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SUMMARY

FC++ is a library for programming functionally in C++. Compared to other C++
functional programming libraries, FC++ is distinguished by its powerful type system
which allows manipulating parametrically polymorphic functions (e.g., passing them as
arguments to other functions and returning them as results).
In this paper, we show how FC++ can be used in common OO programming tasks.

We demonstrate FC++ implementations of several common design patterns (Adapter,
Builder, Command, and more). Compared to conventional C++ implementations
of these patterns, our implementations are either simpler (in that fewer
classes/dependencies are needed), more eÆcient, or more type-safe (thanks to parametric
polymorphism and type inference).
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1. Introduction

Functional and object-oriented programming are the most active �elds of research in
programming languages and methodologies. Several pieces of work have attempted to connect
the two paradigms. Among them are the Pizza language [1], extending Java, as well as
libraries for programming functionally in C++ [2, 3, 4, 5]. FC++ [6] is one such library,
distinguished from all others by its powerful type system: FC++ allows the programmer to
de�ne and fully manipulate parametrically polymorphic functions. The conventional C++
way of representing polymorphic functions is via function templates, as in the C++ Standard
Library [7]. Nevertheless, function templates su�er severe limitations|e.g., they cannot be
passed as parameters to other functions or returned as results. FC++ polymorphic functions
overcome these limitations, enabling FC++ to re-implement straightforwardly many common
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2 Y. SMARAGDAKIS AND B. MCNAMARA

functional operators (a large part of the Haskell Standard Prelude [8]). The library is currently
quite rich in functionality and has an eÆcient implementation.
In a previous paper [6], we introduced FC++ and its innovative type system, showed the

components of the library, and demonstrated how its implementation is more eÆcient than
previous similar attempts. In this paper we show how to leverage the library to create simple,
eÆcient, and safe implementations of common OO design patterns [9].
Certainly a lot has been written about language support for implementing design patterns

(e.g., [10, 11]), functional techniques in OO programming, etc. Some of the approaches in the
literature are even very close in philosophy to our work. For instance:

� Alexandrescu [12] demonstrates how the meta-programming capabilities of the C++
language can be used to yield elegant pattern implementations.

� K�uhne's dissertation proposes several patterns inspired by functional programming [13].
� Using functional techniques (higher-order functions) to implement the Observer and
Command patterns is common|in fact, even standard practice in Java and Smalltalk.

� The bene�ts of polymorphic and higher-order functions have often been discussed in the
functional programming literature [14].

Therefore, by necessity, part of our material presents a new mechanism but not new concepts.
In particular, Section 3 shows that FC++ o�ers a rich framework for OO tasks, but the pattern
implementations shown are not novel: similar results can be obtained with other languages or
libraries (although, among C++ approaches, FC++ is arguably the most complete).
Nevertheless, some advanced pattern implementations can use the more novel elements

of FC++|mainly type inference and its ability to manipulate polymorphic functions. Such
examples are presented in Section 4 and, to our knowledge, have not been discussed before. We
show how parametric polymorphism can �nd its way into selected design patterns, how FC++
can handle such tasks, and how using parametric polymorphism results into more generic
code. Note that we do not discuss improvements in design patterns' implementations by the
mere addition of parametric typing (e.g., C++ class templates) in a language. These are well
understood and are even discussed in Reference [9], as implementation suggestions.
Although some C++ background is required for much of the paper, we believe that the

principles are interesting even to non-C++ programmers. In particular, the paper o�ers

insights for language designers and programmers by showing a platform where both subtype
polymorphism and parametric polymorphism with type inference are readily available as
complementary tools for problem solving.

2. Background: Functional Programming with FC++

We begin by brie
y introducing the FC++ library. For a more complete introduction to FC++,
the reader should refer to Reference [6].
FC++ Basics. In FC++, we express functions as instances of classes that follow certain

conventions. We call such classes functoids. The key advantage to using functoids, rather than
C++ functions or function templates, is that we can pass them as parameters and return them
as results|even if they are polymorphic. There are two kinds of functoids: direct and indirect.
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FC++: FUNCTIONAL TOOLS FOR OBJECT-ORIENTED TASKS 3

Direct functoids are the usual representation for functions in FC++. Direct functoids can be
either monomorphic or polymorphic. Indirect functoids, on the other hand, must always be
monomorphic but can express �rst-class functions. That is, with indirect functoids, we can
de�ne variables that range over all functions with the same type signature. Thus, indirect
functoids can be viewed as indirect function references, much like C/C++ function pointers.
In addition to direct and indirect functoids, FC++ provides a number of useful operations for
creating functoids, composing them, specializing them, etc. We shall now discuss a few of the
key components of FC++ in more detail.

Indirect functoids are represented as the FunN family of classes. FunNs specify function
signatures via template parameters; N is the number of arguments. For example,
Fun2<int,char,string> is the type of a two-argument indirect functoid which takes an int

and a char and returns a string. Note that the �rst N template arguments comprise the
argument types of the function, and the last template argument is the result type. Thus, the
simplest kind of indirect functoid is a Fun0<void>|a function that takes no arguments and
returns no result.

A common way to create indirect functoids is with ptr_to_fun. ptr_to_fun transforms a
normal C++ function into a functoid. Here is a simple example, which also demonstrates how
indirect functoids can range over di�erent functions:

int i_times( int x, int y ) { return x*y; }

int i_plus( int x, int y ) { return x+y; }

...

