
s to

-
ery

mple-
er in
ts the

osed
po-
s are
s to
ompo-
tion
ing
).

n be

e

Layered Development with (Unix) Dynamic Libraries

Abstract. Layered software development has demonstrably good reuse proper-
ties and offers one of the few promising approaches to addressing thelibrary
scalability problem. In this paper, we show how one can develop layered soft-
ware using common Unix (Linux/Solaris) dynamic libraries. In particular, we
show that, from an object-oriented design standpoint, dynamic libraries are anal-
ogous to components in a mixin-based object system. This enables us to use
libraries in a layered fashion, mixing and matching different libraries, while
ensuring that the result remains consistent. As a proof-of-concept application,
we present two libraries implementing file versioning (automatically keeping
older versions of files for backup) and application-transparent locking in a Unix
system. Both libraries can be used with new, aware applications or completely
unaware legacy applications. Further, the libraries are useful both in isolation,
and as cooperating units.

1 Introduction

Factored librarieshave long been considered one of the most promising approache
software reuse. Factored libraries are motivated by what Biggerstaff [7] calls theverti-
cal/horizontal scaling dilemma. According to this dilemma, libraries should incorpo
rate significant parts of functionality to be worth reusing, but then they become v
specific and, hence, less reusable. A factored (orlayered [3]) library attempts to
address the problem by encapsulating a number of distinct components, each i
menting a different axis of functionality. These components can then be put togeth
an exponential number of legal configurations. The selection of components adap
library functionality to the needs of a specific application.

Several concrete technologies for implementing factored libraries have been prop
in the past. Application generators [2][5], template libraries [21], and binary com
nents are among them. In this paper, we show that standard Unix dynamic librarie
a good architecture for factored or layered development. Using dynamic librarie
represent library components has the advantages of language independence (c
nents can be created from distinct languages), intellectual property protec
(dynamic libraries are binary components), and load-time configurability (combin
different dynamic libraries is done at application loading time, not at compile time

The basis of our argument is the observation that a dynamic library model ca

viewed as an object system.1 That is, a dynamic library architecture supports all th

Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

yannis@cc.gatech.edu

ncap-
s of
nc-

in
nven-
erit-
e a
ici-

on-
ered
ries.
en-
hed
it-
-
the

e used

ing

on.
on
of
Under
m-

n be
rar-
sys-
nix.
is
rms
sed
can

in

.e.,
this
standard properties required to identify a system as object oriented: inheritance, e
sulation, and overriding. Furthermore, as we will show, other common feature
object models can be identified in dynamic libraries: a library can choose to call fu
tionality of its parent library (“super” call) and can choose to call functionality
another named library (call through a reference). Indeed, even some not-too-co
tional features of object systems are supported by the dynamic library model: “inh
ance” is done late (at load time), making the dynamic library model resembl
“mixin-based” [8] object system. Furthermore, different copies of a library can part
pate in the same inheritance hierarchy.

The conceptual mapping of dynamic libraries to object-like entities is one of the c
tributions of this paper. Based on this, we translate well-known techniques for lay
design in object-oriented languages into analogous techniques for dynamic libra
The result is a style of dynamic library development that is very useful but unconv
tional: it requires constant consideration of whether a call should be dispatc
“dynamically” (i.e., could be allowed to be overridden by child libraries in the inher
ance hierarchy), “statically” (within the current library), or “by chaining” (by forward
ing to the parent library in the hierarchy). Dynamic libraries that are designed with
understanding that they can be used in a layered fashion are modular and can b

in many combinations with other libraries. Conventional (legacy2) Unix dynamic
libraries are rarely careful to cooperate with other libraries that may be overrid
some of their symbols.

We should point out early on that the term “library” is overloaded in our discussi
When we talk of a “dynamic library”, we mean a single file implementing a collecti
of routines. When we talk of a “layered” or “factored library” we mean a collection
components that are designed to be composed together in many configurations.
the methodology we are proposing, a single “dynamic library” is just one of the co
ponents in a “layered library”.

As a proof of concept for our approach, we present two dynamic libraries that ca
viewed as different components of a factored library for file operations. The two lib
ies are designed to be used either together or in isolation. Both libraries perform
tem-level tasks, that are, however, commonly handled at the application level in U
The first library performs transparent file versioning: every time an “interesting” file
modified or erased, its old version is saved for backup. The second library perfo
file locking, so that inconsistent file editing is prevented. Both libraries can be u
either with new applications, or with legacy applications. In the latter case, they

1. For readers familiar with Unix dynamic libraries, a clarification and forward pointer is
order: our arguments are based on the use of theLD_PRELOADtechnique instead of the more
conventional path-based approach to using dynamic libraries.

