
Fast Heterogeneous Bina

Submitted to the International Conference on Parallel and Distributed Computing Systems
(PDCS 2000)

ry Data Interchange for

Event-based Monitoring

Beth Plale Greg Eisenhauer Lynn K. Daley

Patrick Widener Karsten Schwan

College of Computing

Georgia Institute of Technology

Abstract

Dramatic increases in available wide-area bandwidth have driven event-basedmonitoring to new heights.

Monitoring services are widely used in today's distributed laboratories, where scientists interact with sci-
enti�c instruments and collaborate with each other regardless of their, or the instrument's, location.

This paper addresses binary data transfer support in a distributed laboratory. Binary data trans-

fer, a core service of most event-based monitoring approaches, is provided by PBIO (Portable Binary
Input/Output). PBIO o�ers applications signi�cantly more exibility in message exchange than other

approaches in current use. Further, comparison between PBIO and both MPI and XML show PBIO to

be a favorable transport mechanism for today's high performance distributed laboratory applications.
The paper demonstrates the need for fast heterogeneous binary data interchange in large-scale event-

based monitoring applications (e.g. distributed laboratory) and argues its relevance even in the face of

increasing scientist interest in science-centric approaches to data representation.

1 Introduction

Event-based monitoring is experiencing renewed interest by the high performance computing community

as dramatic increases in available bandwidth has enabled event-based monitoring to scale to hundreds of

data sources and possibly thousands of user clients. Event-based monitoring is the extraction of data from

a parallel or distributed application and subsequent analysis or visualization of the data while it is running,

standing in contrast to post-mortem analysis of trace �les or behavior analysis a debugging.

Where earlier research into event-based monitoring has focussed on performance evaluation and on-line

interactivity, increased bandwidth has enabled scaling-up of event-based monitoring from a small group of

scientists co-located with scienti�c instruments (i.e., scienti�c models, trace �les, observational data) to

a distributed laboratory [20] wherein large numbers of instruments and scientists exist, the resources are

heterogeneous, and the restriction of co-location removed.

Our group at Georgia Tech has for some time been investigating event-based monitoring for interactivity

in a distributed laboratory. Areas in which work has been done, both by our group and others, are shown

in Figure 1. Core services of an event-based monitoring system [2] include instrumenting the source code,

bu�ering the instrumented data, and sending the data to interested clients. These core services have been

addressed by such projects as Pablo [22], Paradyn [17], SCIrun [19], Falcon [12], and [8]. Event stamping,

the �rst of the extension services listed, is often provided to enable ordering of events. Clock synchronization

algorithms are often used to order events. Program steering, the feedback part of the monitoring-steering

loop, enables scientists to control applications (e.g., roll back programs to an earlier state, change param-

eters). A visualization service might provide an API to a scienti�c visualization tool (i.e., visAD [14]) so

that monitoring events can be received from the communication layer. Finally, as the number of users and

the computational power of resources increases, there has been increasing interest in event-based monitoring

techniques for data stream control. That is, techniques such as data �ltering, data aggregation, or querying

techniques [21] that reduce data ow, and hence end-to-end latency, from data generators to clients.

������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������

Performance visualization
Experiment control
Clock synchronization
Event ordering
Timestamping.....
Data stream control

Source code instrumentation.
COREBinary data transfer support..Communication support

EXTENSIONS. . .
.

Figure 1: Services of Event-based Monitoring .

In this paper, we focus on the core monitoring service of binary data transfer. Popular approaches to

binary data transfer, such as PVM [11] or Nexus [10], support message exchanges in which the communicating

applications \pack" and \unpack" messages on a per �eld, per datatype basis. Other packages, such as

MPI [9], allow the creation of user-de�ned datatypes for messages and message �elds and provide some

amount of marshalling and unmarshalling support for those datatypes internally.

While an approach requiring the application to build messages manually o�ers applications signi�cant

exibility in message contents, relegating message packing and unpacking to the communicating applications

means that those applications must have a priori agreement on the contents and format of messages. This

is not an onerous requirement in small-scale stable systems, but in enterprise-scale computing, the need to

simultaneously update all application components in order to change message formats can be a signi�cant

impediment to the integration, deployment and evolution of complex systems.