Fun2<int,int,int> f;

f = ptr_to_fun(&i_times);

f(3,4); // returns 12

f = ptr_to_fun(&i_plus);

f(3,4); // returns 7

Note that f's behavior depends on which functoid it is bound to. This may seem reminiscent
of OO dynamic dispatch (where a method call depends upon the dynamic type of the object
that the receiver is bound to), and rightly so! There is just such a virtual method call buried
inside the implementation of all indirect functoids.

Indirect functoids are more versatile than function pointers: they employ automatically
currying, they can be bound to new function objects that are created on-the-
y, and they
exhibit a form of subtype polymorphism (see [6] for details). What follows will demonstrate
some of these features, which have important applications in Section 3 and Section 4.

Currying is a functional technique that allows us to bind a subset of a function's arguments
to speci�c values. For example, we can use curry to bind the �rst argument of f to the value
1, creating a new one-argument function:

Fun1<int,int> inc = curry2(f,1);

inc(4); // returns 5 - i.e., i_plus(1,4)

(The 2 in curry2 refers to the number of arguments that f expects.) In fact, FC++ also
allows the currying to be implicit|when a functoid is called with fewer actual arguments than
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4 Y. SMARAGDAKIS AND B. MCNAMARA

it expects, it returns a curried functoid. For instance, the previous example can be written
more simply as:

Fun1<int,int> inc = f(1);

inc(4); // returns 5 - i.e., i_plus(1,4)

Although this implicit form is what a typical FC++ user would write, we will usually avoid
it in this paper, in order to emphasize that currying is done through polymorphic functions
(e.g., curry2) that manipulate other, possibly polymorphic, functions.
Functional composition is easily expressed with compose:

Fun1<int,int> inc2 = compose(inc,inc);

inc2(4); // returns 6 - i.e., inc(inc(4))

Currying and composition are among the powerful functional techniques for building new
functions on-the-
y.
Unlike indirect functoids, direct functoids can be polymorphic. Consider the simple example

of a function to create a std::pair. (std::pair is the template struct in C++ used to
represent a pair of values.) The direct functoid mk_pair makes a std::pair from its two
parameters. For example,

mk_pair(3,'c')

returns a std::pair structure whose first �eld is the int 3, and whose second �eld is
the char `c'. Indeed, the C++ standard de�nes a template function for the same purpose,
which goes by the name std::make_pair. However, compared to mk_pair, std::make_pair
su�ers extreme limitations, by virtue of being de�ned as a template function. Template
functions cannot be passed as parameters, which means we cannot use the functional techniques
mentioned above (i.e., currying and composition) on templates. Direct functoids avoid these
limitations. For example, we can say

curry2( mk_pair, 3 )

to return a new direct functoid which takes one argument of any type T, and returns a
std::pair<int,T> whose first �eld is 3. It is worth repeating that there is nothing special
about the curry2 operator: it is just an FC++ polymorphic direct functoid that manipulates
other (possibly polymorphic) functoids. The ability to have higher-order polymorphic functions
that manipulate other polymorphic functions is one of the features that sets FC++ apart from
other similar C++ libraries.
Expressing Polymorphic FC++ Functoids. In the previous example, we demonstrated

passing a polymorphic functoid to a higher-order functoid which returned a polymorphic result.
How is this accomplished using C++? The trick in FC++ is to use a struct with nested
template members for both the actual function and an explicit representation of the type
signature of the functoid. The former is used so that we can exploit the language's inference of
function argument types from the actual arguments to the function. The latter implements a
type inference algorithm|given the input types to a function, compute the output type|using
simple template computations. Thus in FC++ we would de�ne mk_pair as:
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struct MkPair {

template <class T, class U>

std::pair<T,U> operator()( T x, U y ) const {

return std::pair<T,U>(x,y);

}

template <class T, class U>

struct Sig : FunType<T,U,std::pair<T,U> > {};

} mk_pair;

The operator()member (the usual way to de�ne a function object in C++) is de�ned just as
we would expect. The key is the Sig member. FC++ functoids all have member structs named
Sig which encode their function signatures. These Sigs contain typedefs named ResultType,
FirstArgType, etc., according to FC++ library conventions. To ease the task of de�ning such
Sigmembers, we inherit the generic FunType class which de�nes the typedefs; FunType follows
the same conventions as the indirect functoid FunN classes (the �rst few template parameters
are the argument types and the �nal template parameter is the result type), but the template
is specialized to accept a variable number of arguments (up to 7).
This encoding mechanism is the key that allows FC++ to create higher-order functoids that

can directly manipulate polymorphic functoids. Speci�cally, other functoids can determine
what the result type of a particular polymorphic functoid would be, for given arguments.
To see how, consider the simple functoid apply, which applies a binary function to its

arguments. That is, apply(f,x,y) behaves just as f(x,y) does. If f is monomorphic, it is
easy to implement such a function in C++ using techniques from the STL [7]. However,
suppose we want to use apply on a polymorphic function like mk_pair|how do we do it? In
FC++, we just say:

struct Apply {

template <class F, class X, class Y>

typename F::template Sig<X,Y>::ResultType operator()(F f,X x,Y y) const {

return f(x,y);

}

template <class F, class X, class Y> struct Sig

: public FunType<F,X,Y,typename F::template Sig<X,Y>::ResultType> {};

} apply;

Note that apply's result type depends on both the type of the functoid and the types of
arguments it receives;

F::template Sig<X,Y>::ResultType

expresses this. Thus, for instance,

apply( mk_pair, 3, `c' )

returns a

MakePair::Sig<int,char>::ResultType
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6 Y. SMARAGDAKIS AND B. MCNAMARA

which is just a typedef for

std::pair<int,char>.

