Layered Development with (Unix) Dynamic Libraries

Yannis Smaragdakis
College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
yannis@cc.gatech.edu

Abstract. Layered software development has demonstrably good reuse proper-
ties and offers one of the few promising approaches to addressirlgtary
scalability problem In this paper, we show how one can develop layered soft-
ware using common Unix (Linux/Solaris) dynamic libraries. In particular, we
show that, from an object-oriented design standpoint, dynamic libraries are anal-
ogous to components in a mixin-based object system. This enables us to use
libraries in a layered fashion, mixing and matching different libraries, while
ensuring that the result remains consistent. As a proof-of-concept application,
we present two libraries implementing file versioning (automatically keeping
older versions of files for backup) and application-transparent locking in a Unix
system. Both libraries can be used with new, aware applications or completely
unaware legacy applications. Further, the libraries are useful both in isolation,
and as cooperating units.

1 Introduction

Factored librarieshave long been considered one of the most promising approaches to
software reuse. Factored libraries are motivated by what Biggerstaff [7] caleitie
cal/horizontal scaling dilemmaAccording to this dilemma, libraries should incorpo-
rate significant parts of functionality to be worth reusing, but then they become very
specific and, hence, less reusable. A factoredldgered[3]) library attempts to
address the problem by encapsulating a number of distinct components, each imple-
menting a different axis of functionality. These components can then be put together in
an exponential number of legal configurations. The selection of components adapts the
library functionality to the needs of a specific application.

Several concrete technologies for implementing factored libraries have been proposed
in the past. Application generators [2][5], template libraries [21], and binary compo-
nents are among them. In this paper, we show that standard Unix dynamic libraries are
a good architecture for factored or layered development. Using dynamic libraries to
represent library components has the advantages of language independence (compo-
nents can be created from distinct languages), intellectual property protection
(dynamic libraries are binary components), and load-time configurability (combining
different dynamic libraries is done at application loading time, not at compile time).

The basis of our argument is the observation that a dynamic library model can be
viewed as an object systehiThat is, a dynamic library architecture supports all the

standard properties required to identify a system as object oriented: inheritance, encap-
sulation, and overriding. Furthermore, as we will show, other common features of
object models can be identified in dynamic libraries: a library can choose to call func-
tionality of its parent library (“super” call) and can choose to call functionality in
another named library (call through a reference). Indeed, even some not-too-conven-
tional features of object systems are supported by the dynamic library model: “inherit-
ance” is done late (at load time), making the dynamic library model resemble a
“mixin-based” [8] object system. Furthermore, different copies of a library can partici-
pate in the same inheritance hierarchy.

The conceptual mapping of dynamic libraries to object-like entities is one of the con-
tributions of this paper. Based on this, we translate well-known techniques for layered
design in object-oriented languages into analogous techniques for dynamic libraries.
The result is a style of dynamic library development that is very useful but unconven-
tional: it requires constant consideration of whether a call should be dispatched
“dynamically” (i.e., could be allowed to be overridden by child libraries in the inherit-
ance hierarchy), “statically” (within the current library), or “by chaining” (by forward-

ing to the parent library in the hierarchy). Dynamic libraries that are designed with the
understanding that they can be used in a layered fashion are modular and can be used

in many combinations with other libraries. Conventionhalgecf) Unix dynamic
libraries are rarely careful to cooperate with other libraries that may be overriding
some of their symbols.

We should point out early on that the term “library” is overloaded in our discussion.
When we talk of a “dynamic library”, we mean a single file implementing a collection

of routines. When we talk of a “layered” or “factored library” we mean a collection of
components that are designed to be composed together in many configurations. Under
the methodology we are proposing, a single “dynamic library” is just one of the com-
ponents in a “layered library”.

As a proof of concept for our approach, we present two dynamic libraries that can be
viewed as different components of a factored library for file operations. The two librar-

ies are designed to be used either together or in isolation. Both libraries perform sys-
tem-level tasks, that are, however, commonly handled at the application level in Unix.
The first library performs transparent file versioning: every time an “interesting” file is

modified or erased, its old version is saved for backup. The second library performs
file locking, so that inconsistent file editing is prevented. Both libraries can be used
either with new applications, or with legacy applications. In the latter case, they can

1. For readers familiar with Unix dynamic libraries, a clarification and forward pointer is in
order: our arguments are based on the use ofth®RELOAOechnique instead of the more
conventional path-based approach to using dynamic libraries.