2. We will use the term “legacy” to denote pre-existing Unix libraries and applications (i
binary objects that were not developed following the style of programming described in
paper). We do not assign any negative connotation to the term.

re-

mic
dis-

istent

(not
.
bling

ns of
an be
IX,

der
in a
pace
the
able
mic
mon
por-
ory

s (or

cies
re-

oad
le-

n rea-
like
c
aged

cer-
le,
provide backup and locking functionality for existing executables (i.e., without
compilation). Source code for both libraries is available at our web site.

The rest of this paper is structured as follows. Section 2 introduces Unix dyna
libraries and shows how they can be viewed in object-oriented terms. Section 3
cusses our two example applications and their structure as layers of a cons
library. Section 4 presents related work and Section 5 offers our conclusions.

2 Dynamic Libraries

In this section we introduce dynamic linking/loading, with special emphasis to the
too common) use of theLD_PRELOADenvironment variable in modern Unix variants
We then show how this technique supports layered software development, by ena
us to simulate a flexible object-oriented programming model.

Our examples have been tested on Linux and Solaris using several different versio
these operating systems over the past 2 years. Hence, reasonable stability c
expected. Most other modern Unix variants (e.g., FreeBSD/OpenBSD/NetBSD, A
Mac OS X) support dynamic libraries, but we have not personally tested them.

2.1 Background

Dynamic linking/loading is a common technique in modern operating systems. Un
dynamic linking, an executable program can call routines whose code exists
dynamic library. The dynamic library is loaded at execution time into the address s
of the program. Routines from a dynamic library are identified by symbols and it is
responsibility of the dynamic linker to match the symbols referenced in the execut
to the symbols exported from a dynamic library. The main advantage of dyna
libraries is that the executable does not need to be burdened by including com
library code. This results into smaller executables, thus saving disk space. More im
tantly, it also enables keeping a single copy of the library code in the system mem
during run-time, even though the code may be used by multiple executable file
even by the OS kernel itself).

Another advantage of dynamic libraries is that they avoid hard-coding dependen
on library code. Instead of statically linking to a certain version of the code, which p
vents exploiting future improvements, dynamic linking takes place at program l
time. Thus, different libraries (possibly newer and improved or just alternative imp
mentations) can be used. This enables modularity and it has been one of the mai
sons why dynamic libraries are the technology of choice for binary object systems,
Microsoft’s COM (e.g., see [9]). It is worth mentioning that this flexibility of dynami
libraries has also been the source of problems when library versioning is not man
carefully—the term “DLL hell” has become standard terminology.

Typically the search for libraries is path based: the name of the library exporting a
tain symbol is fixed at build time, but by changing the lookup path for the library fi

able

e
by

n-
one

ic

e of

erit-
amic

am
object
to a

ules.

ta-
rted:

ic

in a
nce

e:

d in
different dynamic libraries can be linked. For example, in Unix systems, an execut
program calling routinerout , implemented in librarylibroutines.so , can be built
with the -lroutines flag to signify that dynamic linking should be done to a fil
calledlibroutines.so . The user can then influence the process of finding the file
changing the environment variableLD_LIBRARY_PATH, which lists directory paths to
be searched by the linker in order to findlibroutines.so .

A very powerful feature of Unix dynamic libraries is the ability to interpose impleme
tations of routinesbeforethe actual path based symbol lookup takes place. This is d
by using theLD_PRELOADenvironment variable.LD_PRELOADcan be set to a list of
dynamic libraryfiles (not directory paths) that are linked before any other dynam
libraries. Effectively, symbols from the libraries in theLD_PRELOADvariable take pre-
cedence over any normal dynamic library symbols. We show examples of the us
LD_PRELOAD in the following section.

2.2 Dynamic Libraries and the Object-Oriented Model

The common attributes of an object-oriented (OO) system are encapsulation, inh
ance, and overriding. As we will see, all of these and more are supported by dyn

library technology.3

The object model supported by dynamic libraries is not exactly like that of mainstre
OO languages like C++ and Java: such languages are class-based, while the
model we discuss here is not. Instead, the dynamic library object model is closer
delegation-based binary object model, like COM [9]. The use of theLD_PRELOAD

variable is particularly interesting, as it enables late composition of dynamic mod

Encapsulation.Dynamic libraries offer encapsulation: they contain the implemen
tions of multiple routines that can be handled as a single unit. Data hiding is suppo
routines are distinguished into those that are exported (external symbols) and those that
are not.