Note that apply also has its own nested Sig member, which means that apply itself could be
manipulated by other higher-order functions.

The process of inferring a function's type from its arguments is called type inference. Type
inference is automatic in modern functional languages (e.g., Haskell and ML). Type inference
in C++ is semi-automatic: the argument types can be inferred from the actual arguments, but
there is no automatic way to infer the return type of a function. The Sig template member
�lls this role, providing a way to deduce the return type of a functoid based on its argument
types.

As a more realistic example of type inference, consider the compose function applied to
two unary functoids f and g of types F and G, respectively. compose(f,g) returns a (possibly
polymorphic) direct functoid with the following Sig member:

template <class T>

struct Sig : public FunType<T, typename F::template Sig<

typename G::template Sig<T>::ResultType>::ResultType> {};

That is (take a big breath): the return type of compose(f,g) is a functoid of a single argument
of type T, whose return type is the same as that of functoid f when f's argument type is the
same as the return type of functoid g when g's argument is of type T.

Although the above examples may seem quite complicated, there are not too many useful
higher-order functions like compose, and they are all already pre-de�ned in FC++. As a result,
clients are shielded from most of the complexity. Nevertheless, generic combinators like curry
and compose owe their generality to the type inference mechanism. Thus, most of the FC++
examples we shall see in Section 4 are realizable only because of this unique feature of our
library.

Despite FC++'s abilities, it is not a complete functional language with polymorphism and
type inference. One of the main drawbacks is that variable types have to be declared explicitly.
Although FC++ type inference eliminates the need for typing intermediate results, if the �nal
result of an FC++ expression needs to be stored, the variable must be explicitly typed.

3. Reusability with Object-Oriented and Functional Patterns

Functional programming promotes identifying pieces of functionality as just \functions" and
manipulating them using higher-order operations on functions. These higher-order functions
may be speci�c to the domain of the application or they may be quite general, like the currying
and function composition operations are. Several design patterns [9] follow a similar approach
through the use of subtype polymorphism. Subtype polymorphism allows code that operates
on a certain class or interface to also work with specializations of the class or interface. This
is analogous to higher-order functions: the holder of an object reference may express a generic
algorithm which is specialized dynamically based on the value of the reference. Encapsulating
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FC++: FUNCTIONAL TOOLS FOR OBJECT-ORIENTED TASKS 7

functionality and data as an object is analogous to direct function manipulation. Other code
can operate abstractly on the object's interface (e.g., to adapt it by creating a wrapper object).

It has long been identi�ed that functional techniques can be used in the implementation
of design patterns. For instance, the Visitor pattern is often considered a way to program
functionally in OO languages. (The interested reader should see Reference [15] and its
references for a discussion of Visitor.) The Smalltalk class MessageSend (and its variants,
see Reference [16], p.254), the C++ Standard Library functors, Alexandrescu's framework
(Reference [12], Ch. 5), etc., are all trying to capture the generic concept of a \function"
and use it in the implementation of the Command or Observer pattern. In this section we
will brie
y review some of these well-known techniques, from the FC++ standpoint, by using
indirect functoids. In Section 4 we will consider how the unique features of FC++ enable some
novel implementations of other patterns.

Command. The Command pattern turns requests into objects, so that the requests can be
passed, stored, queued, and processed by an object which knows nothing of either the action or
the receiver of the action. An example application of the pattern is a menu widget. A pull-down
menu, for instance, must \do something" when an option is clicked; Command embodies the
\something". Command objects support a single method, usually called execute. Any state
on which the method operates needs to be captured inside a command object.

The motivation for using the Command pattern is twofold. First, holders of command objects
(e.g., menu widgets) are oblivious to the exact functionality of these objects. This decoupling
makes the widgets reusable and con�gurable dynamically (e.g., to create context-sensitive
graphical menus). Second, the commands themselves are decoupled from the application
interface and can be reused in di�erent situations (e.g., the same command can be executed
from both a pull-down menu and a toolbar).

Here is a brief example which illustrates how Command might be employed in a word-
processing application:

class Command {

public:

virtual void execute()=0;

};

class CutCommand : public Command {

Document* d;

public:

CutCommand(Document* dd) : d(dd) {}

void execute() { d->cut(); }

};

class PasteCommand : public Command {

Document* d;

public:

PasteCommand(Document* dd) : d(dd) {}

void execute() { d->paste(); }
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8 Y. SMARAGDAKIS AND B. MCNAMARA

};

Document d;

...

Command* menu_actions[] = {

new CutCommand(&d),

new PasteCommand(&d),

...

};

...

menu_actions[choice]->execute();

The abstract Command class exists only to de�ne the interface for executing commands.
Furthermore, the execute() interface is just a call with no arguments or results. In other
words, the whole command pattern simply represents a \function object". From a functional
programmer's perspective, Command is just a class wrapper for a \lambda" or \thunk"|an
object-oriented counterpart of a functional idiom. Indirect functoids in FC++ represent such
function-objects naturally: a Fun0<void> can be used to obviate the need for both the abstract
Command class and its concrete subclasses:

Document d;

...