In addition, the semantics of application-side pack/unpack operations generally imply a data copy to

or from message bu�ers. Such copies are known[16, 23] to have a signi�cant impact on communication

system performance. Packages which can perform internal marshalling, such as MPI, have an opportunity to

avoid data copies and to o�er more exible semantics in matching �elds provided by senders and receivers.

However, existing packages have failed to capitalize on those opportunities.

This paper describes PBIO(Portable Binary Input/Output)[5], a multi-purpose communication middle-

ware. PBIO focuses on exible heterogeneous binary data transport for simple messaging of a wide range

of application data structures, using novel approaches such as dynamic code generation (DCG) to preserve

e�ciency. In addition, PBIO's exibility in matching transmitted and expected data types provides key

support for application evolution that is missing from other communication systems.

The remainder of the paper begins with a description of PBIO. Following the description are performance

results of using PBIO across a heterogeneous environment. The metrics are compared against the data com-

munication measurements obtained by using MPI. The paper will show that the features and exibility of

PBIO do not impose overhead beyond that imposed by other communications systems. In the worst case

PBIO performs as well as other systems, and in many cases PBIO o�ers a signi�cant performance improve-

ment over comparable communications packages. Performance results o�er a comparison between PBIO and

XML as well. We conclude by addressing the current interest of scientists in XML as a standard meta-

language for describing data in terms scientists understand (e.g., atoms, molecules, clusters of molecules)

with a discussion of mapping ASCII XML to binary PBIO, ongoing work being done by our group.

Much of PBIO's performance advantage is due to its use of dynamic code generation to optimize transla-

tions from wire to native format. Because this is a novel feature in communications middleware, its impact

on PBIO's performance is also considered independently. In this manner, we show that for purposes of data

compatibility, PBIO, along with code generation, can provide reliable, high performance, easy-to-migrate,

heterogeneous support for distributed applications.

2 The PBIO Communication Library

In order to conserve I/O bandwidth and reduce storage and processing requirements, storing and trans-

mitting data in binary form is often desirable. However, transmission of binary data between heterogeneous

environments has been problematic. PBIO was developed as a portable self-describing binary data library,

providing both stream and �le support along with data portability.

The basic approach of the Portable Binary I/O library is straightforward. PBIO is a record-oriented

communications medium. Writers of data must provide descriptions of the names, types, sizes and positions

of the �elds in the records they are writing. Readers must provide similar information for the records they

wish to read. No translation is done on the writer's end, our motivation being to o�oad processing from

data providers (e.g., servers) whenever possible. On the reader's end, the format of the incoming record

is compared with the format expected by the program. Correspondence between �elds in incoming and

expected records is established by �eld name, with no weight placed on size or ordering in the record. If

there are discrepancies in �eld size or placement, then PBIO's conversion routines perform the appropriate

translations. Thus, the reader program may read the binary information produced by the writer program

despite potential di�erences in: (1) byte ordering on the reading and writing architectures; (2) di�erences in

sizes of data types (e.g. long and int); and (3) di�erences in structure layout by compilers.

Since full format information for the incoming record is available prior to reading it, the receiving ap-

plication can make run-time decisions about the use and processing of incoming messages about whom it

had no a priori knowledge. However, this additional exibility comes with the price of potentially complex

format conversions on the receiving end. Since the format of incoming records is principally de�ned by

the native formats of the writers and PBIO has no a priori knowledge of the native formats used by the

program components with which it might communicate, the precise nature of this format conversion must

be determined at run-time.

Since high performance applications can ill a�ord the increased communication costs associated with

interpreted format conversion, PBIO uses dynamic code generation to reduce these costs. The customized

data conversion routines generated must be able to access and store data elements, convert elements between

basic types and call subroutines to convert complex subtypes. Measurements[7] show that the one-time costs

of DCG, and the performance gains by then being able to leverage compiled (and compiler-optimized) code,

far outweigh the costs of continually interpreting data formats. The analysis in the following section shows

that DCG, together with native-format data transmission and copy reduction, allows PBIO to provide its

additional type-matching exibility without negatively impacting performance. In fact, PBIO outperforms

our benchmark communications package in all measured situations.

