
Operational Information Systems - An Example from the Airline Industry

Van Oleson
Delta Technology

Georgia Tech
van.oleson@delta-air.com

Karsten Schwan
Georgia Institute of

Technology
schwan@cc.gatech.edu

Greg Eisenhaur
Georgia Institute of

Technology
eisen@cc.gatech.edu

Beth Plale
Georgia Institute of

Technology
beth@cc.gatech.edu

Calton Pu
Georgia Institute of

Technology
calton@cc.gatech.edu

Dick Amin
Delta Technology

dick.amin@delta-air.com

Abstract

Our research is motivated by the scaleability,
availability, and extensibility challenges in deploying
open systems based, enterprise operational applications.
We present Delta’s mid-tier Operational Information
Systems (OIS) as an approach for leveraging its legacy
operational OLTP infrastructure, to participate in the
emerging world of electronic commerce, as well as
enable new applications. The approach is to place
minimally intrusive ’taps’ into the legacy OLTP systems to
capture transactions as they occur for consistent replay
in the mid-tier OIS. One important issue addressed by our
work is the processing, and dissemination of information
in the mid-tier system itself, potentially serving hundreds
of thousands of access and display points, distributed
across a highly geographically distributed system (e.g.
airports world wide), and also involving large ‘working
sets’ of operational data, used by applications that
require rapid response and also rapid recovery from
failures. To address the scaleability, availability, and
cost of this OIS infrastructure, we are researching cluster
computing techniques, as well as, devising replication
and failover techniques. To address the communications
scaleability requirements, we are experimenting with
novel event-based implementations of information
transport and processing, that include reliable multicast
variations.

1. Introduction

Increased competition in the airline industry is
stimulating the development of new applications of

information technology, including a new strategic focus
on electronic commerce at Delta Air Lines. Traditionally,
large enterprise computing at companies like Delta has
relied on using clusters of mainframes running
proprietary information systems software. For example,
Delta relies on a cluster of IBM S/390 mainframe
computers running system TPF (Transaction Processing
Facility), a specialized operating. These traditional online
transaction processing systems (OLTP) support
applications that automate the majority of the airline’s
operational services. The TPF and MVS systems
architecture has proven to be highly scaleable and
available, and the systems have operated successfully over
the last 30 years and through the Y2K bug scare.

It is difficult to modify these existing OLTP
applications to accommodate a changing business. Many
of the applications were developed in assembly language
and have evolved over a period of more than 30 years.
Originally, the applications were designed to implement
specific business models and offer little flexibility to
support new business models and processes. Specifically,
these applications maintain ownership of rigidly defined
data sets, and their legacy data formats offer little
opportunity for creating new relationships to other
application data. Additionally, new business models result
in new applications, some of which leverage the Internet.
This exposes the legacy systems to unforeseen transaction
volumes.

In response to these limitations, a novel strategy
pursued by Delta is the addition of mid-tier enterprise
information systems, termed Operational Information
Systems (OIS). The wealth of information in the existing

OLTP systems is harvested by "grabbing" strategic
transactions as they occur in soft real-time. These
transactions are then replicated and consistently replayed
in the newly introduced OIS. In this new environment,
data resulting from the transactions is mapped into
alternative evolvable formats, which is correlated with
previously unrelated information, as well as information
from sources other than the OLTP systems. Additionally,
the immediate correlation stimulates events, which are
derived from the transaction histories. This capability
enables an entirely new class of real-time event based
applications, which have proven to radically improve the
efficiency of airline operations.

The new mid-tier OIS, considered in concert with the
legacy OLTP system, is the basis on which Delta
constructs new applications and improves current
business operations, including improving the "Customer
Experience". The key element to their success is the
development of new mission-critical software and
hardware infrastructures that support these efforts.

In the remainder of this paper, we first characterize
Delta’s OIS strategy and its components in more detail.
We then state the issues that motivate the academic
research in to highly scaleable and highly available OIS
implementations.

2. OIS Components

The systems model in figure 1 depicts the overall
architecture including the major systems and physical
components that implement the OIS.

Legacy OLTP Systems are long-lived information
systems that continue to support application operations.
These applications are `tapped', which result in
transaction histories to be distributed to the Event
Derivation Engine.