Fun0<void> menu_actions[] = {

curry(ptr_to_fun(&Document::cut), &d),

curry(ptr_to_fun(&Document::paste), &d),

...

};

...

menu_actions[choice]();

In this last code fragment, all of the classes that comprised the original design pattern
implementation have disappeared! Fun0<void> de�nes a natural interface for commands,
and the concrete instances can be created on-the-
y by making indirect functoids out of the
appropriate functionality, currying arguments when necessary.
The previous example takes advantage of the fact that ptr_to_fun can be used to create

functoids out of all kinds of function-like C++ entities. This includes C++ functions, instance
methods (which are transformed into normal functions that take a pointer to the receiver
object� as an extra �rst argument|as in the example), class (static) methods, C++ Standard
Library <functional> objects, etc. This is an example of design inspired by the functional
paradigm: multiple distinct entities are uni�ed as functions. The advantage of the uni�cation is
that all such entities can be manipulated using the same techniques, both application-speci�c
and generic.

�Or a pointer to a const receiver object, if the method itself was const. The FC++ library strives to be
const-correct.
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Observer. The Observer pattern is used to register related objects dynamically so that they
can be noti�ed when another object's state changes. The main participants of the pattern are
a Subject and multiple Observers. Observers register with the subject by calling one of its
methods (with the conventional name attach) and un-register similarly (via detach). The
subject noti�es observers of changes in its state, by calling an observer method (update).

The implementation of the observer pattern contains an abstract Observer class that all
concrete observer classes inherit. This interface has only the update method, making it similar
to just a single function, used as a callback. In fact, the implementation of the Observer pattern
can be viewed as a special case of the Command pattern. Calling the execute method of the
command object is analogous to calling the update method of an observer object.

The FC++ solution strategy for the Observer pattern is exactly the same as in Command.
The Subject no longer cares about the type of its receivers (i.e., whether they are subtypes of
an abstract Observer class). Instead, the interesting aspect of the receivers|their ability to
receive updates|is encapsulated as a Fun0<void>. The abstract Observer class disappears.
The concrete observers simply register themselves with the subject. We will not show the
complete code skeletons for the Observer pattern, as they are just specializations of the code
for Command. Nevertheless, one aspect is worth emphasizing. Consider the code below for a
concrete observer:

class ConcreteObserver {

ConcreteSubject& subject;

public:

ConcreteObserver( ConcreteSubject& s ) : subject(s) {

s.attach( curry( ptr_to_fun(&ConcreteObserver::be_notified), this ) );

}

void be_notified() {

cout << "new state is" << subject.get_state() << endl;

}

};

Note again how ptr_to_fun is used to create a direct functoid out of an instance method.
The resulting functoid takes the receiver as its �rst parameter. curry is then used to bind this
parameter. This approach frees observers from needing to conform to a particular interface.
For instance, the above concrete observer implements be_notified instead of the standard
update method, but it still works. Indeed, we can turn an arbitrary object into an observer
simply by making a functoid out of one of its method calls|the object need not even be aware
that it is participating in the pattern. This decoupling is achieved by capturing the natural
abstraction of the domain: the function object.

Summarizing, the reason that Fun0<void> can replace the abstract Observer and Command

classes is because these classes serve no purpose other than to create a common inteface to
a function call. In Command, the method is named execute(), and in Observer, it is called
update(), but the names of the methods and classes are really immaterial to the pattern.
Indirect functoids in FC++ remove the need for these classes, methods, and names, by instead
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10 Y. SMARAGDAKIS AND B. MCNAMARA

representing the core of the interface: a function call which takes no argument and returns
nothing.
C++'s parameterization mechanism lets us extend this notion to functions which take

arguments and return values. For example, consider an observer-like scenario, where the noti�er
passes a value (for instance, a string) to the observer's updatemethod, and the update returns
a value (say, an integer). This can be solved using the same strategy as before, but using a
Fun1<string,int> instead of a Fun0<void>. Again, the key is that the interface between the
participants in the patterns is adequately represented by a single function signaturey; extra
classes and methods (with �xed names) are unnecessary to realize a solution.
Virtual Proxy. The Virtual Proxy pattern seeks to put o� expensive operations until they

are actually needed. For example, a word-processor may load a document which contains a
number of images. Since many of these images will reside on pages of the document that are
o�-screen, it is not necessary to actually load the entire image from disk and render it unless
the user of the application actually scrolls to one of those pages. In [9], an ImageProxy class
supports the same interface as an Image class, but postpones the work of loading the image
data until someone actually requests it.
In many functional programming languages, the Virtual Proxy pattern is unnecessary. This

is because many functional languages employ lazy evaluation. This means that values are
never computed until they are actually used. This is in contrast to strict languages (like all
mainstream OO languages), where values are automatically computed when they are created,
regardless of whether or not they are used.
Since C++ is strict, FC++ is also strict by default. Nevertheless, a value of type T can