2. We will use the term “legacy” to denote pre-existing Unix libraries and applications (i.e.,
binary objects that were not developed following the style of programming described in this
paper). We do not assign any negative connotation to the term.

provide backup and locking functionality for existing executables (i.e., without re-
compilation). Source code for both libraries is available at our web site.

The rest of this paper is structured as follows. Section 2 introduces Unix dynamic

libraries and shows how they can be viewed in object-oriented terms. Section 3 dis-
cusses our two example applications and their structure as layers of a consistent
library. Section 4 presents related work and Section 5 offers our conclusions.

2 Dynamic Libraries

In this section we introduce dynamic linking/loading, with special emphasis to the (not
too common) use of theD_PRELOADenvironment variable in modern Unix variants.

We then show how this technique supports layered software development, by enabling
us to simulate a flexible object-oriented programming model.

Our examples have been tested on Linux and Solaris using several different versions of
these operating systems over the past 2 years. Hence, reasonable stability can be
expected. Most other modern Unix variants (e.g., FreeBSD/OpenBSD/NetBSD, AlX,
Mac OS X) support dynamic libraries, but we have not personally tested them.

2.1 Background

Dynamic linking/loading is a common technique in modern operating systems. Under
dynamic linking, an executable program can call routines whose code exists in a
dynamic library. The dynamic library is loaded at execution time into the address space
of the program. Routines from a dynamic library are identified by symbols and it is the
responsibility of the dynamic linker to match the symbols referenced in the executable
to the symbols exported from a dynamic library. The main advantage of dynamic
libraries is that the executable does not need to be burdened by including common
library code. This results into smaller executables, thus saving disk space. More impor-
tantly, it also enables keeping a single copy of the library code in the system memory
during run-time, even though the code may be used by multiple executable files (or
even by the OS kernel itself).

Another advantage of dynamic libraries is that they avoid hard-coding dependencies
on library code. Instead of statically linking to a certain version of the code, which pre-
vents exploiting future improvements, dynamic linking takes place at program load
time. Thus, different libraries (possibly newer and improved or just alternative imple-
mentations) can be used. This enables modularity and it has been one of the main rea-
sons why dynamic libraries are the technology of choice for binary object systems, like
Microsoft's COM (e.g., see [9]). It is worth mentioning that this flexibility of dynamic
libraries has also been the source of problems when library versioning is not managed
carefully—the term “DLL hell” has become standard terminology.

Typically the search for libraries is path based: the name of the library exporting a cer-
tain symbol is fixed at build time, but by changing the lookup path for the library file,

different dynamic libraries can be linked. For example, in Unix systems, an executable

program calling routineout , implemented in libraryibroutines.so , can be built
with the -lroutines flag to signify that dynamic linking should be done to a file
calledlibroutines.so . The user can then influence the process of finding the file by

changing the environment variall® LIBRARY_PATH which lists directory paths to
be searched by the linker in order to fiibebutines.so

A very powerful feature of Unix dynamic libraries is the ability to interpose implemen-
tations of routinedeforethe actual path based symbol lookup takes place. This is done
by using theLD_PRELOADenvironment variableL.D_PRELOADcan be set to a list of
dynamic libraryfiles (not directory paths) that are linked before any other dynamic
libraries. Effectively, symbols from the libraries in thB_PRELOADvariable take pre-
cedence over any normal dynamic library symbols. We show examples of the use of
LD_PRELOADN the following section.

2.2 Dynamic Libraries and the Object-Oriented Model

The common attributes of an object-oriented (OO) system are encapsulation, inherit-
ance, and overriding. As we will see, all of these and more are supported by dynamic

library technology®

The object model supported by dynamic libraries is not exactly like that of mainstream
OO languages like C++ and Java: such languages are class-based, while the object
model we discuss here is not. Instead, the dynamic library object model is closer to a
delegation-based binary object model, like COM [9]. The use ofLthePRELOAD
variable is particularly interesting, as it enables late composition of dynamic modules.

Encapsulation.Dynamic libraries offer encapsulation: they contain the implementa-
tions of multiple routines that can be handled as a single unit. Data hiding is supported:
routines are distinguished into those that are exposegt(nal symbo)sand those that

are not.

