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Abstract

Multimedia and real-time applications require end-to-
end QoS support based on the cooperative management of
their distributed resources. This paper introduces a kernel-
level facility, called Q(uality)-channel, which provides a
flexible fabric with which Operating System developers can
efficiently implement policies for managing the resources
used by distributed applications. The inherent complexity
of resource management in large-scale distributed appli-
cations is addressed by the event-based cooperation over
asynchronous and anonymous Q-channels. Q-channel cre-
ation and operation (such as resource monitoring and adap-
tation) is hidden behind standard communication mecha-
nisms, i.e., transparent to applications and thereby offer-
ing quality of service support with minimal application in-
volvement. However, an application can influence the man-
ner in which its operation is affected by Q-channels, such
as permitting resource managers to customize individual
application-level communications by dynamically installing
Q-filters into data streams. Such Q-filters can also be pa-
rameterized, thereby permitting continuous manipulations
of application-level communications based on requirement
and performance information dynamically collected from
event publishers and subscribers.

1. Introduction

Multi-party interactive multimedia (MIM), telepresence,
and remote sensing are collaborative applications that can-
not function without dynamic management of the under-
lying resources. To attain the Quality of Service (QoS)
required by applications, distributed resource managers
must dynamically allocate the resources required, moni-
tor the QoS received, alter resource allocations when nec-
essary, and even perform run-time adaptations of applica-

tions, middleware, and operating or communication sys-
tems [1, 18]. Further, since achieving and maintaining QoS
for distributed applications is an end-to-end issue [12], re-
source managers must cooperate in these endeavors, so that
QoS guarantees are applied to the entire flow of data, e.g.,
from a server to its clients.

Previous research has used middleware to ‘bind’ the mul-
tiple machines, applications, and resource managers that
implement QoS provisioning, resource management, and
performance differentiation for distributed applications and
platforms, sometimes enhanced by operating system (OS)
extensions on individual machines [7, 10]. However, there
remain some open problems with such middleware-based
approaches, including with our own previous work on the
management of distributed radar sensors [18]. First, user-
level approaches must rely on the voluntary participation
of applications in QoS management, thereby enabling non-
participants to threaten the guarantees made to participants.
Second, the granularity at which resources can be managed
and the fidelity of such resource management are not al-
ways sufficiently high to meet applications’ performance
needs. Reasons for this include (1) inappropriate delays of
QoS management [19], often aggravated by the overheads
of application-level QoS managers’ interactions with the
system-level mechanisms they must use to understand cur-
rent resource usage and availability, and (2) inappropriate
interfaces provided by operating systems that require man-
agers to poll for changes in resource state or make unneces-
sary resource reservations, as also noted in [7, 15].

Q-channels: a system-level fabric for distributed re-
source management. Previous QoS approaches focused
on end-to-end QoS management in simple client-server sys-
tems. However, large-scale multimedia applications such
as teleconferencing or collaborative applications require the
management of resources across a large number of clients
and servers and with many individual streams that exhibit
performance dependencies due to synchronization require-



ments. To address the complexity of QoS management in
these applications, we have developed Q-channels, a kernel-
level service that permits multiple, distributed, kernel- or
user-level resource managers to cooperate in the provision
of QoS management to applications:
(a) Q-channels provide a flexible, system-level ‘fabric’ on
which distributed resource management policies may be im-
plemented. Specifically, distributed resource managers per-
form tasks like QoS negotiation and adaptation via events
over kernel-level event channels.
(b) QoS management can be transparent to applications,
since they do not need knowledge of or direct access to the
Q-channels associated with them.
(c) Applications can also explicitly interact with the qual-
ity management performed on their behalf, if desired, by
using Q-attributes to share quality information with re-
source managers, and by using Q-filters to control the ex-
change of quality information across machines and to link
their application-level communications with Q-channel-
based resource management actions. In this paper we are
concerned with the support for the communication between
distributed resource managers in an off-the-shelf OS and not
with any QoS adaptation algorithms in particular.

