
dQUOB: Managing Large Data Flows Using Dynamic Embedded

Queries

Beth Plale and Karsten Schwan

College of Computing

Georgia Institute of Technology

Abstract

The dQUOB system satis�es client need for speci�c

information from high-volume data streams. The data

streams we speak of are the 
ow of data existing dur-

ing large-scale visualizations, video streaming to large

numbers of distributed users, and high volume business

transactions. We introduces the notion of conceptual-

izing a data stream as a set of relational database ta-

bles so that a scientist can request information with an

SQL-like query. Transformation or computation that

often needs to be performed on the data en-route can

be conceptualized as computation performed on consec-

utive views of the data, with computation associated

with each view. The dQUOB system moves the query

code into the data stream as a quoblet; as compiled

code. The relational database data model has the signif-

icant advantage of presenting opportunities for e�cient

reoptimizations of queries and sets of queries.

Using examples from global atmospheric modeling,

we illustrate the usefulness of the dQUOB system. We

carry the examples through the experiments to estab-

lish the viability of the approach for high performance

computing with a baseline benchmark. We de�ne a

cost-metric of end-to-end latency that can be used to

determine realistic cases where optimization should be

applied. Finally, we show that end-to-end latency can

be controlled through a probability assigned to a query

that a query will evaluate to true.

1 Introduction

Motivation. With ever-improving network band-
widths, end users increasingly expect rapid access to re-
mote rich content, such as complex scienti�c and engi-
neering data, image data, and large �les, prompting the
development of network-level solutions for e�cient data
transmission and routing, of operating system support

for communication scheduling, and of user-level sup-
port ranging from middleware for HPC applications to
server systems for the web. Our group is creating mid-
dleware solutions for HPC applications; speci�cally for
data 
ows created when clients request data from a
few sources and/or by the delivery of large data sets
to clients. Applications requiring such support include
video-on-demand for numerous clients, \access grid"
technology in support of teleconferencing for coop-
erative research,and distributed scienti�c laboratories
in which remotely located scientists and instruments
synchronously collaborate via meaningful displays of
stored, captured, or generated data and computational
models that use or produce these data [11, 14]. Further
applications include the large data streams that result
from digital library systems such as the National Infor-
mation Library (NIL) library, a 6600 terabyte library
that services 80,000 complex queries and 560,000 sim-
ple browser searches a day.
The dQUOB System. The dynamic QUery OB-

ject (dQUOB) system addresses two key problems
in large-scale data streams. First, unmanaged data
streams often over- or under-utilize resources (e.g.,
available bandwidth, CPU cycles). For instance, a data
stream may consume unnecessary network bandwidth
by transmitting high �delity scienti�c data to a low �-
delity visualization engine. Second, the potential bene-
�ts derived frommanaging streams (i.e., through added
computation to �lter, transform, or compose stream
data) can be di�cult to attain. Speci�cally, it can be
di�cult to customize computations for certain streams
and stream behaviors, and the potential exists for du-
plication of processing when multiple computations are
applied to a single data stream.

The dQUOB system enables users to create queries
for precisely the data they wish to use. With such
queries may be associated user-de�ned computations,
which can further �lter data and/or transform it,
thereby generating data in the form in which it is most
useful to end users. Query execution is performed by

1



dQUOB runtime components termed quoblets, which
may be dynamically embedded `into' data streams at
arbitrary points, including data providers, intermedi-
ate machines, and data consumers. The intent is to
distribute �ltering and processing actions as per re-
source availabilities and application needs.
Key Concepts. The goal of the dQUOB system is to
reduce end-to-end latency by identifying and forward-
ing only useful data. Useful data is, broadly speak-
ing, data of interest to a scientist. For example, at-
mospheric scientists investigating ozone depletion over
the Antarctic may consider useful data to be the multi-
month period of data at the tropics (not everywhere
else on the earth), where ozone gradually rises from
the troposphere to the stratosphere.

dQUOB conceptualizes useful data and its extrac-
tion from a data stream as a set of relational database
tables 1. Users request such data with SQL-like queries,
and computations performed on the data are applied
to consecutive data views; computation is associated
with each such view.