The default resolution of symbols is to routines in the library itself. Thus, if a dynamic
library references symbalym and provides an implementation sfm, the library’s

own implementation will be used. Binary code can call the routines encapsulated in a
different dynamic library, as long as a “reference” to the library exists. The reference
can be obtained using the library pathname. For instance, calling rduthdbrary

lib is done by explicitly opening the library and looking up the appropriate routine:

libhandle = dlopen("lib", RTLD_LAZY);
meth = (methtype *) disym(libhandle, “f'); // cache it in meth
meth(argl); //or whatever is the regular signature of "methname"

3. Unix dynamic libraries are commonly also called “shared objects” (hencedhgle suffix).
This is a fortunate coincidence, since, to our knowledge, the term “object” was not used in
the object-oriented sense.

Inheritance. Dynamic libraries support inheritanéea library can behave as if it were
automatically “inheriting” all symbols exported by ancestor libraries in a hierarchy. A
hierarchy is formed by putting the dynamic libraries in sequence in the value of
LD_PRELOADFor instance, consider setting_PRELOADO be ¢sh syntax):

setenv LD_PRELOAD "$DLIBHOME/C.so $DLIBHOME/B.so $DLIBHOME/A.so"

This establishes a linear hierarchy of libraries, each having a notion of a “next” library
in the hierarchy. In terms of inheritance, libra@so inherits from libraryB.so ,
which inherits from libraryA.so . All symbols ofA.so can be referenced by code in
B.so , etc.

Overriding. A dynamic library automatically overrides symbols from ancestor librar-
ies in the hierarchy. “Dynamic” dispatch (really a misnomer, since the resolution
occurs at load time) is effected by looking up a symbol usingRhieD_DEFAULTflag

in thedisym call:

virt_meth = (methtype *) disym(RTLD_DEFAULT, "methname");
virt_meth(arg1l); // call the most refined method

This ensures that the lookup for the symbol proceeds through the dynamic libraries in
order, beginning at the final node of the hierarchy. Thus, the overriding method is
retrieved, not any overridden versions.

As usual in an OO hierarchy, code in one node can explicitly call code in the next node
of the hierarchy (instead of calling its own “overridden” version of the code). Such
“parent” calls are effected by looking up the symbol usingRiiéD_NEXTspecifier in
thedisym call:

super_meth = (methtype *) disym(RTLD_NEXT, "methname");
super_meth(argl); // call the method

2.3 Layered Development with Dynamic Libraries

Dynamic libraries form an excellent platform for layered software development. This
has already been exploited in limited ways. Windows dynamic libraries are the tech-
nology that supports Microsoft's COM. In Unix, there are some applications that
extend their capabilities using dynamic loading (e.g., the Apache web server [1]). Nev-
ertheless, to our knowledge, there is no factored library with its components imple-
mented as dynamic libraries. That is, although large, monolithic dynamic libraries
have been used successfully, no consistent array of functionality has been implemented
as a collection of small dynamic librariedl designed to cooperatasing load-time
inheritance hierarchies.

4. The term “aggregation” would perhaps be more appropriate than “inheritance”, since the lat-
ter is used to describe relationships between classes. Nevertheless, we prefer to use the term
“load-time inheritance” or just “inheritance” to appeal to the reader’s intuition.

The technology for such a coordinated interaction is already there. Indeed, the object
model offered by dynamic libraries is close tm&in-basednodel—a technology that

has been used in layered libraries in the past, most notably in the GenVoca methodol-
ogy [2]. Mixins [8] are classes whose superclass is not specified at mixin implementa-
tion time, but is left to be specified at mixin use time. The advantage is that a single
mixin can be used as a subclass for multiple other classes. This is similar to what we
obtain with dynamic libraries using theD PRELOADvariable. A single library can

refer to “parent” functionality and to “overriding” functionality, but it is not aware of
the exact hierarchy in which it participates. The same library can be used in many dif-
ferent hierarchies. The same symbols will be resolved to refer to different code
depending on the exact hierarchy.

Consider, for instance, a factored library containing 6 dynamic library components,
namedA.so to F.so . Each of these components can encapsulate a different feature,
which may be present or absent from a given component composition. All components
should be designed with interoperability in mind. Thus, every call to a rotitgtreuld

be carefully thought out to determine whether it should be a call to a routine in the
same library (calling known code), a call to the parent library’s routine (delegating to
the parent), or a call to the overriding version of the routine (allowing the interposition
of functionality by all other libraries in the hierarchy). This is the same kind of analysis
that goes into the implementation of a mixin-based library.