Managing QoS via Q-channels. To visualize the function-
ality of Q-channels, consider a video conferencing applica-
tion, where each host exchanges a large number of video
and audio streams. A resource management system has to
ensure that all of these streams achieve their respective QoS
targets. Therefore, user- or kernel-level resource managers
have to cooperate with other resource managers of all par-
ticipating hosts. Functions such as QoS specification, ne-
gotiation, and adaptation have to be performed in conjunc-
tion with all or a subset of the participating hosts. Finally,
such cooperation has to reflect certain relationships across
streams, e.g., to ensure lip synchronization for audio and
video streams. In our approach, when a host joins a dis-
tributed multimedia application, the host’s resource man-
agers automatically create and subscribe to an associated Q-
channel. The application does not require knowledge about
this channel or the fact that application-level actions like
message sending or receipt may lead to resource manager
interactions, as per the resource management policies im-
plemented (see [21] for experiments with sample policies).
Alternatively, applications may explicitly interact with re-
source managers, e.g., to specify desired service qualities
or to understand resource availability. Such interactions
use Q(uality)-attributes, which are customizable lists of at-
tributes that can be passed between applications and re-
source managers. Finally, applications can further refine
the resource management actions taken on their behalf by
specifying functions (residing in user- or kernel-space) (1)
to alter their inter-machine data communications or (2) to
dynamically change the functionality of the associated Q-

channel-based resource management services. Useful func-
tions include those that (i) filter user-level communications
based on current end user needs [5], or that (ii) compute the
utility [20] or payoff [8] of certain communications, or ac-
tions, or changes to their qualities from an application per-
spective (thereby providing to kernel-level resource man-
agers application-level interpretations of ‘quality’ [21]), or
that (iii) implement event filters that eliminate unnecessary
transmissions of QoS management information.

Q-channels are intended to be used with a variety of
communication mechanisms. Our current work uses a QoS-
enhanced variant of standard Berkeley sockets (called Q-
sockets), and an event service comparable to the CORBA
Event Service. More specifically, the same event service
that serves as the building block for Q-channels can be used
by applications as a means to exchange multimedia data.

2. Architecture of Q-Channels

2.1. Kernel-level Quality Management

As stated earlier, a Q-channel is an OS service that pro-
vides communication paths for the exchange of control in-
formation between resource managers in a distributed sys-
tem. Typically, such a channel is created or subscribed to
when some user-level communication is established. The
intent is to enable end-to-end management of QoS such that
the transmission of application-level data is associated with,
but also separated from the kernel-level exchange of con-
trol or adaptation information. Control information is rep-
resented by quality events [21] exchanged between remote
and local resource managers.

Though Q-channels can be established and used from
both user-level and kernel-level resource managers, this pa-
per focuses on kernel-level quality management for several
reasons. First, our past work has shown that fine-grain,
kernel-level resource management can provide applications
with benefits not derived from coarser-grain, user-level QoS
management. Specifically, excessive delays or overheads
experienced by dynamic adaptations due to slow perfor-
mance monitoring or decision-making by resource man-
agers can negatively affect or even negate the advantages
of run-time adaptation for real-time applications [19]. Fur-
thermore, OS kernels or network services often present in-
terfaces to application-level resource managers that neces-
sitate repeated kernel calls in order to determine the re-
sources available for allocation to certain application tasks.
In comparison, within OS kernels or in network services, it
is straightforward to inspect and manipulate the data struc-
tures involved in resource allocation. Finally, OS kernels
can enforce constraints on the delays experienced by ap-
plications when they are informed about changes in their
allocations, or when they must be adapted to conform to



new QoS requirements or resource availabilities, whereas
application-level resource managers may be at the mercy of
CPU schedulers.

Q-channels are intended to be used in conjunction with a
variety of communication mechanisms, ranging from sock-
ets to event services. As a result, the creation and op-
eration of Q-channels is performed whenever the applica-
tion uses such a communication mechanism and is typi-
cally hidden from the application. In this paper, we are
associating Q-channels with a data event service which ap-
plications use for their distributed communications. Our
motivation for using event channels in data communica-
tions is twofold. First, event and publish/subscribe ser-
vices [6, 16] have become prevalent in distributed applica-
tions that range from virtual reality and avionics to support
for mobile users [4, 9]. Second, recent research contribu-
tions have pointed out the applicability of event services for
continuous media transfers [2, 11]. The event service used
to demonstrate such communication for distributed applica-
tions, called KECho, is also used to implement Q-channels
themselves. However, any other event service could be
similarly designed to cooperate with Q-channels. KECho
differs from previous approaches through its implementa-
tion as a kernel extension to the Linux operating system.
As with middleware event services, KECho allows appli-
cations to subscribe to anonymous and asynchronous event
channels as publishers or subscribers of events. However,
KECho further allows kernel threads to participate in such
event communication, which may be used to implement
distributed operating systems, remote monitoring systems,
or load balancing mechanisms [13]. Therefore, KECho
is a convenient medium for implementing Q-channels and
demonstrating their use. In ongoing work we are develop-
ing Q-sockets, which are communication sockets enhanced
with the ability to specify quality attributes for communi-
cations and manage distributed communications via associ-
ated Q-channels.