be made lazy by wrapping the computation of that value in a Fun0<T>. This is a common
technique in strict functional languages. It encapsulates a computation as a function and
causes the computation to occur only when the function is actually called (i.e., when the
result is needed). For instance, in FC++ a call foo(a,b) can be delayed by writing it as
curry2(foo,a,b). The latter expression will return a 0-argument functoid that will perform
the original computation, but only when it is called. Thus, passing this functoid around enables
the composition to be evaluated lazily.
We should mention that FC++ de�nes some more tools for conveniently expressing lazy

computations. First, the LazyPtrProxy class in FC++ works as a generic form of the
ImageProxy mentioned earlier. A LazyPtrProxy has the same interface as a pointer to an
object, but it does not actually create the object until it is dereferenced. That is, LazyPtrProxy
is a way to delay object construction (as opposed to method calls). Second, FC++ contains
an implementation of a lazy list data structure. This enables interesting solutions to some
problems. For example, to compute the �rst N prime numbers, we might create an in�nite
(lazy) list of all the primes, and then select just the �rst N elements of that list. FC++
lazy lists are compatible with the data structures in the C++ Standard Library and can be
processed by a multitude of prede�ned FC++ functions.

yA tuple of indirect functoids can be used if multiple function signatures are de�ned in an interface; the example
in [9] of Command used for do/undo could be realized in FC++ with a std::pair<Fun0<void>,Fun0<void>>,
for instance.
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4. Design Patterns and Parametric Polymorphism

In the previous section, we saw how several common design patterns are related to functional
programming patterns. All of our examples relied on the use of higher order functions.
Another trait of modern functional languages (e.g., ML and Haskell) is support for parametric
polymorphism with type inference. Type inference was discussed in Section 2: it is the process
of deducing the return type of a function, given speci�c arguments. In this section, we will
examine how some design pattern implementations can be improved if they employ parametric
polymorphism with type inference and how they can further bene�t from the entire arsenal of
FC++ techniques for manipulating these polymorphic functions.(The discussion of this section
is only relevant for statically typed OO languages, like Java, Ei�el, or C++. The novelties of
FC++ are in its type system|it has nothing new to o�er to a dynamically typed language,
like Smalltalk.)

Parametric vs. Subtype Polymorphism. Design patterns are based on subtype
polymorphism|the cornerstone of OO programming. Parametric polymorphism, on the other
hand, is not commonly available in OO languages, and even when it is, its power is limited|
e.g., there is no type inference capability. FC++ adds this capability to C++. It is interesting
to ask when parametric polymorphism can be used in place of subtype polymorphism and
what the bene�ts will be, especially in the context of design pattern implementations.

Parametric polymorphism is a static concept: it occurs entirely at compile time. Thus, to
use a parametrically polymorphic operation, we need to know the types of its arguments at
each invocation site of the operation (although the same operation can be used with many
di�erent types of arguments). In contrast, subtype polymorphism supports dynamic dispatch:
the exact version of the executed operation depends on the run-time type of the object, which
can be a subtype of its statically known type.

Therefore a necessary condition for employing parametric polymorphism is to statically know
the type of operands of the polymorphic operation at each invocation site. When combined with
type inference, parametric polymorphism can be as convenient to use as subtype polymorphism
and can be advantageous for the following reasons:

� No common supertype is required. The issue of having an actual common superclass or
just supporting the right method signature is similar to the named/structural subtyping
dilemma. All mainstream OO languages except Smalltalk use named subtyping: a type
A needs to declare that it is a subtype of B. In contrast, in structural subtyping, a type
A can be a subtype of type B if it just implements the right method signatures. The
advantage of requiring a common superclass is that accidental conformance is avoided.
The disadvantage is that sometimes it is not easy (or even possible) to change the source
code of a class to make it declare that it is a subtype of another. For instance, it
may be impossible to modify pre-compiled code, or it may be tedious to manipulate
existing inheritance hierarchies, or the commonalities cannot be isolated due to language
restrictions (e.g., no multiple inheritance, no common interface signature). Even in
languages like Java where a supertype of all types exists (the Object type), problems
arise with higher-order polymorphic functions, like our curry operator. The problem is
that an Object reference may be used to point to any object, but it cannot be passed to
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12 Y. SMARAGDAKIS AND B. MCNAMARA

a function that expects a reference of a speci�c (but unknown) type. Thus, implementing
a fully generic curry with subtype polymorphism is impossible.

� Type checking is static. With subtype polymorphism, errors can remain undetected until
run-time. Such errors arise when an object is assumed to be of a certain dynamic type
but is not. Since the compiler can only check the static types of objects, the error
cannot be detected at compile-time. In fact, for many of the most powerful and general
polymorphic operations, subtype polymorphism is impossible to use with any kind of
type information. For instance, it would be impossible to implement a generic compose
operator with subtype polymorphism, unless all functions composed are very weakly
typed (e.g., functions from Objects to Objects). The same is true with most other
higher-order polymorphic operations (i.e., functions that manipulate other functions).

� Method dispatch is static. Despite the many techniques developed for making dynamic
dispatch more eÆcient, there is commonly a run-time performance cost, especially for
hard-to-analyze languages like C++. Apart from the direct cost of dynamic dispatch
itself, there is also an indirect cost due to lost optimization opportunities (such as
inlining). Therefore, when parametric polymorphism can be used in place of subtype
polymorphism, the implementation typically becomes more eÆcient.