The advantage of factored libraries is that they can be used to implement a number of
combinations that is exponential in the number of components in the library. Each of
the combinations is not burdened by unneeded features, yet can be as powerful as
needed for the specific application. For instance, a composition of compokesits

andE (henceforth denoted[B[E]] , using GenVoca layer notation [5]) is effected by
appropriately setting theD_PRELOADvariable:

setenv LD_PRELOAD "$DLIBHOME/A.so $DLIBHOME/B.so $DLIBHOME/E.so"

The order of composition could also be important: compositions of the same compo-
nents in a different order could result into different, but equally valid implementations.

In earlier work [22], we have shown the reuse advantages of layered libraries com-
pared to other object-oriented technologies. Compared to OO application frameworks
[15], for instance, layered libraries offer a much more compact representation of fea-
ture sets of similar complexity. In our experience, dynamic library technologies can

offer full support for layered development. For instance, some important issues in lay-
ered development can be handled as follows:

¢ A majorissue in layered libraries is ensuring that a composition is valid. Compo-
nents commonly have requirements from other components participating in a
composition. For instance, in a data structure factored library (like DISTIiL [20])
we can require that a storage policy component be at the root of the component
hierarchy. Such requirements are often expressed in a component-centric way:
each component exports some boolean flags asserting or negating certain (library-

specific) properties. At the same time, components can enforce requirements on
the union of all properties of components above them or below them in a compo-
nent hierarchy [4]. For instance, compon@ntan require that some component
above it implement thetorage property. If componenB exports the property,

then compositioi\[B] is valid.

Dynamic libraries can support automatic checking of properties at load time. By
convention, the library can contain a special initialization function callei
This function is called by the dynamic loader to perform library-specific initializa-
tion. Properties can be exported by libraries as symbols. For instance, a simple
requirement can be expressed as:
void _init() {

assert(dlsym(RTLD_NEXT, "property1"));
}

This ensures that a library above the current one in the component hierarchy
exports a symbol calledpfopertyl ”. Using this technique, a factored library
developer can add complex restrictions on what compositions are valid. The
restrictions are checked early: at application (and library) load time, and not when
the library functionality is called. It is the responsibility of the layered library
author to express the dependencies among components as restrictions of the above
form.

A common feature of layered libraries is that layers can be instantiated multiple
times in a single composition. At first, this may seem paradoxical: why would the
same code be included more than once in a composition? Nevertheless, the code is
actually parameterized by all the components above the current one in a compo-
nent hierarchy. Thus, multiple copies of the same code can be specialized to per-
form different functions. Consider, for instance, a multi-pass compiler, where one
of the passes is implemented as a component caliecess_tree . If the
typechecking phase must be completed before reduction to an intermediate lan-
guage takes place, then a reasonable composition would be:
process_tree[typecheck[process_tree[reduce]]]

Dynamic libraries can handle multiple instances of a library in the same composi-
tion. In the worst case a brute-force approach (which we had to use in Solaris) is
needed: the dynamic library file needs to be copied manually. In Linux, however,
the same library can be used multiple times in_an PRELOADierarchy without
problems.

Layered library development requires a composition mechanism that imposes a
low performance penalty for calling code in different layers. Indeed, Unix
dynamic libraries have emphasized fast dispatch. A typical Unix loader will
resolve symbols at load time and employ binary rewriting techniques to ensure
that future invocations are performed at full speed, instead of suffering lookup
cost dynamically on every invocation [17]. Although, there is still overhead from
employing layering (e.g., routines from different layers cannot be inlined) the
overhead is kept reasonably small. Additionally, the expected granularity of com-

ponents developed using dynamic library technology is large: for fine-grained
components, a source-code-level technique is more advantageous. Therefore, the
overhead of layering using dynamic libraries is negligible.

Based on the above observations, we believe that dynamic libraries are a good technol-
ogy for implementing layered libraries. The question that arises is why one should pre-
fer dynamic libraries over other layering technologies. Compared to source code
component technologies, dynamic libraries have the usual advantages of binary level
components. First, dynamic libraries are language-independent: they can be created in
many languages and used by code in other languages. Second, dynamic libraries are
binary components, offering intellectual property protection. Furthermore, dynamic
libraries have a unique feature compared to all other component technologies (binary
or source level): their ability for load-time configurability. This ability yields a lot of
flexibility in future updates, but also in operation with legacy code. For instance,
dynamic libraries interposing on well-known symbols (e.g., fromiitiee library) can

be used with completely unsuspecting pre-compiled applications.