A resource management model. The model supported
in this paper may be described as follows. First, an
application-level process establishes a communication path
with some remote application process, using the KECho
data event service (called a data channel). Second, a kernel-
based QoS monitor (see Figure 1) periodically collects in-
formation about the resource allocations and availability on
the machines used by the distributed application, or about
the QoS they achieve. This information is distributed via
monitoring events published on a Q-channel associated with
the KECho-based data communication path. Third, a QoS
controller receives and acts upon such monitoring events
by (a) adjusting resource allocations locally and (b) issu-
ing quality events to the Q-channel, which forces remote
QoS controllers to reconsider and adapt their resource allo-
cations.
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Figure 1. Q-channel architecture.

Applications can affect resource allocations by issuing
Q-attributes, for example, to state their resource needs in
a QoS specification. Finally, event channels can take ad-
vantage of filters, which can customize the event traffic to
the sink’s specific needs by dropping, aggregating, or pre-
processing of events.

The goals of this architecture are: (1) to support OS
developers in the design of resource management archi-
tectures for large-scale distributed applications (reduced
complexity), (2) to enable fine-grain adaptation by sup-
porting in-kernel resource management mechanisms (im-
proved performance), (3) to hide Q-channel setup, oper-
ation, and tear-down from applications (transparency and
ease of use), and (4) to permit sophisticated applications to
customize and influence QoS management by offering at-
tributes and filtering methods (QoS-awareness).

2.2. KECho

KECho [13] is implemented as a set of kernel-loadable
modules for Linux 2.4.17. Its main components are a
publish/subscribe mechanism, connecting both user-level
applications and kernel-level threads on remote hosts, and
a lightweight API, connecting user-level applications and
kernel services on the same host, termed ECalls. ECalls
supports real-time and multimedia applications by (1)
delivering events between applications and kernel services
in a timely fashion, (2) enabling both to efficiently share
relevant information, and (3) influencing process schedul-
ing in response to the receipt of new events or pending
events. It offers several methods of event generation and
event handling, thereby giving event sources and sinks the
flexibility to select a method that is appropriate for the
specific needs of an application. More details about the
ECalls interface can be found in [15].

KECho is a group communication tool comparable in
functionality to event communications in the CORBA Event



Service [4], but with performance approximating that of
socket-based communications. It is a kernel extension that
allows for asynchronous and anonymous event communi-
cation within a kernel and across remote kernels. A pro-
cess (or kernel thread) can subscribe to a KECho event
channel without the need to know the identities and num-
ber of other subscribers. Event channels are implemented
fully distributed and events are transmitted directly between
peers.

2.3. Q-Attributes and Parameterizable Filters

Q-attributes are a way to pass QoS information between
user-level applications and kernel-level resource managers.
KECho provides functions that allow applications and re-
source managers to add, delete, or modify attributes. Filter-
ing in continuous media streams allows the customization
of such streams to the specific needs of clients. For exam-
ple, high-performance end-systems can receive full video
quality, while other end-systems receive a reduced quality
version. Filter functions can manipulate streaming media in
a variety of ways, including frame dropping (e.g., dropping
B- and P-frames from an MPEG video stream), compress-
ing (i.e., the choice of compressing standard influences the
actual bit stream size), and dithering (i.e., reducing the color
depth of images).

Both data channels and Q-channels are based on the KE-
Cho event service, which means that both can deploy filters.
Filters for Q-channels are inserted by the developer of the
resource management system and are typically limiting the
event traffic between subscribers to reduce computation and
communication overheads. As an example, the QoS moni-
tor of a client-server interaction may wish to send a moni-
toring event to the QoS controller of the server only, there-
fore excluding other clients. However, the QoS controller
of the server may wish to send quality events to all clients
or a subset thereof. Further, such filters can reduce over-
heads by aggregating or dropping QoS events. For instance,
depending on the ’speed’ of the communication on the data
channel, a filter could control how frequently monitoring
events are being issued. On the other hand, filters for the
data channel (Q-filters) are inserted by the application itself
and are parameterizable via Q-channels. That is, a video
server could send frames at the rate of its fastest client, but
the filter ensures that other, ’slower’ clients receive lower
frame rates by suppressing the transmission of certain data
events. A Q-filter is parameterizable in the sense that QoS
events received on the Q-channel can influence parameters
of the filter in the data channel. As an example, a filter on
the data channel could change the color depth or resolution
of images, where events on a Q-channel can decide the de-
sired depth and resolution, depending on current resource
availabilities.