Abstract data models for event-based computing are
being explored by other groups, particularly in the
context of XML. One advantage of using an abstract
model is the ability of its implementation to span ad-
ministrative domains, a key requirement in wide-area
computing [6]. Furthermore, data models like the re-
lational and the XML Query data modelare supported
by declarative query languages, which in turn present
opportunities for optimizing data streams.

The strength of our work in addition to the general
advantages of a common data model and declarative
query language is three-fold. First, dQUOB presents a
methodical and rigorous approach to formulating, im-
plementing, and executing queries that permit users to
focus on the data that is most `useful' to them, thereby
potentially eliminating large amounts of unnecessary
data processing and transfers. Second, relational query
languages, being a well established research area, form
a solid basis from which to leverage further stream op-
timizations. Leveraging such work, however, does not
imply simply adopting it, for the simple reason that
dQUOB operates on di�erent forms of data: on data

ows rather than tables. Furthermore, the stream op-
timizations we target go beyond traditional database
optimizations to include (1) stream �ltering based on
conditions de�ned at runtime, (2) �ne-grain changes to
optimize existing queries, and (3) larger-grain changes,
such as the elimination of redundant stream process-
ing actions, changes to the order in which actions are

1A relation can be thought of as a table, where attributes
are column headers de�ning �elds (SpeciesID, SpeciesName,
SpeciesConcentration) and tuples are instances in the table (15,
Ozone, 42).

executed, or recon�guration of the query processing en-
gines themselves. The third and �nal strength of our
work is in the movement of the query code into the
data stream in the form of an e�cient, compiled-code
quoblet.
Contributions. The speci�c contributions of this pa-
per are fourfold. First, we demonstrate that by em-
bedding queries into large data streams, it is possible
to reduce the end-to-end latency and increase through-
put between data providers and consumers for the data
that is most useful to end users. Second, using exam-
ples from global atmospheric modeling, we establish
the viability of the dQUOB approach for high perfor-
mance applications. Third, we de�ne a cost-metric
of end-to-end latency that can be used to determine
where and how optimization should be applied to data
streams. Finally, we show that end-to-end latency can
be controlled by dynamically determining and assign-
ing to each query the probability that it will evaluate
to `true'.

That dQUOB is lightweight is evidenced by its abil-
ity to sustain a generation rate of 10 Gbps for events
of several hundred kilobytes in size to 90 Gbps for
events of several megabytes. dQUOB's ability to re-
duce end-to-end latency is demonstrated by a 99% re-
duction achieved by replacing a weak condition with a
strong one, thereby improving the query's �ltering abil-
ity. Similar results were achieved across the Internet
with an ad-hoc implementation of queries described in
[8]. Finally, our results show that, using an application-
realistic action, an unoptimized query can consume up
to a startling 90% of quoblet execution time, thereby
demonstrating the importance of runtime reoptimiza-
tion. The opportunities presented by such optimization
are demonstrated in earlier results [12], which show
that reoptimization can reduce query evaluation time
by an order of magnitude.
Overview. We motivate our research with examples
drawn from global atmospheric modeling in Section 2,
followed by an overview of the dQUOB system in Sec-
tion 3. The cost metric used to evaluate performance is
developed in Section 4. The experiments appear in Sec-
tion 5. Related work is discussed brie
y in Section 6,
and concluding remarks appear in Section 7.

