCP, TCP’s 
saw-tooth rate variation may also cause undesired delay 
and delay variations. TCP-friendly congestion controls 
are suited for these timing sensitive applications and 
interact well with TCP. They ensure that normal TCP 
flows get their fair allocation of bandwidth in the 
presence of these protocols, and vice versa. 
 
Right now, TCP-friendliness [3, 8, 9, and 10] is defined 
based on TCP’s long-term average throughput behavior. 
A well-known behavior of TCP is that the long-term (at 
least several seconds) average throughput of a flow with 
TCP AIMD congestion control is related to its loss rate, 
round-trip-time, and maximum packet size [8, 11, and 5] 
according to the formula: 
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The terms used in Equation (3.1) are defined in Table 3.1.  
 
TCP-friendliness is generally defined by the average 
throughput specified in Equation (3.1). If a non-TCP 
flow’s long-term average throughput is equal to the 
throughput specified by Equation (3.1), then it is called 
TCP-friendly. The short-term behavior of a TCP-friendly 
flow is left unspecified, because one motivation for 
proposing TCP-friendly protocols is to provide alternative 
short-term transmission rates that differ from TCP’s saw-
tooth rate variation. 
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Table 3.1: Term Definitions 
r : A TCP’s average throughput; 
p:  A TCP’s packet loss rate; 
r(t): A TCP’s transmission rate at time t; 
fl(t): Network leaky bucket queue fill-level at time t; 
α : TCP AIMD’s linear increment parameter 

(default 1), and 0≥α ; 

β : TCP AIMD’s exponential decrement parameter 

(default ½), and 10 << β ; 

M: TCP’s maximum segment size (We assume all 
TCP packets are this size); 
RTT: TCP’s round-trip-time (We assume RTT is a 
constant for a flow); 
R: Network leaky bucket’s leaking rate; 
B: Network leaky bucket’s bucket size; 
N: Number of competing flows. 

 
According to the above definition of TCP-friendliness, 
various mechanisms have been proposed to implement 
TCP-friendly congestion controls. One way to implement 
a TCP-friendly congestion control with a different short-
term rate behavior is to use TCP’s AIMD algorithm with 
different increment α  and decrement parameters β  

with the parameters related by equations such as [17] 
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Another way to implement a TCP-friendly congestion 
control is to monitor the packet loss rate and round-trip-
time and calculate the average throughput according to 
Equation (3.1). Once the desired average rate is known, 
the congestion control can use the inverse of the rate to 
control the interval between outgoing packets. 
 
The TCP-friendliness definition based on the long-term 
average throughput of a flow operating with a given loss 
rate makes the assumption that a flow’s packet loss rate is 
independent on its short-term rate variations. If loss event 
(congestion signal) distributions were the same for all the 
competing flows, they would certainly get the same 
bandwidth share according to the equation. However, 
reality may differ from this assumption. Some existing 
TCP-friendly congestion control protocols do not use the 
throughput equation (e.g., TCP using different AIMD 
parameters), and some use the throughput equation but 
have different ways to measure the packet loss rate. 
Experiments [10] have shown that various “TCP-friendly” 
flows actually will not share bandwidth equally with each 
other even when the network set up for those flows are 
the same (same RTT and same bottleneck link), although 
they are supposed to share bandwidth evenly in long-term 
according to the friendliness definition. Therefore, we 
think it worthwhile to study the behavior of bandwidth 
sharing among multiple competing TCP flows. 
 
 

4. State Space Based Model of TCP 
This section presents a state-space-based model for TCP, 
a result derived using the model, and simulation results. 
 
We chose to derive a state-space model to study the 
bandwidth-sharing behavior under the effect of short-term 
rate variation. We believe that the congestion signal 
distribution is related to the instantaneous transmission 
rates when congestion occurs. Therefore, we required a 
model that includes every competing flow’s instantaneous 
transmission rate and the queue fill-level of the bottleneck 
link1. 
 
Our state-space based model includes all the important 
states that determine the bandwidth-sharing behavior. The 
essential feature of the concept of state for a dynamical 
system is that it should contain all information about the 
past history of the system that is relevant to its future 
behavior. That is to say, if the state at a given instance is 
known, then its subsequent evolution can be predicted 
without any other knowledge of what has previously 
happened to the system. For a system with N competing 
flows, the system’s state at time t in our model is a vector 

T
N tfltrtrtrtS )](),(,),(),([)( 21 �= , where the terms 

are defined in Table 3.1.  
 