3 Example Applications

To demonstrate the potential for layered development using dynamic libraries, we will
discuss two libraries that we designed as parts of a transparent “file operations” layered
library. We should point out that our code is not yet a mature and feature-rich layered
library. In fact, our two libraries are not an ideal example of layered library compo-
nents, as they are only loosely coupled. Nevertheless, our libraries are actual, useful
examples. They serve as a basic proof-of-concept by demonstrating almost all of the
techniques described in Section 2. Our source code can be found in:
http://www.cc.gatech.edu/~yannis/icsrcode.tar.gz

3.1 Versioning Library Overview

Typical Unix file systems do not offer automatic backup capabilities. Unix programs
commonly resort to application-level solutions when they need to keep older versions
of files when these are modified. For instance, the Emacs text editor and the Frame-
maker word processor both automatically create a backup file storing the previous ver-
sion of an edited file. Advanced and general solutions have been proposed at the kernel
level—for example, see the report on the Elephant file system [18] and its references.
Nevertheless, it is relatively easy to come up with a good, quite general, and fairly OS-
neutral solution at the user level using dynamic libraries. Our versioning dynamic
library interposes its own code to the symbols wrapping common system calls, like
open, creat , unlink , andremove . By settingLD_PRELOADO point to the library,

we can use it with completely unsuspecting legacy applications. The library recognizes
“interesting” file suffixes and only acts if the file in question has one of these suffixes.
Any attempt to modify (as opposed to just read) a file through one of the calls imple-
mented by the library will result in a backup being created. Thus, unlike the usual
“trash can” or “recycle bin” functionality, our library protects both against deletion and
against overwriting with new data. Backup versions of files are stored inea “

sion " subdirectory of the directory where the modified file exists. We have put this
library to everyday use for source code files (.h, .cpp , .hpp , .cc , .hh, and
Jjava suffixes) text files.{xt), etc.

An interesting issue in versioning functionality is which of the older versions are worth
keeping. The Elephant file system [18] allows users to specify policies for keeping
older versions. Our library is primitive in this respect: it only keeps a fixed nhumber of
the most recent back versions (currently only one, but this can easily change). An
interesting future improvement might be to provide versioning policies as other com-
ponents in our factored library—that is, as dynamic libraries. Then, the user will be
able to select the right policy at load time, by composing the versioning library with
policy libraries through abhD_PRELOADzomponent hierarchy.

3.2 Locking Library Overview

File locking is another piece of functionality that (although to some extent supported
by Unix file systems) is commonly left for the application to provide. (File locking in
Unix is a big topic—e.g., see Ch. 2 of the Unix Programming FAQ [11]—and our
homegrown implementation is certainly not a general solution.) File locking intends to
protect files from concurrent modification and to protect applications from inconsistent
file views. Application-specific locking protects against access to a file by different
instances of the same application, but does not prohibit access by different applica-
tions. The Emacs text editor and the FrameMaker word processor are, again, good
examples of applications that provide their own locking implementation.

It should be noted that most text-oriented Unix applications do not operate by keeping
files open for long periods of time. Instead, applications processing a file first make a
temporary copy of the file, on which all modification takes place. Eventually, the tem-

porary file is copied over the original, to reflect the changes. This upload/download-
like approach provides some protection against inconsistent modification, but is not
feasible in the case of large files (e.g., multimedia files).

Our file locking library works by overriding file operations likepen, close , and

creat . Just like our versioning library, the interposed code checks if the file in ques-
tion is an “interesting” file. The library implements a readers/writers locking policy:
multiple open operations are allowed on a file, as long as they are all read-only
accesses. Any other concurrent access is prohibited. Thus, our locking is “mandatory”
(but only for applications executing with our library in th® PRELOADpath) while
common Unix locking mechanisms are “advisory” (i.e., they require application par-
ticipation). Normally, our locking policy would perhaps be too strict. Nevertheless, it
only becomes restrictive in the case of large files that are opened “in place”. (The only
other reasonable alternative in this case would be no locking whatsoever.) For the com-
mon case when a temporary copy of the file is created, our locking policy just prevents
inconsistent write-backs (interleaved write operations by different processes to differ-
ent parts of a file).