The default resolution of symbols is to routines in the library itself. Thus, if a dynam
library references symbolsym and provides an implementation ofsym, the library’s
own implementation will be used. Binary code can call the routines encapsulated
different dynamic library, as long as a “reference” to the library exists. The refere
can be obtained using the library pathname. For instance, calling routinef of library
lib is done by explicitly opening the library and looking up the appropriate routin

libhandle = dlopen("lib", RTLD_LAZY);
meth = (methtype *) dlsym(libhandle, "f"); // cache it in meth
meth(arg1); //or whatever is the regular signature of "methname"

3. Unix dynamic libraries are commonly also called “shared objects” (hence the.so file suffix).
This is a fortunate coincidence, since, to our knowledge, the term “object” was not use
the object-oriented sense.

. A
of

ary

r-
tion

es in
d is

ode
ch

his
ech-
hat
ev-

ple-
ries
ented

e lat-
e term
Inheritance. Dynamic libraries support inheritance:4 a library can behave as if it were
automatically “inheriting” all symbols exported by ancestor libraries in a hierarchy
hierarchy is formed by putting the dynamic libraries in sequence in the value
LD_PRELOAD. For instance, consider settingLD_PRELOAD to be (csh syntax):

setenv LD_PRELOAD "$DLIBHOME/C.so $DLIBHOME/B.so $DLIBHOME/A.so"

This establishes a linear hierarchy of libraries, each having a notion of a “next” libr
in the hierarchy. In terms of inheritance, libraryC.so inherits from libraryB.so ,
which inherits from libraryA.so . All symbols ofA.so can be referenced by code in
B.so , etc.

Overriding. A dynamic library automatically overrides symbols from ancestor libra
ies in the hierarchy. “Dynamic” dispatch (really a misnomer, since the resolu
occurs at load time) is effected by looking up a symbol using theRTLD_DEFAULTflag
in thedlsym call:

virt_meth = (methtype *) dlsym(RTLD_DEFAULT, "methname");
virt_meth(arg1); // call the most refined method

This ensures that the lookup for the symbol proceeds through the dynamic librari
order, beginning at the final node of the hierarchy. Thus, the overriding metho
retrieved, not any overridden versions.

As usual in an OO hierarchy, code in one node can explicitly call code in the next n
of the hierarchy (instead of calling its own “overridden” version of the code). Su
“parent” calls are effected by looking up the symbol using theRTLD_NEXTspecifier in
thedlsym call:

super_meth = (methtype *) dlsym(RTLD_NEXT, "methname");
super_meth(arg1); // call the method

2.3 Layered Development with Dynamic Libraries

Dynamic libraries form an excellent platform for layered software development. T
has already been exploited in limited ways. Windows dynamic libraries are the t
nology that supports Microsoft’s COM. In Unix, there are some applications t
extend their capabilities using dynamic loading (e.g., the Apache web server [1]). N
ertheless, to our knowledge, there is no factored library with its components im
mented as dynamic libraries. That is, although large, monolithic dynamic libra
have been used successfully, no consistent array of functionality has been implem
as a collection of small dynamic librariesall designed to cooperateusing load-time
inheritance hierarchies.

4. The term “aggregation” would perhaps be more appropriate than “inheritance”, since th
ter is used to describe relationships between classes. Nevertheless, we prefer to use th
“load-time inheritance” or just “inheritance” to appeal to the reader’s intuition.

bject

odol-
nta-
ngle
t we

f
dif-

ode

nts,
ture,
ents

the
to

ion
sis

er of
h of
ful as

y

po-
ns.

om-
orks
fea-
can
lay-

po-
in a
0])
nent
way:
rary-
The technology for such a coordinated interaction is already there. Indeed, the o
model offered by dynamic libraries is close to amixin-basedmodel—a technology that
has been used in layered libraries in the past, most notably in the GenVoca meth
ogy [2]. Mixins [8] are classes whose superclass is not specified at mixin impleme
tion time, but is left to be specified at mixin use time. The advantage is that a si
mixin can be used as a subclass for multiple other classes. This is similar to wha
obtain with dynamic libraries using theLD_PRELOADvariable. A single library can
refer to “parent” functionality and to “overriding” functionality, but it is not aware o
the exact hierarchy in which it participates. The same library can be used in many
ferent hierarchies. The same symbols will be resolved to refer to different c
depending on the exact hierarchy.