3. Distributed QoS Management

3.1 Q-Channel Setup

When an application creates a new data channel, the
underlying resource managers create a hidden Q-channel
and subscribe to this new Q-channel. When an appli-
cation opens an existing data channel, the underlying re-
source managers open and subscribe to the corresponding
Q-channel. While a data channel connects instances of a
distributed application, a Q-channel connects the underly-
ing corresponding resource managers of the same nodes the
instances of the application are running on.

In the approach investigated in this paper, both applica-
tions and resource managers use the KECho event service.
The APIs for both scenarios, that is, user-level applications
operating a data channel and resource managers operating a
Q-channel, are identical. That has been achieved by export-
ing the same function names as (1) system calls for appli-
cations and (2) kernel symbols for resource managers. The
following code shows an example of how applications and
resource managers use KECho for event-based communica-
tion:

1: comm_mgr_id = CManager_create();
2: ctrl_id = ECho_CM_init(comm_mgr_id);
3: if (main_host == TRUE)
4: chan_id = EChannel_create(control_id);
5: else
6: chan_id = EChannel_open(ctrl_id, chan_name);
7: handle = ECsource_subscribe(chan_id);
8: (void) ECsink_subscribe(chan_id, hndlr_func, NULL);

Lines 1 and 2 initialize the communication manager,
which is the part of KECho responsible for connection man-
agement. One application has a prominent role (the channel
manager) in that it creates an event channel (line 4), which
then can be opened by other applications (line 6). All appli-
cations joining or leaving an event channel have to do so by
contacting the channel manager. A registry server, which
runs on a host known to all applications, can be used as a
directory service for all open event channels. After a chan-
nel has been created/opened, an application can register as
a publisher – or source – (line 7) and as a subscriber – or
sink – (line 8).

3.2. Operation of Q-Channels

The following code depicts the manner in which an ap-
plication or kernel thread submits events and polls for in-
coming events:

1: while (1) {
2: ...
3: ECsubmit_event(handle, &event, event_length);
4: CMpoll_network(comm_mgr_id);
5: CMtask_sleep(time);
6: ...
7: }



Events can be issued (line 3) or polled for (line 4) at any
time. Using the ECalls mechanism, an application can also
express the desire to be notified of events asynchronously,
e.g., with signals, instead of using the CMpoll network
function call.

If an application wishes to use Q-filters, the subscription
has to identify these filters by either (i) their function names
or (ii) a unique character string for the kernel module that
implements these filters. In other words, applications can
provide the desired filter functions either within the appli-
cation code, or as kernel extensions in a separate module.
Though the first approach appears to be more attractive to
application programmers, it has to be kept in mind that user-
level function invocations from within the kernel (1) have
slightly higher overhead than pure in-kernel functions and
(2) can pose a protection threat to the OS or other applica-
tions. Our current work includes the dynamic generation of
filter functions within the kernel, based on a subset of the
’C’ programming language.

3.3. Run-time Quality Management

Resource management with Q-channels is based on the
exchange of events. After a Q-channel has been created,
resource managers are free to join and leave the channel
and to participate in the exchange of quality events. Our
approach introduces several desirable characteristics into a
resource management system:

(a) Reduced complexity: The coordinated management
of distributed resources can be complicated in large-scale
applications, where (1) multiple data sources and sinks
communicate, (2) data streams have relationships such
as synchronization, (3) data streams reserve resources
together (resource sharing), (4) resources or applications
can migrate, or (5) the system is highly dynamic, that is,
applications and their quality of service requirements can
change at any time. Q-channels address this complexity by
tying the creation of event channels for resource manage-
ment with the creation of data channels. QoS ’engineers’
can therefore rely on Q-channels to automatically intercon-
nect the resource managers along the path of a data stream.

(b) Asynchronism: Event communication in KECho is
asynchronous, i.e., event sources publish events on an
event channel without waiting for a response. This loose
coupling of event publishers and subscribers supports the
dynamic behavior of the multimedia system (e.g., resource
migration).