Locks and shared data (e.g., number of readers/writers) are stored in the file system, as
files under alock subdirectory of the directory where the interesting file is found.

3.3 Implementation and Discussion

The locking and versioning libraries described above employ most of the techniques
discussed in Section 2. Although the libraries are loosely coupled, they are designed to
cooperate, as they interpose on many of the same symbols. Thus, they can be regarded
as components in a simple layered library. The two libraries can be used together or
individually on an application.

The main difficulty during library development has to do with identifying which proce-
dure calls should conceptually refer to potentially “overridden” functionality, which
should refer to functionality in the same library, and which should just be delegated to
the parent library in the component hierarchy (or any other dynamic library through
normal, path-based lookup).

To facilitate programming in this way, each library initializes a set of “super” imple-
mentations for all the symbols it overrides. For instance, the locking library contains
initialization code like:

super_open = (Openfn) disym(RTLD_NEXT, "open");
super_close = (Closefn) dilsym(RTLD_NEXT, "close");
super_creat = (Creatfn) disym(RTLD_NEXT, "creat");

Thesuper_open |, etc., function pointers are static global variables, accessible from all
the library routines. They are often used when normal, non-layered code would just
call open, close , etc. For instance, the locking library creates a “pre-locking” file
using a Unix exclusive file creation operation. The “pre-locking” file serves to ensure
that no two processes try to access the locking shared data (i.e., numbers of readers/
writers) at the same time. The code for that operation is:

lock_fd = super_open(extended_path, O_WRONLY | O_CREAT | O_EXCL,
S_IRUSR | S_IWUSR | S_IXUSR);

The most interesting interaction between layers is the one that occurs when a library
calls a routine that is potentially overridden. Recall that this is analogous to a “dynam-
ically bound” call in the object-oriented model. A good example of such a use can be
found in the finalizer routine of the locking library. Since many processes do not
explicitly close files before they exit, we tried to approximate the correct functional-
ity by callingclose on all open files when the library is finalized. This will ensure that
the locking library correctly updates its locking information. Nevertheless, the call to
close does not only concern the locking library, but also any other dynamic libraries
loaded in the process. Thus, the calktase should be to the overriding method of
theclose routine. A slightly simplified version of our finalizer code is shown here:

void _fini() {
Closefn virt_close = (Closefn) disym(RTLD_DEFAULT, "close");
while (open_files != NULL) {
open_file_data *next = open_files->next;
virt_close(open_files->open_fd);
open_files = next;
}
}

(As can be seen in the above, the locking library has state: it keeps track of what files
are open at any point.)

Finally, we should give a warning. Both the locking and the versioning libraries are
based on interposing code on symbols used by existing programs. The disadvantage of
this approach is that completeness is hard to guarantee. It is easy to miss a symbol that
offers a different way to access the same core functionality. Even in the case of well-
defined OS interfaces, there is potential for surprise: our first implementation of the
versioning library missed thepen64 symbol, used in Solaris as part of a transitional
interface to accessing large files. Executables compiled to uspé¢hé4 symbol cir-
cumvented that early version of our library.

4 Discussion and Related Work

There has been a lot of research work presenting advanced techniques for software
reuse. This includes work on generators and templates [10], transformation systems
[6][16], language-level component technologies [19], module and interconnection lan-
guages [12][23], and much more. Our emphasis in this paper was not on proving that
an overall approach to software design has good reuse properties. Instead, we adapted
the existing approach of scalable libraries and layered designs to a different technol-
ogy. The benefits of scalable libraries are well established [3][21]. We argued that most
of these benefits can be obtained when Unix dynamic libraries are used as the underly-
ing concrete technology.

Despite the emphasis on Unix systems throughout this paper, dynamic libraries are
part of all modern operating systems. It may be feasible, for instance, to use some of
our ideas in a Windows environment. Nevertheless, our emphasis was on the use of the
LD_PRELOADvariable, which allows (even a third-party user) to specify compositions
simply and concisely. No analogous mechanism exists on Windows systems. The dif-
ference between usingd_ PRELOADand using a path-based lookup mechanism (not
only in Windows, but also in Unix variants) is in convenience and transparency. With
path-based lookup, libraries need to have specific names, already known by the pre-
compiled executables. Directories have to be set up appropriately to enforce a search
order. Finally, to our knowledge, in Windows systems, there is no way to separate the
lookup path for dynamic libraries from the search path for executables.