2 Motivating Example

Our work is motivated in general by the data
streams created during visualization of large-scale data
from engineering or scienti�c simulations[11, 1]. Our
particular application is 3D atmospheric data gener-
ated by a parallel and distributed global atmospheric
model [9], simulating the 
ow of a chemical species,

2



speci�cally ozone, through the stratosphere and inter-
action of ozone with short lived species (e.g., CH4,
CO, HNO3). A logical timestep is 2 hrs. of modeled
time. A gridpoint in the atmosphere is de�ned by the
tuple (atmospheric pressure, latitude, and longitude)
where atmospheric pressure roughly corresponds to an
altitude and a gridpoint is roughly 5.625 degrees in the
latitude and longitude directions.

CREATE RULE C:1 ON Data_Ev, Request_Ev

IF

SELECT Data_Ev

FROM Data_Ev as d, Request_Ev as r

WHERE

((d.lat_min >= r.lat_min or d.lat_min <= r.lat_max) and

(d.lon.min >= r.lon_min or d.lon_min <= r.lon_max)) or

((d.lat_max >= r.lat_min or d.lat_max <= r.lat_max) and

(d.lon.max >= r.lon_min or d.lon_max <= r.lon_max)) or

((d.lat_min >= r.lat_min or d.lat_min <= r.lat_max) and

(d.lon.max >= r.lon_min or d.lon_max <= r.lon_max)) or

((d.lat_max >= r.lat_min or d.lat_max <= r.lat_max) and

(d.lon.min >= r.lon_min or d.lon_min <= r.lon_max)) and

d.level_min >= 30 and

d.timestep % 12 = 0

THEN

FUNC ppm2ppb

Figure 1. One record per `day' for region of

upper stratosphere de�ned by bounding box.

Scientists wish to view precisely the data most
needed for their current investigations. For instance,
since ozone changes are slow, a scientist may not be in-
terested in data for each simulated timestep; one image
per day may be perfectly adequate. Further, she may
be investigating the transfer of ozone from the trop-
ics to the south pole, so need only visualize the upper
stratosphere of the southern hemisphere and the region
below the antarctic circle. Figure 1 shows a suitable
query speci�cation.

Rule `C:1' accepts input event types Data Ev and
Request Ev. The IF clause delineates the query; THEN
delineates the action. The SELECT statement de�nes
the resulting event type, which can be either a new
or an existing relation; in this case the latter. The
FROM statement de�nes aliases used in the query body.
The query condition is nested inside the WHERE. The
user desires data from upper levels (above level 30) for
the region de�ned by the bounding box generated auto-
matically by an active user interface in response to user
actions [8]. d.timestep % 12 = 0 causes all but one
event per day to be discarded. The THEN clause spec-
i�es that the function ppm2ppb be executed when the
query evaluates to true. Ppm2ppb converts parts-per-
million to parts-per-billion. Not shown is the function
code itself which is written using a procedural language
such as C or C++.

compiler optimizer
script
generation

dQUOB library

queries

Interpreter Reoptimizer

quoblet

dQUOB
compiler

dQUOB runtime

Q2Q1

Q3

2

1

2

3

4

3 code
repository

1

4

User-defined action codecompiled

SQL query and action defined by scientist

action code dynamically linked into quoblet

reoptimization of compiled queries at runtime

query code moved into quoblet

Figure 2. dQUOB system and life of an E-A

rule.

Several observations can be made about the exam-
ple query in Figure 1. First, scientists specify data by
referencing well-de�ned and meaningful data attributes
like longitude and latitude. The data must obviously
be structured to expose the attributes. Second, the
query checks for the intersection, but currently relies
on the action computation to create a new event com-
posed only of the intersected gridpoints. Third, as can
be seen, query speci�cation can be tedious and error
prone, making automatically generating queries from
user actions a pro�table research direction. Finally,
not shown is language support for temporal operators
(e.g., \meets", \precedes") and for time related poli-
cies (e.g., \a decrease in ozone at lower pressures at
the equator should be followed by an increase at upper
pressures within three months.")