Consider, for instance, a factored library containing 6 dynamic library compone
namedA.so to F.so . Each of these components can encapsulate a different fea
which may be present or absent from a given component composition. All compon
should be designed with interoperability in mind. Thus, every call to a routinef should
be carefully thought out to determine whether it should be a call to a routine in
same library (calling known code), a call to the parent library’s routine (delegating
the parent), or a call to the overriding version of the routine (allowing the interposit
of functionality by all other libraries in the hierarchy). This is the same kind of analy
that goes into the implementation of a mixin-based library.

The advantage of factored libraries is that they can be used to implement a numb
combinations that is exponential in the number of components in the library. Eac
the combinations is not burdened by unneeded features, yet can be as power
needed for the specific application. For instance, a composition of componentsA, B,
andE (henceforth denotedA[B[E]] , using GenVoca layer notation [5]) is effected b
appropriately setting theLD_PRELOAD variable:

setenv LD_PRELOAD "$DLIBHOME/A.so $DLIBHOME/B.so $DLIBHOME/E.so"

The order of composition could also be important: compositions of the same com
nents in a different order could result into different, but equally valid implementatio

In earlier work [22], we have shown the reuse advantages of layered libraries c
pared to other object-oriented technologies. Compared to OO application framew
[15], for instance, layered libraries offer a much more compact representation of
ture sets of similar complexity. In our experience, dynamic library technologies
offer full support for layered development. For instance, some important issues in
ered development can be handled as follows:

• A major issue in layered libraries is ensuring that a composition is valid. Com
nents commonly have requirements from other components participating
composition. For instance, in a data structure factored library (like DiSTiL [2
we can require that a storage policy component be at the root of the compo
hierarchy. Such requirements are often expressed in a component-centric
each component exports some boolean flags asserting or negating certain (lib

ts on
po-
t

By

a-
mple

rchy

The
hen
ry
above

iple
the
ode is
mpo-

per-
one

lan-

osi-
s) is
ver,

es a
ix
ill
ure

kup
m

the
om-
specific) properties. At the same time, components can enforce requiremen
the union of all properties of components above them or below them in a com
nent hierarchy [4]. For instance, componentA can require that some componen
above it implement thestorage property. If componentB exports the property,
then compositionA[B] is valid.

Dynamic libraries can support automatic checking of properties at load time.
convention, the library can contain a special initialization function called_init .
This function is called by the dynamic loader to perform library-specific initializ
tion. Properties can be exported by libraries as symbols. For instance, a si
requirement can be expressed as:
void _init() {

assert(dlsym(RTLD_NEXT, "property1"));
}

This ensures that a library above the current one in the component hiera
exports a symbol called “property1 ”. Using this technique, a factored library
developer can add complex restrictions on what compositions are valid.
restrictions are checked early: at application (and library) load time, and not w
the library functionality is called. It is the responsibility of the layered libra
author to express the dependencies among components as restrictions of the
form.

• A common feature of layered libraries is that layers can be instantiated mult
times in a single composition. At first, this may seem paradoxical: why would
same code be included more than once in a composition? Nevertheless, the c
actually parameterized by all the components above the current one in a co
nent hierarchy. Thus, multiple copies of the same code can be specialized to
form different functions. Consider, for instance, a multi-pass compiler, where
of the passes is implemented as a component calledprocess_tree . If the
typechecking phase must be completed before reduction to an intermediate
guage takes place, then a reasonable composition would be:
process_tree[typecheck[process_tree[reduce]]] .

Dynamic libraries can handle multiple instances of a library in the same comp
tion. In the worst case a brute-force approach (which we had to use in Solari
needed: the dynamic library file needs to be copied manually. In Linux, howe
the same library can be used multiple times in anLD_PRELOADhierarchy without
problems.

• Layered library development requires a composition mechanism that impos
low performance penalty for calling code in different layers. Indeed, Un
dynamic libraries have emphasized fast dispatch. A typical Unix loader w
resolve symbols at load time and employ binary rewriting techniques to ens
that future invocations are performed at full speed, instead of suffering loo
cost dynamically on every invocation [17]. Although, there is still overhead fro
employing layering (e.g., routines from different layers cannot be inlined)
overhead is kept reasonably small. Additionally, the expected granularity of c

ned
e, the

hnol-
pre-
ode
level
ted in
es are
mic
inary
f
ce,

will
ered

ered
po-
seful
f the

ms
ions
ame-
ver-
ernel
ces.
OS-
mic
like

izes
es.

ple-
ual
nd
ponents developed using dynamic library technology is large: for fine-grai
components, a source-code-level technique is more advantageous. Therefor
overhead of layering using dynamic libraries is negligible.