We should also mention that interposing dynamic libraries through th®RELOAD
variable raises some security concerns. For instance, there are commonly restrictions

on what libraries can be dynamically linked to set-user-ID or set-group-ID executa-
bles. All of these restrictions, however, are orthogonal to the work presented in this
paper: they have to do with the general issue of trust of binary programs. Linking a
dynamic library is certainly no more dangerous than running an executable program.

Although only tangentially related, we should mention that a lot of work has been done
over the years on layered operating system developmentmidrekernelapproach is

the best known representative of such research, and several object-oriented microker-
nels (e.g., Spring [14] and recently JX [13]) have been developed. Although conceptu-
ally related, the operating systems modularization work deals with completely
different concerns (performance and hardware resource management) from this paper.

5 Conclusions

In this paper we argued that Unix dynamic libraries (or “shared objects”) are a good
platform for implementing layered designs. The basis of our argument is the observa-
tion that dynamic libraries offer exactly analogous mechanisms for interaction
between libraries in a library hierarchy, as those offered for interactions between
classes in an object-oriented inheritance hierarchy. Furthermore, the establishment of a
dynamic library hierarchy is done at load time, allowing great configurability.

We believe that the dynamic library technology can form the basis for mature, indus-
trial-strength factored libraries. Although many factored libraries have been produced
so far, few are used in practical settings and most could benefit from the unique fea-
tures of dynamic library technology (e.g., binding with legacy programs without re-
compiling). Similarly, although many mature dynamic libraries are in use, no consis-
tent collection of cooperating dynamic libraries, allowing mix-and-match configurabil-
ity, has been developed. Our work makes a first step in this promising direction.

Acknowledgments.This work was partially supported by DARPA/ITO under the
PCES program.

6 References

[1] Apache HTTP Server Documentation Project, “Version 2.0: Dynamic Shared
Object (DSO) Support”, available at
http://httpd.apache.org/docs-2.0/dso.htmi

[2] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical
Software Systems with Reusable Compone®€M TOSEN October 1992.

[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”,
ACM SIGSOFTL993.

[4] D. Batory and B.J. Geraci, “Component Validation and Subjectivity in GenVoca
Generators”|EEE Trans. on Softw. End-=ebruary 1997, 67-82.

[5] D. Batory, “Intelligent Components and Software Generatdsgftware Quality
Institute Symposium on Software Reliahilkystin, Texas, April, 1997.

(6]
(7]
(8]

9]
(10]

(11]
(12]

(13]

(14]
(15]

(16]

(17]

(18]

(19]
(20]

(21]

(22]

(23]

I.D. Baxter, “Design maintenance system€pmmunications of the ACBb(4):
73-89, April 1992.

T. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete
Component Reuse1994 International Conference on Software Reuse

G. Bracha and W. Cook, “Mixin-Based Inheritanc&COOP/OOPSLA 1990
303-311.

K. Brockschmidt, Inside OLE (2nd. ed.), Microsoft Press, 1995.

K. Czarnecki and U. EiseneckerGenerative Programming: Methods,
Techniques, and Applicationaddison-Wesley, 2000.

A. Gierth (ed.)Unix Programming FAQavailable at
http://www.erlenstar.demon.co.uk/unix/fag_toc.html

J. Goguen, “Reusing and interconnecting software componenBSEE
Computer February 1986, 16-28.

M. Golm, J. Kleinoeder, F. Bellosa, “Beyond Address Spaces - Flexibility,
Performance, Protection, and Resource Management in the Type-Safe JX
Operating System'8th Workshop on Hot Topics in @30tOS-ViIIl), 2001.

G. Hamilton, P. Kougiouris, “The Spring Nucleus: A Microkernel for Objects”,
Sun Microsystems Laboratories Tech. RepbiR-93-14.

R. Johnson and B. Foote, “Designing Reusable Classksitnal of Object-
Oriented Programmingl(2): June/July 1988, 22-35.

J. Neighbors, “Draco: a method for engineering reusable software components”,
in T.J. Biggerstaff and A. Perlis (eds3oftware ReusabilityAddison-Wesley/
ACM Press, 1989.