Event Derivation Engine is a Global Information Base
comprised of a set of servants that internalize transaction
histories from OLTP systems, as well as, other internal
and external sources of information. The EDE correlates
and consolidates this information and maintains an
operationally narrow subset, or operational window, from
which it derives events for publication. Additionally, the
maintained consolidated information serves as a base for
simple request and replies, as well as, initial states for
subscribing clients.

Intelligent Network is an IP based network that is
embellished with strategically located resolvers and
brokers to support inter-application communications. The
application layer routing supports efficient and reliable
message transportation.

Intelligent Network Adapters (INA) connect systems to
the intelligent network. Delta’s core legacy operational
applications are implemented on the TPF operating
system, which manages a loosely coupled cluster complex
of IBM s/390s with a shared file system. Until recently,
this operating system did not support a TCP stack and
integration with IP networks was accomplished via
gateways and custom protocols. As the TPF supported
TCP stack matures, it will become compelling for some
application interactions. However, a novel approach to
this problem is being implemented by Delta. By using a
hardware supported off-load engine that emulates the
3490 Tape interface, applications need not be modified to
use the TCP interfaces. Applications simply continue to
write and read to tape as they continue to assume a tape
device. This smart control unit also supports
transformation to various contemporary message

Business to Business

Access Points

Operational Information
Systems

Operational
Data Stores

(ODS)

Data
Warehouse

EDE

XYZ
Domain

EDE

ISS ISS

EDE

Passenger
Domain

EDE

ISS ISS

EDE

Ticket
Domain

EDE

ISS ISS

EDE

Flight
Domain

EDE

ISS ISS

Transformation MulticastResolvers

Intelligent
Network
Adatper

Directory

Event Back Bone

Intelligent
Network
Adatper

Capture Points

Display Points

External Sources Internal System

Event Derviation Engine
Subject Domains

Legacy System Extractors

Figure 1 Systems Model

encodings, such as XML and additionally provides
replication and brokering.

Operational Data Store (ODS) supplements the EDE.
The ODS maintains a much larger operational window
than that of the EDE. Additionally, the ODS
accommodates alternative access styles such as complex
analytical queries. The data store may also serve as a
system of record for new operational objects that are not
implemented in the legacy systems.

Initial State Service (IIS) is a mechanism, from which
event based clients retrieve an initial view of information
prior to receiving events that update that view. An
example is a flight information display, where updates for
flights may arrive at a client sparsely. That is, few events
arrive over time. A passenger for a flight is interested in
its current status. The initial view provides this current
status in lieu of a status update event.

Access Points can both capture information and
therefore, produce events, and also manipulate it. An
important role of an AP is to permit the addition of new
services, such as passenger paging upon flight arrival,
dynamic pricing based on passenger profiles and current
flight/airport status (e.g., availability of seats on
competing flights), etc. These examples also demonstrate
that APs may be connected to various output devices, such
as pagers. Another AP is a baggage system for lost
baggage. Passengers could register for baggage status
events via a personal data assistant, which can be notified
of ultimate arrival of the baggage. From these examples it
is apparent that APs also vary, ranging from palmtops
with wireless connections used by roving gate agents to
the reservation-capable systems used by central airport
agents.

Capture Points are any internal or external source of
information. One example is an aircraft that emits
positioning signals for capture in the operational service.
The system’s distributed capture points (CP) continuously
emit events describing current status, using typed event
records with unique instance IDs. CPs range from being
low-end and ill-connected (e.g., wireless data entry
devices used on the tarmac), to being high-end and well-
connected, such as the customer-visible gate readers that
scan boarding passes as passengers board, automating the
boarding process. Consequently, the events produced by
CPs also vary in complexity, one of the more complex
events being an arrival event for a flight with a certain

ID, such as a Surface Movement Advisory (SMA) at an
airport; such events are contained in the FAA data feed.

The Operational Information System is composed of
four fundamental processes: event acquisition, event
consolidation, operational data storage, and derived event
publishing.

3. Event Mining and Acquisition

The first of the four basic processes of the OIS is the
acquisition of events from source systems. This includes
the techniques for mining and tapping event sources, the
ordering properties of transaction histories, as well as the
publishing and transportation of this captured
information.