(c) Anonymity: Channel subscribers are unaware of
the identities or even number of other subscribers. This
facilitates the dynamic joining and leaving of subscribers

or the dynamic migration of subscribers and resources.

(d) Performance and granularity of adaptation: Kernel-
level resource management can provide applications with
fine-grain QoS adaptations by avoiding excessive delays
or overheads caused by costly system calls or signals.
Further, within OS kernels or in network services it is
straightforward to monitor and adapt data structures and
kernel services. Because of these reasons, we (a) focus in
this paper on the kernel-level implementation of resource
management (although user-level implementations are
equally possible), and (b) entirely implement the Q-channel
fabric within the kernel.

(e) Transparency and ease of use: Q-channels reduce
the need for application programmers to change their
codes to permit QoS management or to learn how to use
complex new APIs for such management. This is because
the creation and management of Q-channels is completely
hidden behind traditional communication mechanisms,
like standard sockets or event channels. This also allows
resource management systems to enforce the participation
of applications in a QoS management without even their
knowledge, if desired.

(f) QoS-awareness: Though transparency is an important
goal in the design of Q-channels and desirable for legacy
applications, newer applications may want to actively par-
ticipate in the management of the system’s resources. For
this purpose, Q-channels implement mechanisms that allow
applications to specify or retrieve QoS information with
Q-attributes. Further, filters can be inserted dynamically
into data paths in KECho, which can be parameterized
dynamically via information from a Q-channel.

Resource management groups. Applications or resource
managers may be grouped via Q-channels for many
reasons, reflecting the fact that these applications and their
data streams have to coordinate the use of resources to
avoid interference or to explicitly trade off quality, as with
MIM applications that raise the quality of one stream at
the cost of all other streams in the same group. An explicit
example is teleconferencing, where the stream to a chair of
a teleconference might be considered of higher importance.
Groups can express the need for stream synchronization, as
with inter-sink synchronization, where the replay of one
or more media streams has to be synchronized at several
receiver hosts. By adding these hosts’ resource managers to
the same group, they can directly inform each other about
variations in achieved QoS and trigger changes in resource
allocations. Similarly, intra-media synchronization, also
called rate control, aims at the proper playback of streams



at the receiver. It addresses synchronization between the
sender and receiver of a single stream. Finally, inter-media
synchronization addresses relationships between different
media streams, e.g., for resource sharing or lip synchro-
nization of video and audio [17].
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Hierarchical resource management. Hierarchical re-
source management facilitates the control of the resource
consumption of the whole system: A QoS tree can be gen-
erated where a parent in this tree manages the group-QoS
of all its children without detailed knowledge about the re-
source needs of the individual children. On the other hand,
the children can manage individual connections without
knowledge of the resource needs of other children. Con-
sider a tele-teaching application, where the source of a
stream could be a teacher, and the sinks are the students.
QoS specification can be done by a sink (e.g., a student de-
sires a certain frame rate) or by the source (the teacher de-
termines the frame rate the students will receive). In this ex-
ample, we choose a combination of both, that is, the source
offers data streams at three different quality levels: high (20
- 25 frames per second or fps), medium (15 - 20 fps), and
low (10 - 15 fps). In such a case, cooperation and adaptation
can occur at different levels, as shown in Figure 2. At level
1, a QoS manager tries to maintain the data rate at constant
values by adjusting resource allocations like CPU and net-
work bandwidth for each individual connection. At level 2,
the QoS manager tries to adjust resource allocations within
a role, e.g., to ensure that all individual connections within a
role receive the same quality. At level 3, a QoS manager dis-
tributes the available resources among several streams and
manages the per-stream quality of service. Finally, at level
4 all resources in the whole system are considered and dis-
tributed among streams. Further, links can be defined that
signify relationships, e.g., an audio and a video stream can
be linked to ensure that a drop in the quality of one stream
affects equally the other stream.

4. Multipoint Feedback Adaptation

4.1 Experimental Setup

The example used in this paper is that of a feedback-
based adaptation mechanism, i.e., a server streams data to
a client. A QoS monitor watches the resource allocations
or the achieved quality of service at the client and issues
monitoring events to a Q-channel, which are received by the
QoS controllers at the server. This simple scenario becomes
a complex problem if a stream is received by a large num-
ber of clients, i.e., a large number of QoS monitors issue
monitoring events back to the server-based QoS controller.
A common problem of large-scale feedback-based systems
has been described as reply implosions [22] in the litera-
ture, where a server solicits information from clients and all
clients reply almost simultaneously to the server.