Based on the above observations, we believe that dynamic libraries are a good tec
ogy for implementing layered libraries. The question that arises is why one should
fer dynamic libraries over other layering technologies. Compared to source c
component technologies, dynamic libraries have the usual advantages of binary
components. First, dynamic libraries are language-independent: they can be crea
many languages and used by code in other languages. Second, dynamic librari
binary components, offering intellectual property protection. Furthermore, dyna
libraries have a unique feature compared to all other component technologies (b
or source level): their ability for load-time configurability. This ability yields a lot o
flexibility in future updates, but also in operation with legacy code. For instan
dynamic libraries interposing on well-known symbols (e.g., from thelibc library) can
be used with completely unsuspecting pre-compiled applications.

3 Example Applications

To demonstrate the potential for layered development using dynamic libraries, we
discuss two libraries that we designed as parts of a transparent “file operations” lay
library. We should point out that our code is not yet a mature and feature-rich lay
library. In fact, our two libraries are not an ideal example of layered library com
nents, as they are only loosely coupled. Nevertheless, our libraries are actual, u
examples. They serve as a basic proof-of-concept by demonstrating almost all o
techniques described in Section 2. Our source code can be found in:

http://www.cc.gatech.edu/~yannis/icsrcode.tar.gz .

3.1 Versioning Library Overview

Typical Unix file systems do not offer automatic backup capabilities. Unix progra
commonly resort to application-level solutions when they need to keep older vers
of files when these are modified. For instance, the Emacs text editor and the Fr
maker word processor both automatically create a backup file storing the previous
sion of an edited file. Advanced and general solutions have been proposed at the k
level—for example, see the report on the Elephant file system [18] and its referen
Nevertheless, it is relatively easy to come up with a good, quite general, and fairly
neutral solution at the user level using dynamic libraries. Our versioning dyna
library interposes its own code to the symbols wrapping common system calls,
open , creat , unlink , andremove . By settingLD_PRELOADto point to the library,
we can use it with completely unsuspecting legacy applications. The library recogn
“interesting” file suffixes and only acts if the file in question has one of these suffix
Any attempt to modify (as opposed to just read) a file through one of the calls im
mented by the library will result in a backup being created. Thus, unlike the us
“trash can” or “recycle bin” functionality, our library protects both against deletion a
against overwriting with new data. Backup versions of files are stored in a “.ver-

his

rth
ing

r of
. An
om-
l be
ith

rted
in
ur
s to
tent
ent
lica-
good

ping
ke a
m-
ad-
not

es-
y:
nly
tory”

ar-
, it
only
com-
ents
iffer-
sion ” subdirectory of the directory where the modified file exists. We have put t
library to everyday use for source code files (.c , .h , .cpp , .hpp , .cc , .hh , and
.java suffixes) text files (.txt), etc.

An interesting issue in versioning functionality is which of the older versions are wo
keeping. The Elephant file system [18] allows users to specify policies for keep
older versions. Our library is primitive in this respect: it only keeps a fixed numbe
the most recent back versions (currently only one, but this can easily change)
interesting future improvement might be to provide versioning policies as other c
ponents in our factored library—that is, as dynamic libraries. Then, the user wil
able to select the right policy at load time, by composing the versioning library w
policy libraries through anLD_PRELOAD component hierarchy.

3.2 Locking Library Overview

File locking is another piece of functionality that (although to some extent suppo
by Unix file systems) is commonly left for the application to provide. (File locking
Unix is a big topic—e.g., see Ch. 2 of the Unix Programming FAQ [11]—and o
homegrown implementation is certainly not a general solution.) File locking intend
protect files from concurrent modification and to protect applications from inconsis
file views. Application-specific locking protects against access to a file by differ
instances of the same application, but does not prohibit access by different app
tions. The Emacs text editor and the FrameMaker word processor are, again,
examples of applications that provide their own locking implementation.

It should be noted that most text-oriented Unix applications do not operate by kee
files open for long periods of time. Instead, applications processing a file first ma
temporary copy of the file, on which all modification takes place. Eventually, the te
porary file is copied over the original, to reflect the changes. This upload/downlo
like approach provides some protection against inconsistent modification, but is
feasible in the case of large files (e.g., multimedia files).