For each individual flow, we chose the following state 
equations to describe the dynamic states of a TCP-
friendly flow that uses the AIMD algorithm. We assume 
TCP has a constant RTT2, and we use a continuous model 
for the increase to approximate the rate increment by one 
packet per RTT. Since the AIMD algorithm switches its 
rate control according to the existence of a congestion 
signal, we use the following equations (transitions) to 
describe the system behavior: 
 

When no congestion occurs (uncongested state): 

2
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When congestion occurs: 

ii rr ×← β   (4.2). 

 
 
We simulate a bottleneck link with a leaky 
bucket model. The bucket fill-level is controlled 
by: 

                                                 
1 We assume only one, common, bottleneck for all the 
competing flows. 
2 RTT is composed of propagation delay, which is a 
constant, and queueing delay, which is related to queue 
fill-level. Here we assume the propagation delay is much 
larger than queueing delay to simplify the description. An 
extended model with RTT as a variable is in [12]. 
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When fl(t) = B, a congestion signal is produced.  
 

Since fl(t) is the fill-level of the bottleneck, we expect  
fl(t) > 0 always and hence neglect the fl(t) = 0 case in 
Equation (4.3) in our analysis. 
 
4.1 Trajectory, limit cycle, and attractor 
We start this section by introducing some terms that are 
widely used in describing nonlinear control systems. The 
state space defined by system states is called the phase 
plane. A system’s trajectory describes how the system 
states migrate in the phase plane. If the system states can 
fully capture the system’s dynamics (e.g., in a 
deterministic, homogenous, time-invariant system), then 
any point in the phase plane determines the system’s 
future behavior, and the next state. Therefore trajectories 
cannot cross. Some special trajectories take the form of 
closed loops, which we call limit cycles. A limit cycle is 
called stable, or an attractor, when its nearby trajectories 
converge to the limit cycle. Figure 4.1 provides an 
example of a trajectory of the system of interest with two 
competing flows. The system state starts at a random 
point in the state space, and the trajectory converges to a 
stable limit cycle (attractor).  

 
Figure 4.1: The trajectory of a system that has two 

competing flows. 
 
4.2 The attractor of competing TCP-friendly flows 
under synchronized backing off 
Next, we present a theorem on the stability of the limit 
cycle that results under synchronized backing off. 
 

Theorem 1: 
When multiple TCP-friendly flows compete for a 
constant available bandwidth, the system states 
converge to a limit cycle that passes through the 
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The long-term average throughput of a flow is  
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When all the flows have the same RTT, they get 
even bandwidth share.  
 
Here, we argue that the above limit cycle is stable. The 
full proof for the theorem is presented in a complete 
version of this paper [12].  
 
To show that the limit cycle is stable, we divide the 
system trajectory into rounds. Each round starts with a 
backing off upon a congestion signal, and ends with 
producing the next congestion signal. We compare the 
distance of the system state from the above limit cycle at 
the beginning of every two consecutive rounds. If the 
distance is converging to zero, it indicates that the system 
state vector is approaching the limit cycle. Furthermore, 
we know if the system state ever reaches the above limit 
cycle, it will stay on it, unless there is noise to cause the 
system state to leave the limit cycle again. 
 
We assume that the system states of the flows start from a 
random initial condition 
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after one more round. We can derive the following 
relation: 
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which indicates that the distance to the limit cycle 
becomes smaller as time goes by. Therefore, we know 
that the product of that formula with the next formula, 
etc., will result in the product of various numbers that are 



 

 

all less than one. As time goes to infinity, the distance to 
the limit cycle approaches zero. Thus, the limit cycle is 
stable.  
 
We have presented elsewhere that the trajectory of a 
system composed by a single TCP is a limit cycle [13]. 
Here we have proved that a system with multiple flows 
converges to a stable limit cycle when the flows’ average 
throughputs are equal to a normal TCP’s throughput, 
assuming all the flows back off together. This indicates 
that the TCP-friendliness definition is enough to 
guarantee fair bandwidth share among competing traffic 
under a synchronized feedback.  
 
4.3 Asynchronous backing off 
In this section, we discuss the bandwidth sharing behavior 
of competing TCP-friendly flows under asynchronous 
backing off. 
 