The examples that follow illustrate the advantages of using parametric polymorphism in the
implementations of some design patterns.
Adapter. The Adapter pattern converts the interface of one class to that of another. The

pattern is often useful when two separately developed class hierarchies follow the same design,
but use di�erent names for methods. For example, one window toolkit might display objects
by calling paint(), while another calls draw(). Adapter provides a way to adapt the interface
of one to meet the constraints of the other.
Adaptation is remarkably simple when a functional design is followed. Most useful kinds of

method adaptation can be implemented using the currying and functoid composition operators
of FC++, without needing any special adapter classes. These adaptation operators are very
general and reusable.
Consider the Command or Observer pattern. As we saw, in an FC++ implementation there

is no need for abstract Observer or Command classes. More interestingly, the concrete observer
or commands do not even need to support a common interface|their existing methods can be
converted into functoids. Nevertheless, this requires that the existing methods have the right
type signature. For instance, in our ConcreteObserver example, above, the be_notified

method was used in place of a conventional update method, but both methods have the same
signature: they take no arguments and return no results. What if an existing method has
almost the right signature, or if methods need to be combined to produce the right signature?
For an example, consider a class, AnObserver, that de�nes a more general interface than

what is expected. AnObserver may de�ne a method:

void update(Time timestamp) { ... }

We would like to use this method to subscribe to some other object's service that will issue
periodic updates. As shown in the Observer pattern implementation, the publisher expects
a functoid object that takes no arguments. This is easy to e�ect by adapting the observer's
interface:
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curry2( ptr_to_fun(&AnObserver::update), this, current_time() )

In the above, we used a constant value (the current time) to specialize the update method
so that it conforms to the required interface. That is, all update events will get the same
timestamp|one that indicates the subscription time instead of the update time. A better
approach is:

compose( curry2(ptr_to_fun(&AnObserver::update), this),

ptr_to_fun(current_time) )

In this example we combined currying with function composition in order to specialize the
interface. The resulting function takes no arguments but uses global state (returned by the
current_time() routine) as the value of the argument of the update method. In this way,
each update will be correctly timestamped with the value of the system clock at the time of
the update!
Other parametric polymorphism approaches (e.g., the functional part of the C++ Standard

Library [7], or Alexandrescu's framework for functions [12], Ch.5) support currying and
composition for monomorphic functions. The previous examples demonstrate the value of
type inference, which is not unique to FC++. Nevertheless, FC++ also extends type inference
to polymorphic functions. We will see examples of currying and composition of polymorphic
operations in the implementations of the next few patterns.
Decorator. The Decorator pattern is used to attach additional responsibilities to an object.

Although this can happen dynamically, most of the common uses of the Decorator pattern
can be handled statically. Consider, for instance, a generic library for the manipulation of
windowing objects. This library may contain adapters, wrappers, and combinators of graphical
objects. For example, one of its operations could take a window and annotate it with vertical
scrollbars. The problem is that the generic library has no way of creating new objects for
applications that may happen to use it. The generic code does not share an inheritance
hierarchy with any particular application, so it is impossible to pass it concrete factory objects
(as it cannot declare references to an abstract factory class).
This problem can be solved by making the generic operations be parametrically polymorphic

and enabling type inference. For instance, we can write a generic FC++ functoid that will
annotate a window with a scrollbar:

struct AddScrollbar {

template <class W>

struct Sig : public FunType<W,ScrollWindow<W> *> {};

template <class W>

typename Sig<W>::ResultType operator() (const W& window) const {

return new ScrollWindow<W>(window);

}

} add_scrollbar;

The above decorator functoid can be used with several di�erent types of windows. For a
window type W, the functoid's return type will be a pointer to a decorated window type:
ScrollWindow<W>. (In fact, ScrollWindow can be a mixin, inheriting from its parameter, W.)

Copyright c
 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1{7
Prepared using speauth.cls



14 Y. SMARAGDAKIS AND B. MCNAMARA

Since the functoid conforms to the FC++ conventions, it can be manipulated using the
standard FC++ operators (e.g., composed with other functoids, curried, etc.). Composition is
particularly useful, as it enables creating more complex generic manipulators from simple ones.
For instance, a function to add both a scrollbar and a title bar to a window can be expressed
as a composition:

compose(add_titlebar, add_scrollbar)

instead of adding a new function to the interface of a generic library. Similarly, if the
add_titlebar operation accepts one more argument (the window title), the currying operation
can be used (implicitly in the example below):

add_titlebar("Window Title")

The previous examples showed how classes can be statically decorated, possibly with new
abilities added to them. Nevertheless, a common kind of decoration is pure wrapping, where the
interface of the class does not change, but old operations are extended with extra functionality.
Using parametric polymorphism one can write special-purpose polymorphic wrappers that
are quite general. These could also be written as C++ function templates, but if they are
written as FC++ functoids, they can be applied to polymorphic functoids and they can
themselves be manipulated by other functoids (like curry and compose). Consider, for instance,
an instrumentation functoid that calls a one-argument operation, prints the result of the
invocation (regardless of its type) and returns that same result:

struct GenericInstrumentor {

template <class C, class A> struct Sig

: public FunType<C, A, typename C::template Sig<A>::ResultType> {};

template <class C, class A>

typename C::template Sig<A>::ResultType

operator() ( const C& operation, const A& argument ) const {

typename C::template Sig<A>::ResultType r = operation(argument);

std::cerr << "Result is: " << r << std::endl;

return r;

}

} generic_instrumentor;

GenericInstrumentor exempli�es a special-purpose functoid (it logs the results of calls to an
error stream) that can be generally applied (it can wrap any one-argument function).