3 dQUOB System Overview

The dQUOB system is a tool for creating queries
with associated computation, and dynamically embed-
ding these query/action rules into a data stream. The
software architecture, shown in Figure 2 consists of
a dQUOB compiler and run-time environment. The
dQUOB compiler accepts of a variant of SQL as the
query speci�cation language (Step 1), compiles the
query into an intermediate form, optimizes the query,
then generates a script version of the code that is moved
into the quoblet (Step 2).

A quoblet consists of an interpreter to decode the
script, and the dQUOB library to dynamically create
e�cient representations of embedded queries at run-
time. The resulting user E-A rules are stored as com-

3



piled queries. The script contains su�cient information
for the quoblet to retrieve and dynamically link-in the
action code (Step 3). During run-time, a reoptimizer
gathers statistical information at runtime, periodically
triggering reoptimization (Step 4). The dispatcher ex-
ecutes and manages rules.

3.1 dQUOB Compiler

The dQUOB compiler accepts an event-action
rule consisting of an SQL-style query and associated
application-speci�c action (e.g., converting a 3D grid
slice from parts-per-million to parts-per-billion.) The
compiler converts the declarative-language based query
into a query tree, during which time a procedural order
is imposed on the non-procedural SQL speci�cation.
Query trees undergo optimization; optimized trees are
used to generate code. Resulting object code is in the
form of a Tcl script.

Declarative Query Language As is common in
database query languages, our query language is declar-
ative. The obvious strength of a declarative query lan-
guage is that it shifts the burden of specifying the order
of evaluation from the scientist to the compiler. Sci-
entists specify the \what" but not the \how". The
dQUOB compiler selects the execution order. The
power of declarative languages cannot be underesti-
mated in high performance data streaming, E�cient
query evaluation in any setting depends upon knowl-
edge of the underlying representation; scientists, not
knowing or caring to know that representation, cannot
be assumed to specify it optimally. More importantly,
because queries are executed over streaming data, cer-
tain query optimization decisions must be deferred to
runtime. It is clear that a strategy for subsequent re-
optimizations cannot involve continuous user involve-
ment.

Query Optimization for Partial Evaluation. A
key contribution to attaining high performance is e�-
cient partial query evaluation. Partial query evaluation
is the ability to decide the outcome of a query without
evaluating the entire query; its semantics are not unlike
partial evaluation of C language conditions. That is,
when evaluating the condition of an IF statement, the
falsehood of the condition can be determined from the
failure of the �rst expression to evaluate to true. Par-
tial evaluation is essential in for data streams because
queries are continuously executed. An optimized query
is one with the most e�cient partial query evaluation.
As we show in Section 5, unoptimal queries can result
in increased end-to-end latency to a client.

3.2 dQUOB Runtime

Two key features of dQUOB's runtime are its e�-
cient representation of queries as compiled code and its
ability to perform runtime query reoptimization.

Queries as Compiled Code. As stated earlier, the
compiler back-end generates a Tcl script of calls to the
dQUOB library. The dQUOB library, embedded in the
quoblet, is a set of routines for creating compiled code
for a query. That is, it is a set of routines for creating
objects for operators (e.g., temporal select, join), links
between operators, E-A rules, and rule links. To put
it another way, the dQUOB library API is akin to a
set of C++ style templates. Templates, when invoked
with a set of parameters, create an instantiation of the
object that is customized with the parameters. Hence,
the dQUOB library creates customized objects repre-
senting the query and the rule to which it belongs.

A script representation of queries has the advantage
of being compact and portable. A script for a mod-
erately complex query is roughly 10% the size of the
compiled code and one can swap out a rule at run-time
simply by sending a new script to a quoblet.