We adjust TCP’s AIMD parameters according to 
Equation (3.2) to create a TCP-friendly flow with 
different short-term rate behavior but the same long-term 
throughput in theory [17]. A larger α  causes a more 
aggressive short-term rate increase. Due to the theoretical 
limitation of keeping the same throughput as normal TCP, 
β must also be larger, which causes a greater short-term 

rate decrement when congestion occurs. 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Simulation Topology 
 
We study the impact of these short-term rate behaviors 
under asynchronous backing off using simulations of our 
model, implementing it in Matlab/Simulink [15]. The 
simulation files are available through the web [16].  
 
The simulations use the network setup shown in Figure 
4.2. In this setup, two TCP flows share a bottleneck link 
with some competing traffic. One TCP flow uses the 
standard AIMD parameters (1,1/2). The other TCP uses 
the modified AIMD parameters. We conducted the 
experiment with the following pairs of AIMD parameters 
(α , β ): (1/3, 4/5), (2/3, 7/11), (4/3, 5/13), and (5/3, 2/7). 

The bottleneck link was set to 10Mbps with a 5ms delay. 
The simulation runs 1000 seconds.  
 
We simulate real competing traffic to produce congestion 
events. A significant amount of traffic in today’s Internet 
is web-related traffic, which is reported to be self-similar 

in nature. Research in [14] shows that self-similar traffic 
can be modeled with ON/OFF UDP sources with output 
rates drawn from a heavy-tailed distribution, such as the 
Pareto distribution. Thus we use ON/OFF sources as 
competing traffic.  
 
In our simulation, a random process that generates rate 
using the Pareto distribution produces the competing 
traffic. We have two parameters for this random process, 
the Pareto distribution shape parameter, and the number 
of sources. The shape parameter of the Pareto distribution 
is set to be 1.5, which is also used to simulate web traffic 
in other network simulator [7]. The number of 
simultaneous sources used to simulate the competing 
traffic is up to 300 in this simulation, with each source 
sending at 10Kbps during an ON time. We vary the 
number of simultaneous sources from 0 to 300 to produce 
different degree of congestions. 
 
Our model for TCP is based on continuous rates. Since 
there is no notion of packets in the model, it can not 
distinguish which flow should back off based on which 
flow loses packets. Therefore, we require an additional 
component to decide which flow would experience packet 
losses when congestions occur. This is the cost of 
simplifying the system states to continuous rates and 
ignoring other more detailed states, such as inter-packets 
intervals. In general, a flow with a higher rate at the time 
of congestion is more likely to get packets dropped than a 
flow with a lower rate. We decided to use a random 
process with a Bernoulli distribution to control whether a 
flow experiences packet losses or not. The output of this 
Bernoulli process is either a flow experiencing congestion 
or not. When congestion occurs, a flow’s probability of 
experiencing a congestion event is equal to the ratio of the 
flow’s instant rate to the bottleneck rate. 

 
Figure 4.3: Simulink Result - Bandwidth Sharing 

Ratio between Normal TCP and AIMD TCP 
 
Figure 4.3 shows our simulation results with various 
amounts of competing traffic. It shows the bandwidth-
sharing ratio between the two competing flows. One flow 
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is a normal AIMD TCP; another one is a TCP-friendly 
flow produced by an AIMD TCP with a different pair of 
α  and β parameters. From our simulation results, the 

different α  and β parameters (which produce different 

short-term rate behaviors) had an effect on the bandwidth 
sharing result, as did the amount of competing traffic 
(which affects the bottleneck link’s data loss rate).  
 
As the two flows’ short-term behaviors diverge (e.g., 
AIMD(1/3, 4/5) differs more from AIMD(1,1/2) than 
AIMD(2/3, 7/11) does), the bandwidth share diverges 
from equal share. For similar short-term behaviors, the 
two flows receive close to even bandwidth share, because 
the two flows have similar transmission rates.   
 
Our simulations also show that, as the amount of 
competing traffic increases, the bandwidth share ratio 
varies significantly. We plan to quantify the effect of the 
amount of competing traffic (which affects the data loss 
rate) on bandwidth share ratio. 
 
Our model of congestion experiences could be too simple 
to model reality. To verify our result, we used network 
simulator ns2 to simulate the same TCP flows and 
competing traffic. Ns2 simulator generates asynchronous 
congestion signals directly by simulating the network in 
units of packets. Only flows that lose packets back off. 
The rest of the set up is the same as the Simulink set up.  
 