Builder. The Builder design pattern generalizes the construction process of conceptually
similar composite objects so that a generic process can be used to create the composite objects
by repeatedly creating their parts. More concretely, the main roles in a Builder pattern are
those of a Director and a Builder. The Director object holds a reference to an abstract Builder
class and, thus, can be used with multiple concrete Builders. Whenever the Director needs
to create a part of the composite object, it calls the Builder. The Builder is responsible for
aggregating the parts to form the entire object.
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A common application domain for the Builder pattern is that of data interpretation. For
instance, consider an interpreter for HTML data. The main structure of such an interpreter
is the same, regardless of whether it is used to display web pages, to convert the HTML data
into some other markup language or word-processing format, to extract the ASCII text from
the data, etc. Thus, the interpreter can be the Director in a Builder pattern. Then it can call
the appropriate builders for each kind of document element it encounters in the HTML data
(e.g., font change, paragraph end, text strings, etc.).
In the Builder pattern, the Director object often implements a method of the form:

void construct(ObjCollection objs) {

for all objects in objs { // "for all" is pseudocode

if (object is_a A) // "is_a" is pseudocode

builder->build_part_A(object);

else if (object is_a B)

builder->build_part_B(object);

...

}

}

Note that the build_part method of the builder objects returns no result. Instead, the
Builder object aggregates the results of each build_part operation and returns them through
a method (we will call it get_result). This method is called by a client object (i.e., not the
Director!).
A more natural organization would have the Director collect the products of building and

return them to the client as a result of the construct call. In an extreme case, the get_result
method could be unnecessary: the Director could keep all the state (i.e., the accumulated
results of previous build_part calls) and the Builder could be stateless. Nevertheless, this
is impossible in the original implementation of the pattern. The reason for keeping the state
in the Builders is that Directors have no idea what the type of the result of the build_part

method might be. Thus, Directors cannot declare any variables, containers, etc. based on the
type of data returned by a Builder. Gamma et al. [9] write: \In the common case, the products
produced by the concrete builders di�er so greatly in their representation that there is little

to gain from giving di�erent products a common parent class."
This scenario (no common interface) is exactly one where parametric polymorphism is

appropriate instead of subtype polymorphism. Using parametric polymorphism, the Director
class could infer the result types of individual Builders and de�ne state to keep their products.
Of course, this requires that the kind of Builder object used (e.g., an HTML to PDF converter,
an on-screen HTML browser, etc.) be �xed for each iteration of the construct loop, shown
earlier. This is, however, exactly how the Builder pattern is used: the interpretation engine
does not change in the middle of the interpretation. Thus, the pattern is static|another reason
to prefer parametric polymorphism to subtyping. This may result in improved performance
because the costs of dynamic dispatch are eliminated.
The new organization also has other bene�ts. First, the control 
ow of the pattern is simpler:

the client never calls the Builder object directly. Instead of the get_result call, the results
are returned by the construct call made to the Director. Second, Directors can now be more
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sophisticated: they can, for instance, declare temporary variables of the same type as the
type of the Builder's product. These can be useful for caching previous products, without
cooperation from the Builder classes. Additionally, Directors can now decide when the data
should be consumed by the client. For instance, the Observer pattern could be used: clients of
an HTML interpreter could register a callback object. The Director object (i.e., the interpreter)
can then invoke the callback whenever data are to be consumed. Thus, the constructmethod
may only be called once for an entire document, but the client could be getting data after each
paragraph has been interpreted.
Another observation is that the Director class can be replaced by a functoid so that it can

be manipulated using general tools. Note that the Director class in the Builder pattern only
supports a single method call. Thus, it can easily be made into a functoid. Calling the functoid
will be equivalent to calling construct in the original pattern. The return type of the functoid
depends on the type of builder passed to it as an argument (instead of being void). An example
functoid which integrates these ideas is shown here:

struct DoBuild {

template <class B, class OC>

struct Sig: public FunType<B,OC,Container<B::ResultType> > {};

template<class B, class OC>

Container<B::ResultType> operator() (B b, OC objs) const {

Container<B::ResultType> c;

for all objects in objs { // "for all" is pseudocode

if (object is_a A) // "is_a" is pseudocode

c.add(b.build_part_A(object));

else if (object is_a B)

c.add(b.build_part_B(object));

...

}

return c;

}

} do_build;

With this approach, the \director" functoid is in full control of the data production and
consumption. The Director can be specialized via currying to be applied to speci�c objects
or to use a speci�c Builder. Two di�erent Directors can even be composed|the �rst building
process can assemble a builder object for the second!

5. Pragmatics

In this section we brie
y discuss some practical issues related to the FC++ library.
Performance. The implementation of FC++ imposes minimal overhead. Using direct

functoids is as eÆcient as calling a C++ function directly. Nevertheless, wrapping a native
C++ function into a direct functoid may prevent the compiler from uncovering opportunities
for inlining. Similarly, creating functoids by currying and composition may introduce an extra
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function call. In both cases, however, the user has no more eÆcient option at the language
level. For instance, if currying is required and the user does not resort to manual specialization
(which could be done regardless of whether FC++ is used) the overhead is unavoidable.