3 Evaluation

In order to thoroughly evaluate PBIO's performance and its utility in high-performance monitoring

communication,we present a variety of measurements in di�erent circumstances. Where possible, we compare

PBIO's performance to the cost of similar operations in MPI or an XML-based system. In addition to basic

data transfer costs, we also evaluate XML and PBIO for their performance in situations involving application

evolution.

3.1 Analysis of costs in heterogeneous data exchange

Before analyzing the various packages in detail, it is useful to examine the costs in an exchange of binary

data in a heterogeneous environment. As a baseline for this discussion, we use the MPICH[15] implementation

of MPI, a popular messaging package in cluster computing environments. Figure 2 represents a breakdown

of the costs in an MPI message round-trip between a x86-based PC and a Sun Sparc connected by 100 Mbps

Ethernet.1 We present a round-trip times both because they naturally show all the possible costs in the

1The Sun machine is an Ultra 30 with a 247 MHz cpu running Solaris 7. The x86 machine is a 450 MHz Pentium II, also
running Solaris 7.

sparc encode network i86 decode i86 encode network sparc decode

.034m .227m .063m .010m .227m .104m

sparc encode network i86 decode i86 encode network sparc decode

.086m .345m .106m .046m .345m .186m

sparc encode network i86 decode i86 encode network sparc decode

.971m 1.94m 1.19m .876m 1.94m 1.51m

13.31m 15.39m 11.63m 8.95m 15.39m 15.41m

sparc encode network i86 decode i86 encode network sparc decode

 100 byte roundtrip .66msec

1Kb roundtrip 1.11msec

10Kb roundtrip 8.43msec

100Kb roundtrip 80.09msec

Figure 2: Cost breakdown for message exchange.

communication and because the e�ciency of automatic steering of monitored computations depends directly

upon round-trip latency. Architecture heterogeneity is also common in monitoring situations, where desktop

x86-class machines may run display programs associated with big-endian workstation clusters.

The time components labeled \Encode" represent the time span between the time application invokes

MPI_send() and the eventual call to write data on a socket. The \Decode" component is the time span

between the recv() call returning and the point at which the data is in a form usable by the application. In

generating these numbers network transmission times were measured with NetPerf[13] and send and receive

times were measured by substituting dummy calls for socket send() and recv(). This delineation allows us

to focus on the encode/decode costs involved in binary data exchange. That these costs are signi�cant is

clear from the �gure, where they typically represent 66% of the total cost of the exchange.

Figure 2 shows the cost breakdown for messages of a selection of sizes, but in practice, message times

depend upon many variables. Some of these variables, such as basic operating system characteristics that

a�ect raw end-to-end TCP/IP performance, are beyond the control of the application or the communication

middleware. Di�erent encoding strategies in use by the communication middleware may change the number

of raw bytes transmitted over the network, much of the time those di�erences are negligible, but where they

are not, they can have a signi�cant impact upon the relative costs of a message exchange.

Another application characteristic which has a strong e�ect upon end-to-end message exchange time is

the precise nature of the data to be sent in the message. It could be a contiguous block of atomic data

elements (such as an array of oats), a stride-based element (such as a stripe of a homogeneous array), a

structure containing a mix of data elements, or even a complex pointer-based structure. MPI, designed for

scienti�c computing, has strong facilities for homogeneous arrays and strided elements. MPI's support for

structures is less e�cient than its support for contiguous arrays of atomic data elements, and it doesn't

attempt to supported pointer-based structures at all. PBIO doesn't attempt to support strided array access,

but otherwise supports all types with equal e�ciency, including a non-recursive subset of pointer-based

structures. The XML approach is more removed from actual binary data representations and can be used

for both statically and dynamically sized elements with relative ease.

The message type of the 100Kb message in Figure 2 is a non-homogeneous structure taken from the

messaging requirements of a real application, a mechanical engineering simulation of the e�ects of micro-

structural properties on solid-body behavior. The smaller message types are representative subsets of that

mixed-type message. In application-level monitoring, the precise nature of the data being transmitted may

very widely from application to application, but the structured data types used here are not atypical.

The next sections will examine the relative costs of PBIO, MPI and XML in exchanging the same sets

of messages.