Our file locking library works by overriding file operations likeopen , close , and
creat . Just like our versioning library, the interposed code checks if the file in qu
tion is an “interesting” file. The library implements a readers/writers locking polic
multiple open operations are allowed on a file, as long as they are all read-o
accesses. Any other concurrent access is prohibited. Thus, our locking is “manda
(but only for applications executing with our library in theLD_PRELOADpath) while
common Unix locking mechanisms are “advisory” (i.e., they require application p
ticipation). Normally, our locking policy would perhaps be too strict. Nevertheless
only becomes restrictive in the case of large files that are opened “in place”. (The
other reasonable alternative in this case would be no locking whatsoever.) For the
mon case when a temporary copy of the file is created, our locking policy just prev
inconsistent write-backs (interleaved write operations by different processes to d
ent parts of a file).

m, as

ques
ed to
arded

er or

e-
ch
d to
ugh

le-
ins

all
just

le
ure
aders/

brary
am-

be
not
al-
at
l to
ies
f

Locks and shared data (e.g., number of readers/writers) are stored in the file syste
files under a.lock subdirectory of the directory where the interesting file is found.

3.3 Implementation and Discussion

The locking and versioning libraries described above employ most of the techni
discussed in Section 2. Although the libraries are loosely coupled, they are design
cooperate, as they interpose on many of the same symbols. Thus, they can be reg
as components in a simple layered library. The two libraries can be used togeth
individually on an application.

The main difficulty during library development has to do with identifying which proc
dure calls should conceptually refer to potentially “overridden” functionality, whi
should refer to functionality in the same library, and which should just be delegate
the parent library in the component hierarchy (or any other dynamic library thro
normal, path-based lookup).

To facilitate programming in this way, each library initializes a set of “super” imp
mentations for all the symbols it overrides. For instance, the locking library conta
initialization code like:

super_open = (Openfn) dlsym(RTLD_NEXT, "open");
super_close = (Closefn) dlsym(RTLD_NEXT, "close");
super_creat = (Creatfn) dlsym(RTLD_NEXT, "creat");
...

Thesuper_open , etc., function pointers are static global variables, accessible from
the library routines. They are often used when normal, non-layered code would
call open , close , etc. For instance, the locking library creates a “pre-locking” fi
using a Unix exclusive file creation operation. The “pre-locking” file serves to ens
that no two processes try to access the locking shared data (i.e., numbers of re
writers) at the same time. The code for that operation is:

lock_fd = super_open(extended_path, O_WRONLY | O_CREAT | O_EXCL,
S_IRUSR | S_IWUSR | S_IXUSR);

The most interesting interaction between layers is the one that occurs when a li
calls a routine that is potentially overridden. Recall that this is analogous to a “dyn
ically bound” call in the object-oriented model. A good example of such a use can
found in the finalizer routine of the locking library. Since many processes do
explicitly close files before they exit, we tried to approximate the correct function
ity by callingclose on all open files when the library is finalized. This will ensure th
the locking library correctly updates its locking information. Nevertheless, the cal
close does not only concern the locking library, but also any other dynamic librar
loaded in the process. Thus, the call toclose should be to the overriding method o
theclose routine. A slightly simplified version of our finalizer code is shown here:

files

are
age of
ol that

ell-
the

al

tware
tems
lan-
that

dapted
hnol-
most
derly-

s are
e of

of the
ns
dif-

ot
ith
pre-

earch
the

ctions
void _fini() {
Closefn virt_close = (Closefn) dlsym(RTLD_DEFAULT, "close");
while (open_files != NULL) {

open_file_data *next = open_files->next;
virt_close(open_files->open_fd);
open_files = next;

}
}

(As can be seen in the above, the locking library has state: it keeps track of what
are open at any point.)

Finally, we should give a warning. Both the locking and the versioning libraries
based on interposing code on symbols used by existing programs. The disadvant
this approach is that completeness is hard to guarantee. It is easy to miss a symb
offers a different way to access the same core functionality. Even in the case of w
defined OS interfaces, there is potential for surprise: our first implementation of
versioning library missed theopen64 symbol, used in Solaris as part of a transition
interface to accessing large files. Executables compiled to use theopen64 symbol cir-
cumvented that early version of our library.

4 Discussion and Related Work

There has been a lot of research work presenting advanced techniques for sof
reuse. This includes work on generators and templates [10], transformation sys
[6][16], language-level component technologies [19], module and interconnection
guages [12][23], and much more. Our emphasis in this paper was not on proving
an overall approach to software design has good reuse properties. Instead, we a
the existing approach of scalable libraries and layered designs to a different tec
ogy. The benefits of scalable libraries are well established [3][21]. We argued that
of these benefits can be obtained when Unix dynamic libraries are used as the un
ing concrete technology.