Indirect functoids su�er the cost of an extra indirection compared to direct function calls.
Again, however, this cost is unavoidable if the user needs to refer to unknown functions through
variables. Finally, FC++ hides the details of reference management for indirect functoids by
employing reference counting. In this way, indirect functoids can be created and used without
need to be explicitly deallocated after the last reference to a functoid becomes unreachable.
The reference counting mechanism introduces very small overhead. In previous work [6] we
showed that using reference counting resulted in code faster by a factor of 4 to 8 compared to
the \bridge" pattern used by L�aufer [4]. More recently, a number of new optimizations were
applied to the library implementation; reference [17] describes the details and quanti�es the
bene�ts. Nevertheless, the di�erence, as well as any overhead of reference counting, is very
unlikely to appear in programming patterns like the ones described in this paper. Unless one
uses data structures that create thousands of functoids (e.g., FC++ lazy lists), the overhead
is non-existent.

Applications. FC++ has already proven useful for functional programmers by providing an
alternative, eÆcient platform for implementing familiar designs. An example of this approach
is the XR (Exact Real) library [18]. XR uses the FC++ infrastructure to provide exact (or
constructive) real-number arithmetic, using lazy evaluation.

Interface with STL. The FC++ library is designed to interface easily with the C++
Standard Library. For example, the FC++ lazy List class supports iterators of the STL style,
enabling easy conversion to and from STL data structures or other libraries that utilize the
same iterator concepts. Also, FC++ provides routines to adapt STL-style \functors" into
FC++ functoids. Finally, the entire FC++ library is wrapped in namespace fcpp to prevent
name collisions with other libraries.

6. Related Work

We have referred to some related work throughout the previous sections. Here we selectively
discuss related work that we did not get the chance to analyze earlier.

There are several libraries that add functional programming features to C++. Some of them
[2, 3, 5] focus on front-end support (e.g., a lambda keyword) for creating functions on-the-
y.
Other libraries [4, 7] provide reusable functionality without any special front-end support.
FC++ [6] is in this latter category: it provides mechanisms for expressing higher order and
polymorphic functions, but does not hide the implementation behind a more convenient front
end. FC++ is distinguished from the rest by its full type system for polymorphic functions,
which enables creating and manipulating polymorphic functions on-the-
y, and by its support
for indirect function references.

Dami's currying mechanism for C/C++ [19] was used to demonstrate the advantages of
function specialization, but required a language extension. As we saw, the same bene�ts can
be obtained in C++ without extending the language.
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Alexandrescu [12] o�ers a mature C++ implementation of the Abstract Factory pattern.
His approach consists of a generic (i.e., polymorphic) Abstract Factory class that gets
parameterized statically by all the possible products. It is worth noting that this is the
exact scenario that Baumgartner et al. [10] studied. Their conclusion was that meta-object
protocols should be added to OO languages for better pattern support. Thus, Alexandrescu's
implementation is a great demonstration of the meta-programming capabilities of C++|the
language's ability to perform template computation on static properties can often be used
instead of meta-object protocols.

G�eraud and Duret-Lutz [20] o�er some arguments for redesigning patterns to employ
parametric polymorphism. Thus, they propose that parametric polymorphism be part of
the \language" used to specify patterns. In contrast, our approach is to use parametric
polymorphism with type inference in the implementation of patterns. From an implementation
standpoint, the G�eraud and Duret-Lutz suggestions are not novel: they have long been used
in C++ design pattern implementations. Furthermore, the examples we o�er in this paper are
more advanced, employing type inference and manipulation of polymorphic functions.

The Pizza language [1] integrates functional-like support to Java. This support includes
higher-order functions, parametric polymorphism, datatype de�nition through patterns, and
more. Pizza operates as a language extension and requires a pre-compiler. Support for
parametric polymorphism in Java has been a very active research topic (e.g., [21, 22, 23, 24]),
and a solution based on GJ [22] has been recently adopted [25]. Type inference is used in GJ.
Nevertheless, due to the GJ translation technique (erasure) it is not possible to extract static
type information nested inside template parameters. Thus, it is not possible to use the GJ type
system to pass polymorphic functions as arguments and return them as results (in a type-safe
way) as we do in FC++.

It should be noted that Java inner classes [26] are excellent for implementing higher-order
functions. Inner classes can access the state of their enclosing class, and, thus, can be used to
express closures|automatic encapsulations of a function together with the data it acts on. Java
inner classes can be anonymous, allowing them to express anonymous functions|a capability
that is not straightforward to emulate in C++. Many of our observations of Section 3 also
apply to Java. In fact, the most common Java implementations of the Command and Observer
design patterns use inner classes for the commands/callbacks.

7. Conclusions

In this paper we examined how functional techniques in general, and FC++ in particular, can
be applied to OO tasks, by illustrating the implementations of some common design patterns.
Our examples from Section 3 are similar to others in the literature, but, to our knowledge, our
example pattern implementations from Section 4 have not appeared before, even in di�erent
contexts. Additionally, we are not aware of another mainstream, statically-typed OO language
with the capabilities of FC++ for manipulating polymorphic functions and employing type
inference.

Our implementations demonstrate the value of parametric polymorphism and type inference
(even in a rather primitive form) in a statically-typed object-oriented language. By selectively
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using parametric polymorphism with type inference and higher-order functions, we can create
simple, yet general, implementations of patterns that are both eÆcient and type safe.
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