Dynamic and Continuous Query Reoptimiza-

tion. Reoptimization is undertaken to generate a
more optimal version of a query. Though database re-
search has determined that an optimal version is di�-
cult to obtain for all but a few well-de�ned cases, we
can strive for a more optimal version where optimal-
ity is expressed in terms of total query execution time
as de�ned in Section 4. A more optimal version will
likely result if the stream data behavior has signi�-
cantly changed or if a newly added query has been opti-
mized based only on available historical trace data. Re-
optimization is accomplished through equi-depth his-
tograms to collect statistics about data values in the
stream, an otpimizer to reoptimze a query from an in-
ternal representation, and a reoptimization algorithm
to control statistics gathering and trigger reoptimiza-
tion. A detailed description of dQUOB's reoptimiza-
tion algorithm will appear in a companion paper.

4 Cost Metric

A cost metric must consider the implementation of
dQUOB queries and quantify the notion of `useful' data
transport and processing.

Model. Data streams are comprised of data sources,
transformers, and clients, all of which are depicted in

4



source client
tq’ts’

n >= 1 q = 1 m = 1

tq

quoblet

Figure 3. End-to-End Data Flow Model

Figure 3 as nodes; the arcs depict directed data 
ows
between nodes. The depicted logical data 
ow obvi-
ously does not imply a physical distribution across ma-
chines. In any case, this particular data 
ow is modeled
as emanating from multiple sources (n >= 1), such
as coupled atmospheric transport and chemical simu-
lations, for example, to a single client (m = 1) such as
a visualization client. The data is processed by �lters
before being presented to the client. The communica-
tion model, n � 1 and m = 1, is used elsewhere for
wide-area computing [3].

E�ective Real Time. We de�ne E�ective Real

Time (ERT) as the average end-to-end latency taken
over some large number of events traveling from sources
through transformer/�lter to the client, where `large' is
dependent upon data behavior. dQUOB achieves suc-
cess if embedding dQUOB queries into the data stream
reduces a client's E�ective Real Time. That is, if by
adding one or more queries to the data stream the client
can reduce arriving data to just useful data without
paying a penalty of unwieldy overheads, then dQUOB
is a success.

The key cost metric parameters, de�ned in Table 1,
are ts0, the time to transfer a data event from a data
source to one or more transformers. Since we assume
an event streamingmodel of communication, ts0 also in-
cludes any instrumentation overhead (i.e., event gath-
ering, bu�ering, sending) at the data generator and, in
the case where a data record is partitioned across mul-
tiple hosts, the total time to move the entire record to
the quoblet.
tq, explained in detail below, is the time for the

fastest CPU to execute the query and action over a
single data event. It assumes no blocking on input.
tq0 is the time required to transfer transformed data
from a single transformer to a client. Event delivery
is complete when the event arrives at the visualization
client.

The model gives us a rather straightforward calcu-
lation for end-to-end latency for a single event as:

ERT1= ts0 � n + tq + tq0

re
ecting possibly multiple sources, the transformation
time, and transfer time to the client. As mentioned,

Parameter Meaning

n number of source hosts

ts0 source to quoblet data transfer time

q number of quoblet hosts (q = 1)

tq quoblet processing time

tq0 quoblet to client data transfer time

m number of client hosts (m = 1)

Table 1. Performance modeling parameters.

ERT1 is the end-to-end time for a single event. Direct
generalization to a stream of events cannot be done
since tq and tq0 are in
uenced by data stream behavior
or query e�ciency. Thus end-to-end latency is mea-
sured as the average over n events:

ERT =
X

i<n

(ERTi)=n

Quoblet Time. The time spent in the quoblet (i.e.,
transformer) is called quoblet processing time (tq).
Processing time is dependent upon three factors: query
time, action time, and some �xed overhead. Speci�-
cally, quoblet time is the sum of the query evaluation
time tquery, action execution time taction, and some
�xed overhead time toverhead as follows:

tq = tquery + (taction � P (query)) + toverhead

This is a worst case measure as it implies the sequential
execution of quoblets, whereas dQUOB's implementa-
tion of quoblets is multi-threaded and capable of ex-
ecuting in parallel on SMP machines. When multiple
E-A rules are present, the cost of interaction between
rules is re
ected in toverhead.