The model used by Delta, as in other operational
settings, is that of acquiring and replicating transaction
histories to the Event Derivation Engine. Some of the
specific information captured, generated, and transported
in Delta’s OIS includes flight, passenger, crew,
situational, and environmental data. Some of these flows
are produced by internal OLTP systems, such as flows
that contain flight, passenger, and baggage information.
Other flows are provided by external sources, such as
FAA feeds, which provide radar-gathered positional flight
data and weather feeds provided by a weather service.

3.1 Transaction Tapping

Transaction snooping and software agents are two
basic techniques for tapping transaction systems. In
either case, it is imperative to minimize the intrusion in
the legacy systems. The core OLTP system was initially
planned to processes several million well-behaved
transactions per day. When tapping the legacy OLTP
systems, existing service agreements must be maintained
so that current users see no degradation in performance.
Therefore, techniques for tapping must be minimally
intrusive.

Transaction snooping is using a non-intrusive means
of ‘grabbing’ transactions as they occur. For example,
modern OLTP systems incorporate sequential transaction
logs for recovery purposes. With knowledge of the log
format and the ability to view the log, transactions can be
detected and acquired. The captured transactions can then
be forwarded to a brokering engine for dissemination.

That is, by utilizing memory-based table references, the
transactions can be decoded and reformatted for
transmission to an OIS. This is straightforward for legacy
applications that are altered infrequently, as the reference
table must be updated with any transaction change. This
technique is highly compelling, since hardware support
can be used to snoop transactions as they are written to
the logs.

An alternative technique is the utilization of software
agents injected into the applications of an OLTP system.
As non-intrusively as possible, these agents build records
over the lifetime of some business transaction. They then
fire triggers that generate appropriate events into a
transport mechanism to make the data accessible to the
new mid-tier OIS.

Both techniques are used at Delta, since many of the
legacy TPF applications do not physically store the
transaction boundaries in a transaction log for snooping.
In order to capture the transaction context, the
transactions must be gathered while they are occurring by
a software agent. Upon commit, the transaction history is
queued for I/O.

3.2 Transaction Ordering

The transaction histories must be complete histories of
relevant interactions captured by the legacy system. Given
such histories, the mid-tier OIS must be able to faithfully
recreate and replay relevant operational state changes
known to the legacy system and important to the mid-tier
OIS.

Although some source systems provide consistent,
reliable, and ordered messages that can be trivially
internalized by an EDE, tapping some legacy transaction
systems can result in an arbitrary re-ordering of the
captured transaction histories.

The Intelligent Network Adapter used to integrate the
TPF system with the OIS does not solely solve ordering
anomalies that are introduced by the asynchronous I/O
model used to transmit the captured transaction histories.

As an example of the ordering anomalies, consider the
reservation system running on this loosely coupled cluster
architecture. Specifically, when tapping this system’s
transactions for passenger status, we can acquire
information about boarding status, seat assignment,

customer status, etc.

To simplify the example, consider a system with 3
loosely coupled nodes, N1, N2, and N3. Assume that a
transaction on a specific object instance can be arbitrarily
routed to any node (this is a shared disk databases model,
where any node can update an object such as a passenger
record). For this example there are three transactions that
update passenger record, “Jones”. They are identified as
T1_Jones, T2_Jones, and T3_Jones, which execute on
N1, N2, and N3 respectively. Each transaction is properly
serialized by the shared database and ordered by its
occurrence. In this case we order T1_Jones happens
before T2_Jones and T2_Jones happens before T3_Jones.

The problem arises as the captured transactions are
asynchronously scheduled for I/O by the node on which
the transaction occurred. This allows for transactions to
enter the network not in order of their occurrence. That is
T3_Jones can be sent before T2_Jones and T2_Jones can
be sent before T1_Jones. If not re-ordered by the EDE,
this results in an inconsistent view of the working set.

Synchronous coordination of the outbound
transactions is detrimental to high throughput and
scalability of the clustered complex. The asynchrony of
the node processing can lead to non-deterministic delays.
These delays result in large I/O queue depths that can
ultimately result in back-pressure that affects existing
service levels. That is, normal application processing can
be affected.

Another scenario is the failure of a node, for which a
transaction occurred. The transaction is not scheduled for
I/O until the node is recovered. In this case a failure of
N2, would result in a significant, possibly indefinite delay
of T2_Jones. The EDE can’t allow T3_Jones to execute,
since this results in an inconsistency. If the node is not
recovered in a reasonable time, the OIS must then re-
synchronize with the legacy OLTP database for that
instance “Jones”.