3.2 Sending side cost

Figure 3 shows a comparison of sending-side data encoding times on the Sparc for an XML implemen-

tation2, MPICH and PBIO. The �gure shows dramatic di�erences in the amount of encoding necessary for

the transmission of data (which is assumed to exist in binary format prior to transmission). In all cases,

intermediate bu�ers have been pre-allocated and the encode overhead measured by replacing the network

send() routine with a null operation. The XML costs represent the processing necessary to convert the data

2A variety of implementations of XML, including both XML generators and parsers, are available. We have used the fastest
known to us at this time, Expat [3].

m
ill

is
ec

o
n

d
 (

lo
g

sc
al

e)

1Kb10Kb100Kb

1000.0

.001

100.0

10.0

1.0

100b

.01

.1

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

XML

PBIO

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���

���
���
���

MPICH

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���

���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��

��

Message size

Sender Encode Times

Figure 3: Send-side data encoding times.

from binary to string form and to copy the element begin/end blocks into the output string. Just one end of

the encoding time for XML is several times as expensive as the entire MPI round-trip message exchange (as

shown in Figure 2). As is mentioned in Section 2, PBIO transmits data in the native format of the sender.

No copies or data conversions are necessary to prepare simple structure data for transmission. So, while

MPICH's costs to prepare for transmission on the Sparc vary from 34�sec for the 100 byte record up to 13

msec for the 100Kb record, PBIO's cost is a at 3 �sec. Of course, this e�ciency is accomplished by moving

most of the complexity to the receiver, where Section 3.4 tells a more complex story.

3.3 Data Transmission Costs

Table 1 shows the network costs for transmitting the encoded data with each package. In both PBIO

Original Transmission time

Data Size XML MPICH PBIO

100Kb 91ms 15ms 15.4ms

10Kb 9.1ms 1.9ms 1.9ms

1Kb .85ms 0.35ms 0.35ms

100b .265ms 0.23ms 0.23ms

Table 1: One-way network transmission costs for encoded data.

and MPI, the size of the encoded data is very close to the size of the original binary data, so their network

overheads are very close to the minimum for the exchange of that quantity data. Data encoded in XML,

however, is signi�cantly larger in its encoded (string) form than it is in binary. While the amount of

expansion depends to some extent upon the data and the size of the element labels, an expansion factor of

6-8 is not unusual. Thus XML-based schemes transmit signi�cantly more data than schemes which rely on

binary encoding. As Table 1 shows, this is of relatively little consequence for small messages where constant

terms in the network cost equation tend to dominate. However, at medium and large message sizes the data

expansion is more directly reected in the network transmission time.

3.4 Receiving side cost

PBIO's approach to binary data exchange eliminates sender-side processing by transmitting in the sender's

native format and isolating the complexity of managing heterogeneity in the receiver. Essentially, the receiver

must perform a conversion from the various incoming `wire' formats to the receiver's `native' format. PBIO

matches �elds by name, so a conversion may require byte-order changes (byte-swapping), movement of data

from one o�set to another, or even a change in the basic size of the data type (for example, from a 4-byte

integer to an 8-byte integer).

This conversion is another form of the \marshaling problem" that occurs widely in RPC implementa-

tions[1] and in network communication. That marshaling can be a signi�cant overhead is also well known[4,

24], and tools such as USC[18] attempt to optimize marshaling with compile-time solutions. Unfortunately,

the dynamic form of the marshaling problem in PBIO, where the layout and even the complete �eld contents

of the incoming record are unknown until run-time, rules out such static solutions. The conversion overhead

is nil for some homogeneous data exchanges, but as Figure 2 shows, the overhead is high (66%) for some

heterogeneous exchanges.

Generically, receiver-side overhead in communication middleware has several components which can be

traded o� against each other to some extent. Those basic costs are:

� byte-order conversion,

� data movement costs, and

� control costs.

Byte order conversion costs are to some extent unavoidable. If the communicating machines use di�erent

byte orders, the translation must be performed somewhere regardless of the capabilities of the communica-

tions package.

Data movement costs are harder to quantify. If byteswapping is necessary, data movement can be

performed as part of the process without incurring signi�cant additional costs. Otherwise, clever design of

the communications middleware can often avoid copying data. However, packages that de�ne a `wire' format

for transmitted data have a harder time being clever in this area. One of the basic di�culties is that the

native format for mixed-datatype structures on most architectures has gaps, unused areas between �elds,

inserted by the compiler to satisfy data alignment requirements. To avoid making assumptions about the

alignment requirements of the machines they run on, most packages use wire formats which are fully packed

and have no gaps. This mismatch forces a data copy operation in situations where a clever communications

system might otherwise have avoided it.