Despite the emphasis on Unix systems throughout this paper, dynamic librarie
part of all modern operating systems. It may be feasible, for instance, to use som
our ideas in a Windows environment. Nevertheless, our emphasis was on the use
LD_PRELOADvariable, which allows (even a third-party user) to specify compositio
simply and concisely. No analogous mechanism exists on Windows systems. The
ference between usingLD_PRELOADand using a path-based lookup mechanism (n
only in Windows, but also in Unix variants) is in convenience and transparency. W
path-based lookup, libraries need to have specific names, already known by the
compiled executables. Directories have to be set up appropriately to enforce a s
order. Finally, to our knowledge, in Windows systems, there is no way to separate
lookup path for dynamic libraries from the search path for executables.

We should also mention that interposing dynamic libraries through theLD_PRELOAD

variable raises some security concerns. For instance, there are commonly restri

uta-
this
g a

am.

one

roker-
ptu-
tely
paper.

ood
rva-

tion
een
t of a

us-
ced
fea-
re-
sis-
bil-

e

red

al

s”,

ca
on what libraries can be dynamically linked to set-user-ID or set-group-ID exec
bles. All of these restrictions, however, are orthogonal to the work presented in
paper: they have to do with the general issue of trust of binary programs. Linkin
dynamic library is certainly no more dangerous than running an executable progr

Although only tangentially related, we should mention that a lot of work has been d
over the years on layered operating system development. Themicrokernelapproach is
the best known representative of such research, and several object-oriented mic
nels (e.g., Spring [14] and recently JX [13]) have been developed. Although conce
ally related, the operating systems modularization work deals with comple
different concerns (performance and hardware resource management) from this

5 Conclusions

In this paper we argued that Unix dynamic libraries (or “shared objects”) are a g
platform for implementing layered designs. The basis of our argument is the obse
tion that dynamic libraries offer exactly analogous mechanisms for interac
between libraries in a library hierarchy, as those offered for interactions betw
classes in an object-oriented inheritance hierarchy. Furthermore, the establishmen
dynamic library hierarchy is done at load time, allowing great configurability.

We believe that the dynamic library technology can form the basis for mature, ind
trial-strength factored libraries. Although many factored libraries have been produ
so far, few are used in practical settings and most could benefit from the unique
tures of dynamic library technology (e.g., binding with legacy programs without
compiling). Similarly, although many mature dynamic libraries are in use, no con
tent collection of cooperating dynamic libraries, allowing mix-and-match configura
ity, has been developed. Our work makes a first step in this promising direction.

Acknowledgments.This work was partially supported by DARPA/ITO under th
PCES program.

6 References

[1] Apache HTTP Server Documentation Project, “Version 2.0: Dynamic Sha
Object (DSO) Support”, available at
http://httpd.apache.org/docs-2.0/dso.html .

[2] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchic
Software Systems with Reusable Components”,ACM TOSEM, October 1992.

[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Librarie
ACM SIGSOFT1993.

[4] D. Batory and B.J. Geraci, “Component Validation and Subjectivity in GenVo
Generators”,IEEE Trans. on Softw. Eng., February 1997, 67-82.

[5] D. Batory, “Intelligent Components and Software Generators”,Software Quality
Institute Symposium on Software Reliability, Austin, Texas, April, 1997.

te

,

ty,
JX

”,

nts”,

t:

ng

sed

ta

ted

n
:

[6] I.D. Baxter, “Design maintenance systems”,Communications of the ACM35(4):
73-89, April 1992.

[7] T. Biggerstaff, “The Library Scaling Problem and the Limits of Concre
Component Reuse”,1994 International Conference on Software Reuse.

[8] G. Bracha and W. Cook, “Mixin-Based Inheritance”,ECOOP/OOPSLA 1990,
303-311.

[9] K. Brockschmidt, Inside OLE (2nd. ed.), Microsoft Press, 1995.

[10] K. Czarnecki and U. Eisenecker.Generative Programming: Methods
Techniques, and Applications. Addison-Wesley, 2000.

[11] A. Gierth (ed.),Unix Programming FAQ, available at
http://www.erlenstar.demon.co.uk/unix/faq_toc.html .

[12] J. Goguen, “Reusing and interconnecting software components”,IEEE
Computer, February 1986, 16-28.

[13] M. Golm, J. Kleinoeder, F. Bellosa, “Beyond Address Spaces - Flexibili
Performance, Protection, and Resource Management in the Type-Safe
Operating System”,8th Workshop on Hot Topics in OS (HotOS-VIII), 2001.

[14] G. Hamilton, P. Kougiouris, “The Spring Nucleus: A Microkernel for Objects
Sun Microsystems Laboratories Tech. Report, TR-93-14.

[15] R. Johnson and B. Foote, “Designing Reusable Classes”,Journal of Object-
Oriented Programming, 1(2): June/July 1988, 22-35.