Improvements in quoblet processing time can be
achieved by reductions in query execution time (tquery),
reductions in action computation time (taction), or
changes in query probability (P (query)), the proba-
bility that the query evaluation will result in a `true'
outcome. Reductions to action computation time is
outside the scope of our work. Query probability is
discussed in more detail in the full version of this pa-
per [13].

5 Experimental Evaluation

The following experiments demonstrate the perfor-
mance bene�ts of dQUOB. Speci�cally, that:
� dQUOB is lightweight;
� query reoptimization can bring about signi�cant
performance gains; and

5



� dQUOB is e�ective in reducing overall end-to-end
latency of a data stream.

Experiment Parameters. Experiments are based
on the data 
ow from Section 2 and communication
model from Figure 3. Particularly, a source generates
successive 3D slices of global atmospheric data for a
visualization client. The quoblet physically resides on
a separate workstation. The experiments are run on a
cluster of single processor Sun Ultra 30 247MHz work-
stations running Solaris 7 and connected via 100 Mbps
switched FastEthernet. Data streams are implemented
using ECho [4], a publish-subscribe event-based mid-
dleware. All event data, queries, and actions in our
work are realistic and obtained from experience and
involvement with atmospheric scientists.

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

E-A rule
graphs

quoblet benchmark architecture

event handler decision support

ECho event channelECho event channel

Figure 4. dQUOB architecture; benchmark

case

Microbenchmark. To test the �rst claim that
dQUOB is lightweight, we benchmark the execution
time of a quoblet having no event-action (E-A) rules.
The software architecture of the benchmark quoblet,
shown in Figure 4, consists of an event handling thread,
a queue, and a decision support thread.

The results shown in Figure 5 measures the mini-
mum time a quoblet requires to process an event. That
is, the time required to execute the event handler upon
handler invocation by ECho, the time to copy the event
to the queue, dequeue time by the decision code, then
invoking ECho to send the event. Note that the mea-
surements re
ect no concurrency between event han-
dler and decision support.

The non-optimal copy numbers of Figure 5 show how
overwhelmingly copy cost dominates total execution
time. This is evidenced by the large increases as event
size grows. Partly in response to these numbers, our
group is working on a version of ECho that removes the
restriction that events needing retention must be fully
copied out of ECho bu�ers. The optimal copy numbers
are thus theoretical, and re
ect our design decision to
copy attribute information to quoblet space but not
the actual 3D data. Thus 612 bytes are copied for each
event size. In the absence of the large copy overhead,
total quoblet time can be seen to be a small fraction

612b 304Kb 2.73Mb

m
ill

is
ec

on
d 

(lo
gs

ca
le

)

.1

10000.0

1000.0

100.0

10.0

1.0

��
optimal copy
non-optimal copy

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Message size

Figure 5. Benchmark quoblet time

of the data copy cost; .004 percent of the cost to copy
a 2.73 Mbyte event for instance. Further, as shown
in Table 2, at larger event sizes a quoblet's sustained
event generation rate is in the Gbps range2.

event size quoblet overhead sustained event

as percentage of copy generation rate

612 bytes :91 20Mbps

304K :04 10Gpbs

2.73 M :004 90Gbps

Table 2. Quoblet overhead explained in terms

of copy cost and event generation rate.

Justi�cation of Query Reoptimization. The sec-
ond measurements determine whether or not in an
application-realistic setting, the percentage of time
spent executing a query is signi�cant enough to justify
the cost of inter-rule reoptimization (i.e., reordering
the operations that make up a single query.

For this experiment, we use a quoblet having one E-
A rule. The query merely performs a few selects so is
representative of simpler queries. The action converts a
3D grid slice from parts per million (ppm) to parts per
billion (ppb); a representative algorithm of a class of
operations having mid-range computational needs. To
minimize the interference of the copy cost, we assume
an optimized copy.

Figure 6 shows a breakout of quoblet time by query

2This sustained event generation rate assumes a quoblet does
not block on socket select operations(waiting for event arrival).