Control costs represent the overhead of iterating through the �elds in the record and deciding what to do

next. Packages which require the application to marshal and unmarshal their own data have the advantage

that this process occurs in special-purpose compiler-optimized code, minimizing control costs. However, to

keep that code simple and portable, such systems uniformly rely on communicating in a pre-de�ned wire

format, incurring the data movement costs described in the previous paragraph.

Packages that marshal data themselves typically use an alternative approach to control, where the mar-

shalling process is controlled by what amounts to a table-driven interpreter. This interpreter marshals or

unmarshals application-de�ned data making data movement and conversion decisions based upon a descrip-

tion of the structure provided by the application and its knowledge of the format of the incoming record. This

approach to data conversion gives the package signi�cant exibility in reacting to changes in the incoming

data and was our initial choice for PBIO.

XML necessarily takes a di�erent approach to receiver-side decoding. Because the `wire' format is a

100b1Kb10Kb100Kb

m
ill

is
ec

o
n

d
s

(l
o

g
sc

al
e)

100.0

10.0

1000.0

binary data size

.01

.1

1.0

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Receiver Decode Times

XML
MPICH
PBIO��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Figure 4: Receiver side costs for XML, MPI and PBIO.

continuous string, XML is parsed at the receiving end. The Expat XML parser[3] calls handler routines for

every data element in the XML stream. That handler can interpret the element name, convert the data

value from a string to the appropriate binary type and store it in the appropriate place. This exibility

makes XML extremely robust to changes in the incoming record. The parser we have employed is also

extremely fast, performing its principal function with pointer manipulations and in-place string modi�cation

rather than copying strings. However, XML still pays a relatively heavily penalty for requiring string-to-

binary conversion on the receiving side. (We assume that for most monitoring functions, data is being sent

somewhere for processing and that processing requires the monitoring data to be in other than string form.

Thus XML decoding is not just parsing, but also the equivalent of a C strtod() or similar operation to

convert the data into native representation.)

Figure 4 shows a comparison of receiver-side processing costs on the Sparc for interpreted converters used

by XML, MPICH (via the MPI_Unpack()) call and PBIO. XML receiver conversions are clearly expensive,

typically between one and two orders of decimal magnitude more costly than PBIO's converter for this

heterogeneous exchange. (On an exchange between homogeneous architectures, PBIO and MPI would have

substantially lower costs, while XML's costs would remain unchanged.) PBIO's converter is relatively heavily

binary data size
1Kb10Kb100Kb

m
ill

is
ec

o
n

d
s

(l
o

g
sc

al
e)

10.0

100b
.01

.1

1.0

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��

��

PBIO DCG
PBIO
MPICH

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

Receiver Decode Times

Figure 5: Receiver side costs for interpreted conversions in MPI and PBIO and DCG conversions in PBIO.

optimized and performs considerably better than MPI, in part because MPICH uses a separate bu�er for

the unpacked message rather than reusing the receive bu�er (as PBIO does). However, PBIO's receiver-side

conversion costs still contribute roughly 20% of the cost of an end-to-end message exchange. While a portion

of this conversion overhead must be the consequence of the raw number of operations involved in performing

the data conversion, we believed that a signi�cant fraction of this overhead was due to the fact that the

conversion is essentially being performed by an interpreter.

Our decision to transmit data in the sender's native format results in the wire format being unknown to

the receiver until run-time, making a remedy to the problem of interpretation overhead di�cult. However,

our solution to the problem was to employ dynamic code generation to create a customized conversion

subroutine for every incoming record type3. These routines are generated by the receiver on the y, as soon

as the wire format is known, through a procedure that structurally resembles the interpreted conversion

itself. However, instead of performing the conversion this procedure directly generates machine code for

performing the conversion.

The execution times for these dynamically generated conversion routines are shown in Figure 5. (We

have chosen to leave the XML conversion times o� of this �gure to keep the scale to a manageable size.) The

dynamically generated conversion routine operates signi�cantly faster than the interpreted version. This

3More details on the nature of PBIO's dynamic code generation can be found in [6].