Unfortunately, the legacy TPF applications do not
encode the transaction boundaries in a transaction log and
there is no corresponding unique transaction identifier.
As demonstrated above, the ability to re-order a
transaction-history is vital to the consistent reply of
transaction histories in the EDE.

To account for the arbitrary re-ordering, Delta

incorporates instance-based application sequencing to
order the captured transactions. An instance is an object,
“Jones”, that has been modified by a transaction. All
transactions occurring on the passenger record, “Jones”,
are sequenced by a monotonically increasing sequence
number.

This instance based sequence number allows the EDE
to appropriately re-order the transaction histories. The
instance-based sequencing technique has a profound
advantage over a traditional unique transaction identifier.
The concurrency potential is dictated at the instance level.
That is, when a message for the instance, “Jones”, is
indefinitely delayed, all other instances can be
consistently re-played in the EDE. Only the instance,
“Jones”, is required to be re-synchronized. This allows
the EDE to achieve optimal levels of parallelism, by using
an instance based concurrency controller.

Application instance sequencing is critical in the
loosely coupled cluster since there are more opportunities
for ordering anomalies by the cluster. Additionally, the
relative frequency of updates to an instance is high
therefore the probability for re-ordered transactions is
high.

As an example of an intolerable inconsistency,
consider gate agents utilizing a new application of the
OIS infrastructure. By using real-time updated seat maps,
agents have current knowledge of seat assignments.
However, if inconsistencies were allowed, a passenger
could show up with a valid boarding pass, however,
information reflecting this may not be consistent at the
gate. In fact, the passenger could be denied immediate
boarding as he scans the boarding pass, which is rejected.
Of course the passenger will be allowed to board after
reconciliation, with the legacy system. However, this
defeats the benefits of such a system to improve boarding
times, and the overall customer experience.

3.3 Event Taxonomy

A challenge exists in that the information streaming
from the loosely coupled systems (and/or from other
sources, such as the FAA data feeds) is not delivered at
the granularity useful to current or future applications.

Unfortunately, the resulting events produced by the
legacy system do not individually contain the information
needed by various business processing performed in the

mid-tier EDE. To address this issue and to be able to
handle diverse input streams to the EDE, we have
developed the following characterization of events
produced by external systems:

Discrete events are semantically meaningful to some
OIS application. Upon receipt by the EDE, such can be
immediately published.

Partial events implement state changes that in
themselves are not useful to an application. Such events
are directed to state engines, which will eventually
produce a discrete event for some application. Partial
events may be received from multiple sources (i.e., event
channels) before causing a state change and therefore, a
discrete event relevant to an application.

Incomplete events result from the ordering anomalies
introduced by the clustered OLTP systems. As described
previously, these events must be stalled until missing
events arrive or the system deems this instance is not
recoverable, resulting in re-synchronization processes.

Complex events are comprised of some combination of
discrete and partial events. Such events are useful when
applications require larger granularity activations than
those resulting from discrete events.

These classes of events motivate a consolidation and
correlation tier, where the Event Derivation Engine
collects the event flows and derives events application-
friendly events.

4. Event Derivation Engine

The second process of an OIS infrastructure is the
correlation and consolidation of the tapped data from
internal and external sources.

When information from internal and external capture-
points is acquired and delivered to the OIS, the EDE
exercises business rules to create new associations and
representations of the information. For example, when the
status of a flight changes, these state changes are
delivered as events from capture points (e.g., the aircraft
or the dispatcher) to the EDE. Here, the resulting updated
status is internalized and represented in the current
operational working set. With this working set defined,
interfaces are provided for interested applications, which
may request the current state of these new information

representations and subscribe to the resulting state
changes as events.

In practice, the event rates have already exceeded a
non uniform distribution of over 12 million messages per
day (Figure 2) from the internal and external sources that
publish to the OIS infrastructure. This number is expected
to rise significantly as more useful information is
captured for event derivation.

Although this rate appears trivial, it is not amortized
uniformly over the 24-hour period. Airlines incur high
frequency peaks and transaction rates can double during
holidays, fare wars, and strikes.