[16] J. Neighbors, “Draco: a method for engineering reusable software compone
in T.J. Biggerstaff and A. Perlis (eds.),Software Reusability, Addison-Wesley/
ACM Press, 1989.

[17] C. Phoenix, “Windows vs. Unix: Linking dynamic load modules”, available a
http://www.best.com/~cphoenix/winvunix.html .

[18] D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Carton, and J. Ofir, “Decidi
when to forget in the Elephant file system”,17th ACM Symposium on Operating
Systems Principles (SOSP’99).

[19] M. Sitaraman and B.W. Weide, editors, “Special Feature: Component-Ba
Software Using RESOLVE”,ACM Softw. Eng. Notes, October 1994, 21-67.

[20] Y. Smaragdakis and D. Batory, “DiSTiL: a Transformation Library for Da
Structures”,USENIX Conference on Domain-Specific Languages (DSL 97).

[21] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Orien
Components”,5th Int. Conf. on Softw. Reuse (ICSR ‘98), IEEE Computer
Society Press, 1998.

[22] Y. Smaragdakis,Implementing Large Scale Object-Oriented Components, Ph.D.
Dissertation, University of Texas at Austin, December 1999.

[23] W. Tracz, “LILEANNA: A Parameterized Programming Language”, in Rube
Prieto-Diaz and William B. Frakes, editors,Advances in Software Reuse
Selected Papers from the Secomd Int. Work. on Softw. Reusability, 1993, IEEE
Computer Society Press, 66-78.

	Layered Development with (Unix) Dynamic Libraries
	Yannis�Smaragdakis
	College of Computing
	Georgia Institute of Technology
	Atlanta, GA 30332
	yannis@cc.gatech.edu
	Abstract
	Layered software development has demonstrably good reuse properties and offers one of the few pro...

	1 Introduction
	2 Dynamic Libraries
	2.1 Background
	2.2 Dynamic Libraries and the Object-Oriented Model
	Encapsulation
	Inheritance
	Overriding

	2.3 Layered Development with Dynamic Libraries

	3 Example Applications
	3.1 Versioning Library Overview
	3.2 Locking Library Overview
	3.3 Implementation and Discussion

	4 Discussion and Related Work
	5 Conclusions
	Acknowledgments

	6 References
	[1] Apache HTTP Server Documentation Project, “Version 2.0: Dynamic Shared Object (DSO) Support”,...
	[2] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems wi...
	[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”, ACM SIGSOFT 1...
	[4] D. Batory and B.J. Geraci, “Component Validation and Subjectivity in GenVoca Generators”, IEE...
	[5] D. Batory, “Intelligent Components and Software Generators”, Software Quality Institute Sympo...
	[6] I.D. Baxter, “Design maintenance systems”, Communications of the ACM 35(4): 73-89, April 1992.
	[7] T. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete Component Reuse”, 199...
	[8] G. Bracha and W. Cook, “Mixin-Based Inheritance”, ECOOP/OOPSLA 1990, 303-311.
	[9] K. Brockschmidt, Inside OLE (2nd. ed.), Microsoft Press, 1995.
	[10] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques, and Application...
	[11] A. Gierth (ed.), Unix Programming FAQ, available at http://www.erlenstar.demon.co.uk/unix/fa...
	[12] J. Goguen, “Reusing and interconnecting software components”, IEEE Computer, February 1986, ...
	[13] M. Golm, J. Kleinoeder, F. Bellosa, “Beyond Address Spaces - Flexibility, Performance, Prote...
	[14] G. Hamilton, P. Kougiouris, “The Spring Nucleus: A Microkernel for Objects”, Sun Microsystem...
	[15] R. Johnson and B. Foote, “Designing Reusable Classes”, Journal of Object- Oriented Programmi...
	[16] J. Neighbors, “Draco: a method for engineering reusable software components”, in T.J. Bigger...
	[17] C. Phoenix, “Windows vs. Unix: Linking dynamic load modules”, available at: http://www.best....
	[18] D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Carton, and J. Ofir, “Deciding when to fo...
	[19] M. Sitaraman and B.W. Weide, editors, “Special Feature: Component-Based Software Using RESOL...
	[20] Y. Smaragdakis and D. Batory, “DiSTiL: a Transformation Library for Data Structures”, USENIX...
	[21] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented Components”, 5th Int. C...
	[22] Y. Smaragdakis, Implementing Large Scale Object-Oriented Components, Ph.D. Dissertation, Uni...
	[23] W. Tracz, “LILEANNA: A Parameterized Programming Language”, in Ruben Prieto-Diaz and William...