PBIO DCG 100Kb roundtrip 35.27msec

PBIO DCG 10Kb roundtrip 4.3msec

PBIO DCG 1Kb roundtrip .87msec

PBIO DCG 100b roundtrip .62msec

.002m .227m .126m .0002m .227m .046m

.002m 1.94m .345m .001m 1.94m 1.16m

.002m 15.39m 3.32m .001m 15.39m 1.16m

network decode network decode

13.31m 15.39m 11.63m 8.95m 15.39m 15.41m

 sparc encode network i86 decode i86 encode network sparc decode

.002m .345m .126m .0005m .345m .05m

sparc encode network i86 decode i86 encode network sparc decode

.971m 1.94m 1.19m .876m 1.94m 1.51m

sparc encode network i86 decode i86 encode network sparc decode

.086m .345m .106m .046m .345m .186m

.034m .227m .063m .010m .227m .104m

sparc encode network i86 decode i86 encode network sparc decode

MPICH 1Kb roundtrip 1.11msec

MPICH 100 byte roundtrip .66msec

MPICH 10Kb roundtrip 8.43msec

MPICH 100Kb roundtrip 80.0msec

Figure 6: Cost comparison for PBIO and MPICH message exchange.

improvement removes conversion as a major cost in communication, bringing it down to near the level of a

copy operation, and is the key to PBIO's ability to e�ciently perform many of its functions.

The cost savings achieved by PBIO through the techniques described in this section are directly reected

in the time required for an end-to-end message exchange. Figure 6 shows a comparison of PBIO and

MPICH message exchange times for mixed-�eld structures of various sizes. The performance di�erences are

substantial, particularly for large message sizes where PBIO can accomplish a round-trip in 45% of the time

Original Round-trip time

Data Size XML MPICH PBIO

100Kb 1200ms 80ms 35ms

10Kb 149ms 8.4ms 4.3ms

1Kb 24ms 1.1ms 0.87ms

100b 9ms .66ms 0.62ms

Table 2: Cost comparison for round-trip message exchange for XML, MPICH and PBIO.

required by MPICH. The performance gains are due to:

� virtually eliminating the sender-side encoding cost by transmitting in the sender's native format, and

� using dynamic code generation to customize a conversion routine on the receiving side (currently not

done on the x86 side).

Once again, Figure 6 does not include XML times to keep the �gure to a reasonable scale. Instead, Table 2

summarizes the relative costs of the round-trip exchange with XML, MPICH and PBIO.

3.5 Performance in application evolution

The principal di�erence between PBIO and most other messaging middleware is that PBIO messages carry

format meta-information, somewhat like an XML-style description of the message content. This meta-

information can be an incredibly useful tool in building and deploying enterprise-level distributed systems

because it 1) allows generic components to operate upon data about which they have no a priori knowledge,

and 2) allows the evolution and extension of the basic message formats used by an application without

requiring simultaneous upgrades to all application components. In other terms, PBIO allows reection and

type extension. Both of these are valuable features commonly associated with object systems.

PBIO supports reection by allowing message formats to be inspected before the message is received. It's

support of type extension derives from doing �eld matching between incoming and expected records by name.

Because of this, new �elds can be added to messages without disruption because application components

which don't expect the new �elds will simply ignore them.

Most systems which support reection and type extension in messaging, such as systems which use XML

as a wire format or which marshal objects as messages, su�er prohibitively poor performance compared

message size

1.0

m
ill

is
ec

on
ds

 (
lo

gs
ca

le
)

.01

.1

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��

��
��
��
��
��
��

��
��
��
��
��
��

 100Kb 10Kb 1Kb 100b

Mismatched fields

Matched fields

��
��
��
��

��
��
��
��

Heterogeneous Receive Times

(a) heterogeneous case.

message size

m
ill

is
e
co

n
d
s

(l
o
g
sc

a
le

)

.01

.1

1.0

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��

 100Kb 10Kb 1Kb 100b
��
��
��

��
��
��

Mismatched fields

Matching fields

Homogeneous Receive Times

(b) homogeneous case.

Figure 7: Receiver-side decoding costs with and without an unexpected �eld

to systems such as MPI which have no such support. Therefore, it is interesting to examine the e�ect

of exploiting these features upon PBIO performance. In particular, we measure the performance e�ect of

type extension by introducing an unexpected �eld into the incoming message and measuring the change in

receiver-side processing.