The EDE must maintain some subset of these flows as
a base from which to derive application-friendly events.
That is, information from external and internal sources
does not typically match the expectations of consuming
applications and must be correlated with other data to
establish meaningful events. Additionally, initial states,
described later, queried from the base.

Activity Messages/Day
Flight Progress (TPF) 500,000
Flight Progress (FAA) 250,000
Passenger Information 3,500,000
Tickets 2,000,000
Inventory 5,000,000
Seats 500,000
Customer 100,000
Fares and Rules 200,000
Total 12,050,000

Figure 2 Message Rates From External Sources

For a perspective, as compared to data warehouses,
which typically contain tremendous volumes of historical
information, an OIS contains only the fundamental subset
of information required to run day-to-day operations.
Although the operational working set is a much smaller
set, the aggregation of operational flows from external
and internal sources can result in operational data stores
of Terabytes in magnitude.

As previously stated, flow aggregation results in
Terabyte-size databases. Maintaining these databases
coupled with analytical processing on the data are two
fundamental tasks of the mid-tier OIS. Other tasks
include the acquisition, derivation, and publication of

events with low latencies and in soft real time.
Considering the demands of these tasks, an important
observation is that the order of magnitude of the data
from which application events are derived can be
dramatically reduced, by focusing on precisely the data
needed for near-term operational decisions and actions.

Therefore, we improve event throughput and latencies
by defining a derivation subset, named the Derivation
Working Set (DWS), which is of much smaller scale. The
DWS contains the minimal amount of information needed
to derive the events required by OIS applications.
Performance of data storage and access for event
derivation is improved substantially because this working
set can be implemented as a main-memory database that
is optimally organized to accommodate event derivation
and initial state queries.

The DWS scoped via a window scheme, where
content is rolled in and out of the DWS based on
relevance. Specifically, in this set is kept all state of
‘current interest’, so that it is rapidly accessible to
relevant business logic. For instance, data about a flight’s
departure is kept in the DWS until the flight has arrived,
whereupon ‘business logic’ adds to the DWS that the
information that a certain flight leg has been completed.
The lifetime, or window, of the information contained in
the DWS is based on business operations for a specific
business domain. For example, years of experience in
dealing with flight information resulted in the
identification of a window of flight data and behavior for
some number of days (n) in the past to some number (m)
days in the future. Lifetimes vary across business
domains, and they may also be dynamic, such as lifetimes
based on event arrivals. For instance, as a flight leaves a
gate and begins taxiing, the boarding process for that
flight is no longer relevant and may be flushed to the
Operational Data Store (ODS) and possibly, to the data
warehouse.

The EDE is the primary data provider and consumer
for additional services associated with the operational
subsystem, such as Internet-based reservations and flight
information services, the reservation system used by
external systems in a business to business model. Finally,
the EDE also directly distributes events to display points,
such as flight displays in airports, resulting in the need
for high scalability (in terms of numbers of displays) for
some of the event output streams emanating from the
EDE.

EDE Processing Model

1. Transaction History (TH) arrives from source system.
2. Durably store the TH.
3. De-marshal TH.
4. Exercise concurrency control rules
5. Exercise internalization business rules.
6. Release TH
7. Represent TH in DWS
8. Derive corresponding application event.
9. Publish event.

In general, the role of the EDE is to create meaningful
global states from event streams that provide limited
ordering guarantees.

6. Operational Data Store

The third processing component of the OIS is the
ODS. The ODS window is much larger than that of the
EDE and is typically implemented with traditional
relational databases. Operational Decision Support
applications as well as Data Mining applications use the
ODS to execute analytical queries in the ODS
environment where they do not compete with the real
time event derivations performed by the EDE.
Additionally, the ODS serves as a staging area for
populating the DWS. For example, passengers can book
seats on flights in the distant future. This information is
considered ‘operational’ by Delta. However, it is outside
of the DWS window for the passenger domain. The
magnitude of this type of future information is quite large,
so it is staged in the ODS until it falls within the DWS
window.

The DWS support the inter-operation of event flows
with the EDE and the ODS, in which, the ODS and EDE
collaborate to provide traditional transaction processing to
this new base of operational information, without
impeading the requirements for low latency events.