6



and action for the three event sizes. As can be seen by
looking at the `unoptimized query' numbers, a query
can consume a substantial amount of total quoblet
time, particularly for mid-sized events (304K). The `op-
timized query' numbers show the kind of gains that can
be expected from optimizing a query of moderate com-
plexity. Earlier studies have shown gains of up to an
order of magnitude [12]. We conclude from this experi-
ment and other observations that particularly at larger
event sizes, query optimization should be undertaken
because (1) query computation time is a non-trivial
`slice of the pie' and (2) reoptimization can successfully
`shrink the pie'.

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

query
unoptimized

Q

A

98%

A

Q
90%

Q

A

Q

A

Q

A

41%

optimized
query

304Kbytes

2.73Mbytes

612 bytes

10%

10%

Q

A

1%

Figure 6. Breakdown of quoblet time into

query (Q) and action (A) for application real-

istic rule.

Reducing end-to-end latency. Our �nal experi-
ment substantiates the claim that the dQUOB system
is e�ective in reducing the end-to-end latency of a data
stream. These measurements expand on our group's
previous work which establishes the utility of condi-
tional �ltering [8] by showing the measured impact of
query probability on end-to-end latency. Intuitively, a
strong rule contains a query with a high probability of
discarding events where a weak rule is the opposite: it
passes on the majority of events received. Query prob-
ability is de�ned in the full version of the paper [13].

Our measurement compares queries at both ex-
tremes by comparing a weak query that discards no
events, P(query) = 1.0 to a strong one that discards
most, P(query) = 0.01. That P(query) = 0.0 was not
used is the obvious case that a user requiring no data
is uninteresting.

The results, as expected, favorably support our ini-
tial hypotheses by showing an end-to-end latency re-
duction of by as much as 99% when a weak query is
replaced with a strong one. More substantial results re-
quire longer model runs with a data stream that varies
its behavior over time. This is an ongoing e�ort.

event size P(q)=1.0 P(q)=0.01 reduction

(ms) (ms) (pct)ERT

612 bytes 113:37 62.19 45%

304K 922.44 63.99 93%

2.73M 11627.08 65.56 99%

Table 3. Extremes of e�ect of condition

strength on ERT.

6 Related Research

Run-time detection in data streams to satisfy client
data needs, the focus of our work, has been addressed
with fuzzy logic [14] and rule-based control [2]. We
argue that the more static nature of these approaches
make them less able to adapt to changing user needs
and changes in data behavior. ACDS [8] focuses on dy-
namically splitting and merging stream components;
these are relatively heavyweight optimizations that
might be added to our work. The Active Data Reposi-
tory [5] is similar to our work in that it evaluates SQL-
like queries to satisfy client needs. However, queries
are evaluated over a database. dQUOB has the free-
dom to embed queries anywhere in a data stream so
is better able to manage streams from input sources
of diverse origins. Finally, the Continual Queries sys-
tem [10] is optimized to return the di�erence between
current query results and prior results. It then returns
to the client the delta (�) of the two queries. This ap-
proach complements our work, which is optimized to
return full results of a query in a highly e�cient man-
ner.

HDF5 allows a user to selectively extract data from
HDF �les. Selective extraction can be thought of as
a database `views'; HDF5 allows computation on the
`view'. Our work complements HDF5. Franke's [7]
model of data 
ow gives the client explicit control over
the data generator and the intermediate transforma-
tion is applied to every data event. The approach is
directed at a single visualization client and single event
type.

7



7 Conclusions and Future Work

In this paper we have introduced the dQUOB system
as an approach to managing large data streams.2 The
idea behind dQUOB is that by embedding small queries
with associated computation into a data stream, one
can reduce the data 
ow to a client to only the data
that is useful to the client. By providing a data model
for specifying queries, a user can express precise data
needs and resource constraints in a single request that
crosses domain boundaries, making it particularly well
suited for grid-based computing. A query is speci�ed
declaratively, which removes the burden of implement-
ing requests from users to the dQUOB system, and also
enables the latter to optimize such requests.