Figure 4.4 and Figure 4.5 show our experimental results 
with ns2. Figure 4.4 shows the bottleneck link packet loss 
rate versus the number of competing sources. Figure 4.5 
shows the bandwidth share ratio between a TCP flow and 
an AIMD flow. 
 
As shown in Figure 4.5, ns2 produces a similar result to 
the Simulink simulation, although not the exact result. It 
shows a similar uneven bandwidth share between AIMD 
TCP and normal TCP, but the effect of the AIMD 
parameters’ adjustment on the bandwidth sharing is more 
dramatic (uneven bandwidth share ratio ranges up to 1.5 
rather than only up to 1.15 in the Simulink experiment).  
 
Many factors contribute to the difference between these 
two simulations.  Ns2 mimics reality closer than our 
Simulink model and thus introduces more random events. 
One significant difference is that TCP slow-start and 
time-outs are considered in the ns2 simulation, while in 
the Simulink model, we only account for the AIMD 
algorithm that models TCP’s congestion control.  
 
Even with these differences, one common result is 
reached   a fixed AIMD parameter relation, such as 
Equation (3.2), does not guarantee bandwidth shared 
evenly among TCP flows. Additional factors, such as 
timeout and slow-start stages, merely reinforce this result. 
 

 

 
 

Figure 4.4: NS2 Result: Packet Loss Rate 

 
Figure 4.5: NS2 Result - Bandwidth Share Ratio 

Between Normal TCP and AIMD TCP 
 
5. Factors beyond TCP-friendliness 
From our experimental results, the condition currently 
used to judge TCP-friendliness of flows is not adequate to 
determine which congestion controls will share network 
bandwidth fairly with one another and with TCP. That 
condition was the basis for AIMD-based “TCP-friendly” 
protocols (based on an algebraic relation between AIMD 
parameters α and β ). That raises the question: what 

factors beyond TCP-friendliness have a significant impact 
on bandwidth sharing behavior? 
 
Differing loss event distributions cause a congestion-
controlled flow to consume a different bandwidth share 
than another flow. The only factor that could affect the 
loss process of an ordinary FCFS queue differently for 
two flows is their rates.  
 
Floyd, et al., [9] proposed the notion of TCP-friendliness, 
which is a first order rule to keep fair bandwidth share 
between new flows and traditional TCP traffic, but is 
based only on the average of a flow’s transmission rate. 



 

 

Other aspects of the transmission rate related to its short-
term variation behavior – such as burst and oscillation 
frequency – may be important factors that could be used 
to predict or control the bandwidth-sharing behavior.  
 
Burst can be measured by the maximum accumulated 
mismatch of a flow’s real transmission rate and the “TCP-
friendly” average throughput. A flow can burst out some 
data and keep the same average throughput by borrowing 
some amount from the average and returning it later (by 
sending less than average). Limits on burst are limits on 
the maximum amount that a flow can borrow, which we 
believe may be a factor affecting flow bandwidth sharing.  
 
Oscillation frequency describes how frequently a flow 
varies (borrows and returns) from its average throughput, 
which we believe may be another factor affecting flow 
bandwidth sharing. 
 
We are working to quantify the effect on bandwidth 
sharing caused by aspects of short-term rate variations, 
such as the factors listed above. Other future work 
includes how to control AIMD parameters to obtain a 
user’s preferred result (such as proportional bandwidth 
share rather than equal share). 
 
6. Conclusion  
In this paper, we focused on studying the effect of short-
term rate variations on bandwidth sharing behavior. 
Currently, TCP-friendliness is the well accepted notion 
used to build new congestion-control protocols to keep 
bandwidth fair share. At the same time, several research 
works have shown that the notion itself is not enough to 
guarantee bandwidth fair share. In our work, we built a 
state-space-based model and proved the stability of 
bandwidth sharing behavior under the assumption of 
synchronized backing off and using the same model 
observed experimentally unfair bandwidth sharing under 
asynchronous backing off.  We verified the observed 
result using ns2 simulations. 
 
We sought to understand the unfair share of bandwidth 
under asynchronous backing off and to propose some 
possible factors to study in the future. As we have seen, 
understanding bandwidth sharing among competing 
traffic is complicated. We believe that the problem of 
predicting and controlling the bandwidth sharing among 
competing flows is an important task for both the current 
and future Internet as long as the network resources are 
shared among users. To fully understand the problem 
requires more research work. 
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