C. Phoenix, “Windows vs. Unix: Linking dynamic load modules”, available at:
http://www.best.com/~cphoenix/winvunix.html

D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Carton, and J. Ofir, “Deciding
when to forget in the Elephant file system7th ACM Symposium on Operating
Systems Principle€ESOSP’99).

M. Sitaraman and B.W. Weide, editors, “Special Feature: Component-Based
Software Using RESOLVE'ACM Softw. Eng. Note®ctober 1994, 21-67.

Y. Smaragdakis and D. Batory, “DiSTiL: a Transformation Library for Data
Structures” USENIX Conference on Domain-Specific Languages (DSL 97)

Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented
Components”,5th Int. Conf. on Softw. Reuse (ICSR ‘98EEE Computer
Society Press, 1998.

Y. Smaragdakisimplementing Large Scale Object-Oriented ComponeritsD.
Dissertation, University of Texas at Austin, December 1999.

W. Tracz, “LILEANNA: A Parameterized Programming Language”, in Ruben
Prieto-Diaz and William B. Frakes, editorgydvances in Software Reuse:
Selected Papers from the Secomd Int. Work. on Softw. Reusal®@g, IEEE
Computer Society Press, 66-78.

	Layered Development with (Unix) Dynamic Libraries
	Yannis�Smaragdakis
	College of Computing
	Georgia Institute of Technology
	Atlanta, GA 30332
	yannis@cc.gatech.edu
	Abstract
	Layered software development has demonstrably good reuse properties and offers one of the few pro...

	1 Introduction
	2 Dynamic Libraries
	2.1 Background
	2.2 Dynamic Libraries and the Object-Oriented Model
	Encapsulation
	Inheritance
	Overriding

	2.3 Layered Development with Dynamic Libraries

	3 Example Applications
	3.1 Versioning Library Overview
	3.2 Locking Library Overview
	3.3 Implementation and Discussion

	4 Discussion and Related Work
	5 Conclusions
	Acknowledgments

	6 References
	[1] Apache HTTP Server Documentation Project, “Version 2.0: Dynamic Shared Object (DSO) Support”,...
	[2] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems wi...
	[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”, ACM SIGSOFT 1...
	[4] D. Batory and B.J. Geraci, “Component Validation and Subjectivity in GenVoca Generators”, IEE...
	[5] D. Batory, “Intelligent Components and Software Generators”, Software Quality Institute Sympo...
	[6] I.D. Baxter, “Design maintenance systems”, Communications of the ACM 35(4): 73-89, April 1992.
	[7] T. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete Component Reuse”, 199...
	[8] G. Bracha and W. Cook, “Mixin-Based Inheritance”, ECOOP/OOPSLA 1990, 303-311.
	[9] K. Brockschmidt, Inside OLE (2nd. ed.), Microsoft Press, 1995.
	[10] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques, and Application...
	[11] A. Gierth (ed.), Unix Programming FAQ, available at http://www.erlenstar.demon.co.uk/unix/fa...
	[12] J. Goguen, “Reusing and interconnecting software components”, IEEE Computer, February 1986, ...
	[13] M. Golm, J. Kleinoeder, F. Bellosa, “Beyond Address Spaces - Flexibility, Performance, Prote...
	[14] G. Hamilton, P. Kougiouris, “The Spring Nucleus: A Microkernel for Objects”, Sun Microsystem...
	[15] R. Johnson and B. Foote, “Designing Reusable Classes”, Journal of Object- Oriented Programmi...
	[16] J. Neighbors, “Draco: a method for engineering reusable software components”, in T.J. Bigger...
	[17] C. Phoenix, “Windows vs. Unix: Linking dynamic load modules”, available at: http://www.best....
	[18] D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Carton, and J. Ofir, “Deciding when to fo...
	[19] M. Sitaraman and B.W. Weide, editors, “Special Feature: Component-Based Software Using RESOL...
	[20] Y. Smaragdakis and D. Batory, “DiSTiL: a Transformation Library for Data Structures”, USENIX...
	[21] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented Components”, 5th Int. C...
	[22] Y. Smaragdakis, Implementing Large Scale Object-Oriented Components, Ph.D. Dissertation, Uni...
	[23] W. Tracz, “LILEANNA: A Parameterized Programming Language”, in Ruben Prieto-Diaz and William...