To evaluate the performance and functionality of Q-
channels, we have modified the vic video conferencing tool
such that it operates on top of the KECho event service in-
stead of standard sockets. On the OS side, we implemented
a resource manager consisting of a QoS monitor and a QoS
controller. Whenever user A starts an instance of vic, a data
channel is set up. Transparently to vic (and the user), the
QoS monitor and the QoS controller subscribe to a newly
created Q-channel. Once a second user B requests to re-
ceive a video stream from A, the resource managers of B
subscribe to the Q-channel. If both A and B decide to sub-
mit and receive each others streams, their resource man-
agers subscribe to two different Q-channels, one created by
A and managing A’s data stream and one created by B and
managing B’s data stream.

The task of the QoS monitor is to monitor the rate of
incoming packets over the data channel. This is done by in-
stalling a filter into the data channel, which keeps track of
the received images from each participants. The QoS mon-
itor periodically submits a monitoring event. Another filter
in the Q-channel makes sure that only the resource manager
at the data source will receive such monitoring events. On
the other hand, upon receipt of a monitoring event, the QoS
controller at the data source reconsiders its own resource al-
locations for this stream or issues a quality event, which is
submitted to either (a) one specific resource manager, e.g.,
the same that issued the monitoring event, or (b) all resource
managers. The QoS controllers on the sinks then reconsider
their resource allocations upon receipt of a quality event.

4.2. Event Submission and Handling

As argued in previous sections of this paper, kernel-level
implementations of resource management can profit from
limited calls across protection boundaries, e.g., with sys-
tem calls. Kernel services and data structures are directly



accessible to the resource management mechanism, permit-
ting fine-grain adaptations. KECho achieves further per-
formance gains by ensuring that new events arriving on a
channel are dispatched to the corresponding threads with
minimal delays. This is achieved by the cooperation of KE-
Cho with the CPU scheduler such that kernel threads with
pending events are given preference over other (user-level)
processes [14].

The following experiments have been performed on
a cluster of 8 Quad-Pentium Pros with 200MHz each,
512 MB RAM, running Linux (version 2.4.17). Fig-
ure 3 compares the cost associated with event submission
in the kernel-level event service, KECho, with the event
submission of a similar user-level implementation, called
ECho [3]. Both ECho and KECho use TCP, although work
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is in progress to add UDP enhanced with a reliability layer
to both. In these measurements a source transmits an event

of size (i) 100 bytes and (ii) 2 kBytes to 100 sinks with
a variable update frequency (number of transmissions of
events per second) in the range of 2-10. The chosen data
sizes reflect the sizes of monitoring and quality events used
in our implementations, which are typically only a few hun-
dred bytes large. With an update frequency of 10 events
per second, 1000 TCP packets have to be sent out each sec-
ond. In this situation, the CPU overhead of event submis-
sion in KECho is slightly above 0.4%, compared to 0.7%
for ECho (excluding protocol processing). The graph shows
further that this overhead increases minimally with larger
data sizes. Figure 4 shows the measured round-trip times:
here we measure the time beginning from the submission
of an event at the server until receipt of a reply event from
the client. The event size is 100 bytes and a disturber pro-
cess is run such that it consumes CPU bandwidth from 0
to 70%. It can be seen that the kernel-level implementation
shows constant round-trip times independent from the CPU
load, whereas the user-level implementation suffers signifi-
cant increases in round-trip-times above CPU loads of 30%.
This is due to KECho’s ability to coordinate its activity with
the CPU processor such that handler functions are invoked
as soon as possible after event arrival to increase the respon-
siveness of the resource management system, while main-
taining the real-time requirements of all running tasks [14].

4.3. Multipoint Feedback Control

We consider a point-multipoint scenario, i.e., a source
streams data to several sinks, using the ’roles’ defined ear-
lier in the paper (high: 20-25 fps, medium: 15-20 fps, low:
10-15 fps). A sink uses Q-attributes to select a quality level
depending on its own capabilities, the resource management
mechanism tries to supply all clients with the best possi-
ble quality within their roles. If this quality cannot be sus-
tained, it is desirable to reduce the qualities of the ’low’ role
sinks first, then of the ’medium’ role sinks, and finally of the
’high’ role sinks.