Future work targets wide-area computing with
scaled-up numbers of users and data sources with a
scheme that applies optimizations across queries, and
leverages the data model to map a query `pushed-back'
(i.e. pushed upstream) by a client to a data stream ar-
chitecture that is e�cient and can adjust to sources un-
der control of other administrative domains. Ongoing
work looks at moving additional computation capabil-
ity into the query where it can be subject to automatic
optimization. We are also exploring controlling level of
service to a client using the end-to-end latency metric
(ERT) and query probability de�ned in this paper.

References

[1] Earthquake ground motion modeling on parallel
computers. In Proceedings Supercomputing '96,
November 1996.

[2] A. Afjeh, P. Homer, H. Lewandowski, J. Reed,
and R. Schlichting. Development of an intelligent
monitoring and control system for a heterogeneous
numerical propulsion system simulation. In Proc.

28th Annual Simulation Symposium, Phoenix, AZ,
April 1995.

[3] Peter A. Dinda, Bruce Lowekamp, Loukas F.
Kallivokas, and David R. O'Hallaron. The case
for prediction-based best-e�ort real-time systems.
In Proceedings of Workshop on Parallel and Dis-

tributed Real Time Systems (WPDRTS), April
1999.

[4] Greg Eisenhauer, Fabian Bustamente, and
Karsten Schwan. Event services for high perfor-
mance computing. 2000.

2Prior experience with dQUOB are to safety-critical applica-
tions.

[5] Renato Ferreira, Tahsin Kurc, Michael Beynon,
Chialin Chang, and Joel Saltz. Object-relational
queries into multidimensional databases with the
Active Data Repository. Journal of Supercom-

puter Applications and High Performance Com-

puting (IJSA), 1999.

[6] Ian Foster and eds. Carl Kesselman. The Grid:

Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann, 1999.

[7] Ernest Franke and Michael Magee. Reducing data
distribution bottlenecks by employing data visual-
ization �lters. In Proc. of High Performance Dis-

tributed Computing (HPDC8), 1999.

[8] Carsten Isert and Karsten Schwan. ACDS: Adapt-
ing computational data streams for high perfor-
mance. In Proceedings of International Parallel

and Distributed Processing Symposium (IPDPS),
May 2000.

[9] Thomas Kindler, Karsten Schwan, Dilma Silva,
Mary Trauner, and Fred Alyea. A parallel spectral
model for atmospheric transport processes. Con-

currency: Practice and Experience, 8(9):639{666,
November 1996.

[10] Ling Liu, Calton Pu, Roger Barga, and Tong
Zhou. Di�erential evaluation of continual queries.
Technical Report TR95-17, Department of Com-
puter Science, University of Alberta, 1996.

[11] Beth Plale, Volker Elling, Greg Eisenhauer,
Karsten Schwan, Davis King, and Vernard Martin.
Realizing distributed computational laboratories.
International Journal of Parallel and Distributed

Systems and Networks, 2(3), 1999.

[12] Beth Plale and Karsten Schwan. Run-time de-
tection in parallel and distributed systems: Ap-
plication to safety-critical systems. In Proceedings

of Int'l Conference on Distributed Computing Sys-

tems (ICDCS'99), pages 163{170, June 1999.

[13] Beth Plale and Karsten Schwan. dQUOB: Man-
aging large data 
ows using dynamic embedded
queries. Technical Report GIT-CC-00-07, Georgia
Institute of Technology, Atlanta, Georgia, August
2000.

[14] Randy Ribler, Je�rey Vetter, Huseyin Simitci, and
Daniel Reed. Autopilot: Adaptive control of dis-
tributed applications. Proceedings of High Perfor-

mance Distributed Computing, August 1999.

8