Figures 7a and 7b present receive-side processing costs for an exchange of data with an unexpected

�eld. These �gures show values measured on the Sparc side of heterogeneous and homogeneous exchanges,

respectively, using PBIO's dynamic code generation facilities to create conversion routines. It's clear from

Figure 7a that the extra �eld has no e�ect upon the receive-side performance. Transmitting would have

added slightly to the network transmission time, but otherwise the support of type extension adds no cost

to this exchange.

Figure 7b shows the e�ect of the presence of an unexpected �eld in the homogeneous case. Here, the

overhead is potentially signi�cant because the homogeneous case normally imposes no conversion overhead

in PBIO. The presence of the unexpected �eld creates a layout mismatch between the wire and native record

formats and as a result the conversion routine must relocate the �elds. As the �gure shows, the resulting

overhead is non-negligible, but not as high as exists in the heterogeneous case. For smaller record sizes, most

of the cost of receiving data is actually caused by the overhead of the kernel select() call. The di�erence

between the overheads for matching and extra �eld cases is roughly comparable to the cost of memcpy()

operation for the same amount of data.

As noted earlier in Section 3.4, XML is extremely robust to changes in the format of the incoming

record. Essentially, XML transparently handles precisely the same types of change in the incoming record

as can PBIO. That is, new �elds can be added or existing �elds reordered without worry that the changes

will invalidate existing receivers. Unlike PBIO, XML's behavior does not change substantially when such

mismatches are present. Instead, XML's receiver-side decoding costs remain essentially the same as presented

in Figure 4. However, those costs are several orders of decimal magnitude higher than PBIO's costs.

For PBIO, the results shown in Figure 7 are actually based upon a worst-case assumption, where an

unexpected �eld appears before all expected �elds in the record, causing �eld o�set mismatches in all

expected �elds. In general, the overhead imposed by a mismatch varies proportionally with the extent of

the mismatch. An evolving application might exploit this feature of PBIO by adding any additional at the

end of existing record formats. This would minimize the overhead caused to application components which

have not been updated.

4 Conclusions

As has been demonstrated in this paper, binary data transfer support is key to e�cient event-based

monitoring in a high performance computing environment. This particularly evident in a distributed labo-

ratory where compute resources are heterogeneous, data streams large, number of scientists and instruments

is also large, and distribution of scientists and instruments is broad. Performance results show that PBIO

is a valuable addition to the mechanisms available for handling binary data interchange, particularly across

heterogeneous resources. PBIO performs e�cient data translations, and supports simple, transparent system

evolution of distributed applications, both on a software and a hardware basis.

The measurements in this paper have shown that PBIO's exibility does not impact its performance.

In fact, PBIO's performance is better than that of a popular MPI implementation in every test case, and

signi�cantly better in heterogeneous exchanges. Performance gains of up to 60% are largely due to:

� virtually eliminating the sender-side encoding cost by transmitting in the sender's native format, and

� using dynamic code generation to perform data conversion on the receiving side.

With the explosive growth of both the Internet and available bandwidth, scientists are beginning to

demand computing more on their terms. That is, they are interested in abstractions that lets them name

and manipulate objects in science terms rather than as data structures and primitive data types familiar to

computer scientists. Scientists are also interested in standards that allow them to agree upon the scienti�c

entities they manipulate. But in the excitement surrounding XML today, which provides both, one must

point out that transmitting XML in ASCII and parsing it on the receiving end carries with it a heavy penalty:

one to two orders of magnitude (decimal) more costly than PBIO. To address this problem, our group is

currently exploring combining the abstraction and standardization features of XML with fast heterogeneous

data exchange of PBIO.

In summary, PBIO is a novel messaging middleware that combines signi�cant exibility improvements

with an e�cient implementation. This paper has demonstrated the need for such a fast heterogeneous binary

data interchange in large-scale event-based monitoring applications (e.g. distributed laboratory) involving

scientists that are increasingly demanding science-centric approaches.

References

[1] Guy T. Almes. The impact of language and system on remote procedure call design. In Sixth In-

ternational Conference on Distributed Computing Systems, Boston, Mass., pages 414{421. IEEE, May
1986.