In this particular example (1 source, many sinks), mon-
itoring events are only issued by sink-based QoS monitors
and directed to the source-based QoS controller. On the
other hand, quality events are only issued by the source-
based QoS controller to all sink-based QoS controllers. Q-
channel filters make sure that sink-issued monitoring events
are propagated to the source only, and that source-issued
quality events are propagated to all sinks or to a subgroup
of them.

The resource controlled for our application is network
bandwidth. The vic video conferencing tool is executed
as a real-time process in the SCHED RR (round-robin)
queue with priority 1. To limit and adapt communication
bandwidth, we use Class-Based Queuing (CBQ) to define
classes with a bandwidth of 200 Kbit each, and we use
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the Token Bucket Filter (TBF) algorithm to transmit
packets. This algorithm has been modified such that the
QoS controller is able to influence the rate of token genera-
tion and therefore, influence the rate of packet transmission.

Stream management. Figure 5 shows the mechanism for
one stream: a video server streams packets through a token
bucket filter to the video player, where a QoS monitor
watches the packet arrival at the video player and feeds
this information back to a QoS controller at the server. The
controller is then able to adjust the rate at which tokens
are added to the bucket, and therefore the rate at which
packets are sent over the event channel. Figure 6 shows
the achieved frame rates of 3 streams, one with role ’high’,
one with role ’medium’, and the last one with role ’low’.
We first start all 3 streams simultaneously, and the rate
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Figure 6. Frame rates for 3 streams.

control achieved with the token bucket filter ensures that
all three streams achieve the highest frame rate in their
desired ranges (i.e., roles). After 40 seconds we start a
disturber process, which transfers files at increasing rates
from the server to the clients, thereby causing the network

to get saturated. After 50 seconds, the QoS controller is not
able to further sustain the frame rates and it starts reducing
the frame rate of the ’low’ role stream, while sustaining
the rates of the two other streams. After the ’low’ role
stream reaches its minimum (10 fps), the ’medium’ role
stream suffers a drop in achieved frame rate. Finally, after
both the ’low’ and ’medium’ role streams have dropped
to their minima, the ’high’ role stream is reduced to its
minimum value of 20 fps. After 80 seconds, the controller
is not able to sustain all of the desired frame rates and
starts reducing the rate of the ’low’ role stream until it
reaches 0. It continues this process until, after 110s, all
three streams have stopped. This experiment shows further
the implementation of a simple QoS policy that manages
several media streams and their relationships to each other.

Reply implosion. The problem of receiving a large num-
ber of requests almost simultaneously is referred to as re-
ply implosion. Solutions to this problem include proba-
bilistic replies, statistical probing, and randomly delayed
replies [22]. The advantage of our event-based approach
is that a push-based mechanism is used, which avoids this
problem to the most part. This is because QoS moni-
tors submit their monitoring events to a server-based QoS
controller independently at certain intervals (e.g., every
500ms). However, it is still possible, particularly in large-
scale applications, that many monitoring events are issued
almost simultaneously. In Table 1 we analyze the event dis-
tribution for 1 second in the same setup as described in
Section 4.2 (i.e., 1 server and 100 clients). The first column

Table 1. Event distribution.
w/o adapt. w/ adapt.

Time t=10 t=100 t=10 t=100
0-100ms 9 8 7 9

100-200ms 14 16 9 10
200-300ms 14 12 13 11
300-400ms 7 7 16 10
400-500ms 11 12 7 11
500-600ms 14 13 5 10
600-700ms 2 6 11 9
700-800ms 11 8 14 10
800-900ms 5 7 7 10
900ms-1s 13 11 11 10

shows the event distribution measured after 10 seconds of
running the experiment and displays the number of received
monitoring events at the server per 100ms. With 100 clients
and a update frequency of 1 (i.e., each client sends exactly 1
monitoring event every second), the ideal distribution in our
simplified scenario would show 10 events per 100ms. The
event distribution is measured again 90 seconds later, show-
ing a similar distribution with minor deviations due to tim-



ing and measurement errors. However, it can be seen that
the distribution ranges from 2 to 16 events. In a second ex-
periment we now implement an adaptation algorithm. The
algorithm determines the number of clients � and the num-
ber of expected events per 100ms: ���������
	 . For every
time interval � of 100ms, the QoS controller counts the num-
ber of actually received events ( �� ). For all time intervals � ,
the number of excess events is computed ( �  ��� �� � if
� �� � ), and then �  randomly chosen clients from interval
� receive a delay request with the next quality event. This
delay request forces the client (i.e., the QoS monitor) to sub-
mit the next monitoring event 100ms later. Over time, this
succeeds in distributing the issuance of monitoring events
more evenly as can be seen in the last row of Table 1.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

Fra
me

 Ra
te 

(1/
s)

Time (seconds)

Frame Rates

1/s
10/s

Figure 7. Handler invocation frequency af-
fects the dynamics of the system.

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

Fra
me

 Ra
te 

(1/
s)

Ov
erh

ea
d (

ms
)

Time (seconds)

Frame Rate/CPU Overhead

Frame Rate 10fps
CPU time (polling)
CPU time (ECalls)
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Polling versus ECalls. Furthermore, the frequency of QoS
monitor and QoS controller invocations influences both
the granularity of adaptations achievable as well as the
overhead of adaptations. Figure 7 shows the behavior of
a video stream with a target frame rate of 10 fps � 1. In
the first graph we invoke the QoS controller (a) once per
second and (b) ten times per second to poll for possibly
pending monitoring events. In the case of a frequency of
only 1/s, the video stream needs more than 12s to reach its
target frame rate. When we run the QoS controller ten times
as often, the stream needs approximately 3s. However,
KECho offers the ECalls interface, which makes polling
unnecessary by invoking the QoS controller immediately
at event arrival. Figure 8 shows a video stream operated
at 10 fps, this time ECalls ensures the timely handling of
incoming monitoring events. The graph also shows the
CPU consumption of the QoS controller function when
we (a) poll for events ten times per second and (b) use
ECalls instead. Without ECalls, the CPU consumption is
approximately twice as much as with the support of ECalls
because the QoS controller is run only when there are
monitoring events pending.

Q-Filters. Q-filters are application-specific event channel
filters, parameterizable through the QoS management sys-
tem built on top of Q-channels. Such filters can perform
tasks such as down-sampling, color depth reduction, or even
dropping of images to reduce network load. In other words,
additional computation at the server is introduced to re-
duce the required network bandwidth between server and
client or to reduce the required computation at the client
(e.g., visualization of images with fewer colors or smaller
size). However, a resource manager can activate or affect
such filters without the active involvement of the applica-
tion, further improving the granularity of adaptations. This
is particularly useful for transient overload situations, where
frequent application adaptations can be counterproductive,
however, the resource manager can simply change the pa-
rameters of the Q-filter with less overhead. Consider a Q-
filter that simply drops certain frames (e.g., B- and P-frames
of an MPEG stream). If a resource manager considers it
necessary to change the number of frames transmitted to
ease the network load temporarily, it can simply change a
parameter of the Q-filter, which takes effect immediately.
However, if the resource manager decides instead to notify
the application to let itself perform this adaptation, the ad-
ditional delay can be significant, particularly when the sys-
tem is highly loaded. As an example, we implemented a
filter that drops frames if the network is overloaded. When
the client-side QoS monitor detects a network overload, it
issues a monitoring event directed to the server-side QoS
controller. The controller then adjusts a Q-filter parameter
that decides if and when a frame is being dropped. The



overhead from the receipt of the monitoring event until the
parameter is adjusted is in the range of 10 � s. However,
if we choose to send a signal to the application notifying
it about the overload, the overhead from the receipt of the
monitoring event until the application changes the rate of
frame creation ranges from 50ms in a system with about
80% CPU load to several hundred milliseconds with CPU
load � 100%.

5. Conclusions and Future Work

To address the complexity of QoS management in large-
scale distributed multimedia applications, we have devel-
oped Q-channels, a kernel-level fabric that permits multiple,
distributed, kernel- or user-level resource managers to coop-
erate. The goals of Q-channels are: (a) Reduced complex-
ity in the development of new resource management archi-
tectures by offering an anonymous and asynchronous event
service. (b) High performance and fine-grain adaptations
by supporting lightweight in-kernel resource management.
(c) Transparency to applications, i.e., setup, operation, and
tear-down are hidden from the application. (d) Application-
specific QoS customization for sophisticated applications
by using Q-attributes and Q-filters.

Our future work includes the replacement of TCP with a
reliable version of UDP, the support of deadlines and prior-
ities associated with events, and the dynamic in-kernel gen-
eration of Q-filters.
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