[2] A. Bakic, M.W. Mutka, and D.T. Rover. Birsk: A portable and exible distributed instrumentation
system. In Proceedings of International Parallel Processing Symposium/Symposium on Parallel and

Distributed Processing (IPPS/SPDP'99). IEEE, 1999.

[3] James Clark. expat - xml parser toolkit. http://www.jclark.com/xml/expat.html.

[4] D.D.Clark and D.L.Tennenhouse. Architectural considerations for a new generation of protocols. In
Proceedings of the SIGCOMM '90 Synposium, pages 200{208, Sept 1990.

[5] Greg Eisenhauer. Portable self-describing binary data streams. Technical Report GIT-CC-94-45, College
of Computing, Georgia Institute of Technology, 1994. (anon. ftp from ftp.cc.gatech.edu).

[6] Greg Eisenhauer and Lynn K. Daley. Fast heterogenous binary data interchange. In Proceedings of the

Heterogeneous Computing Workshop (HCW2000), May 3-5 2000. http://www.cc.gatech.edu/systems/
papers/Eisenhauer00FHB.pdf.

[7] Greg Eisenhauer, Beth Schroeder, and Karsten Schwan. Dataexchange: High performance communica-
tion in distributed laboratories. Journal of Parallel Computing, 24(12-13), 1998.

[8] Greg Eisenhauer and Karsten Schwan. An object-based infrastructure for programmonitoring and steer-
ing. In Proceedings of the 2nd SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT'98),
pages 10{20, August 1998.

[9] Message Passing Interface (MPI) Forum. MPI: A message passing interface standard. Technical report,
University of Tennessee, 1995.

[10] I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integrating multithreading and commu-
nication. Journal of Parallel and Distributed Computing, pages 70{82, 1996.

[11] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam.
PVM 3 Users Guide and Reference manual. Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, May 94.

[12] Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Je�rey Vetter. Falcon: On-line monitoring for
steering parallel programs. Concurrency: Practice and Experience, 10(9):699{736, Aug. 1998.

[13] Hewlet-Packard. The netperf network performance benchmark. http://www.netperf.org.

[14] W. Hibbard. VisAD: connecting people to computations and people to people. Computer Graphics,
32(3):10{12, 1998.

[15] Argonne National Laboratory. Mpich-a portable implementation of mpi. http://www-unix.mcs.anl.gov/
mpi/mpich.

[16] Mario Lauria, Scott Pakin, and Andrew A. Chien. E�cient layering for high speed communication:
Fast messages 2.x. In Proceedings of the 7th High Performance Distributed Computing (HPDC7), July
1998.

[17] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Je�rey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. Paradyn parallel performance mea-
surement tools. IEEE Computer, 28, November 1995.

[18] S. W. O'Malley, T. A. Proebsting, and A. B. Montz. Universal stub compiler. In Proceedings of the

SIGCOMM '94 Symposium, Aug 1994.

[19] S.G. Parker and C.R. Johnson. SCIRun: a scienti�c programming environment for computational
steering. In Proc. Supercomputing 95, pages 1{1, 1995.

[20] Beth Plale, Volker Elling, Greg Eisenhauer, Karsten Schwan, Davis King, and Vernard Martin. Realizing
distributed computational laboratories. International Journal of Parallel and Distributed Systems and

Networks, 2(3), 1999.

[21] Beth Plale and Karsten Schwan. Run-time detection in parallel and distributed systems: Applica-
tion to safety-critical systems. In Proceedings of Int'l Conference on Distributed Computing Systems

(ICDCS'99), pages 163{170, August 1999.

[22] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Keith A. Shields, and Bradley W. Schwartz. An Overview

of the Pablo Performance Analysis Environment. Department of Computer Science, University of Illinois,
1304 West Spring�eld Avenue, Urbana, Illinois 61801, November 1992.

[23] Marcel-Catalin Rosu, Karsten Schwan, and Richard Fujimoto. Supporting parallel applications on
clusters of workstations: The virtual communication machine-based architecture. Cluster Computing,

Special Issue on High Performance Distributed Computing, 1, January 1998.

[24] M. Schroeder and M. Burrows. Performance or �rey rpc. In Twelfth ACM Symposium on Operating

Systems, SIGOPS, 23, 5, pages 83{90. ACM, SIGOPS, Dec. 1989.