7. Derived Event Publishing

The fourth processing component of an OIS is the
dissemination of events derived by the EDE to its large
numbers of subscribers (e.g., airport displays). In fact an
existing deployment already exceeds 10,000 workstations,
which must display flight status information.

The highest profile service of the OIS infrastructure is
the support of soft real-time delivery of event information
to subscribing clients. Real-time event applications are
the impetus for re-thinking business processes and
revolutionizing the operations of the airline. The benefits
are profound. Consider an example where gate agents are
provided with heads-up displays that present a current
view of relevant flight information, including seat maps
for the flights they are working. The traditional
request/reply strategy is limiting as agents spent their
time working at the computer terminal, typically typing
requests to answer basic customer questions. The heads-
up displays allow both customers and agents to be
informed releasing the agents to spend their time
responding to more difficult issues, including facilitating
the boarding process.

To achieve low latencies and high scalability, the
relaxation of the reliability of event transmission is based
on application characteristics. While some applications
require stringent guarantees, others can operate
successfully under relaxed rules, which we term the
‘reliability spectrum’. To exploit this spectrum the use of
a hybrid sender and receiver-initiated multicast protocol
can provided dramatic improvements in the latency and
communications scaleabilty of an EDE.

Initial states must be obtained for any event-based
application that requires the current value of a set of
information to begin operation. An application that
demonstrates this requirement is Flight Information
Display Systems (FIDS), for which there are many
receivers (e.g., the large number of airport displays) that
join and leave this service in a periodic fashion. A FIDS
display requires initial values for presentation and
subsequently, adjusts these states as flight changes are
received. For FIDS, the determination of initial state is as
simple as capturing a small set of initial data, for others
this may require making a copy of the entire operational
working set.

8. Experiences

The overall architecture of the OIS components has
evolved over time as the scaleability and availability
requirements have changed. Initially the system was a
proof of concept that acquired immediate success and was
deployed well-beyond its designed capacity. The currently
deployed system has been refined to meet the scaleability

and availability requirements.

The initial EDE design used a commercial relational
database to internalize the transaction histories and
represent the operational working set. The original intent
was to enable fast, flexible queries, along with low latency
event distribution. However, as the operational working
sets grew to Terabyte magnitudes, we quickly realized the
competition between maintaining large databases and fast
event derivation from this database. Through our
experience with this deployed architecture, we realized
disk-resident relational data offered insufficient
performance to solely handle all of the work required of
the OIS infrastructure. Not only must the OIS process the
variable peeks of the 12 million source messages per day,
the OIS must additionally derive at least that many
application friendly/discrete events to an initial
deployment of 10,000 workstations. The desired number
of workstations is expected to grow dramatically in the
near future. Additionally, the explosion of initial state
queries occur as workstations dynamically join/subscribe,
which require initial states. For FIDS applications this
initial state, which results in a XML result set of 5 MB
places a tremendous load on the system. In an unlikely
but worst case scenario, all current 10,000 workstations
could come on-line at once requiring 10,000 queries.

This situation is exacerbated further by the existence
of additional external systems, including passenger-
booking traffic via the Internet. This will result in the
existence of many more information flows and resulting
analysis tasks in the future, ranging from ‘small’ flows
like automatic passenger paging services, to multimedia
flows.

 Delta immediately discontinued supporting the
important feature of analytical queries from the OIS and
began maintaining a scaled down in-memory
representation of the working set. The relational database
image was used for recovering this scoped state upon
failures. Unfortunately, if failures in this system occur
frequently, a business could face significant downtime.
The time to replace the working cache from the several
tera-byte RDBMS is on the order of 45 minutes.

This large volume operational working set motivated
the partitioning of the set of information required for
deriving events, the DWS, and the Operational Data
Store. The ODS is organized to handle ad-hoc analytical
queries, while the EDE derives events with lower

latencies.

Additionally, client connectivity in the existing
system, is based on a hierarchical fan out based on TCP
socket concentrators. Delta has identified that this
approach introduces un-necessary moving parts and adds
latency as events traverse the hops.

Delta’s experience and requirements in developing a
commercially deployed OIS infrastructure has motivated
our academic research in this space. The current
scaleability challenges coupled with future scaleability
projections stimulate a clean slate approach to
researching more optimal architectures for an OIS.

9. Research Goals

The Operational Information System has a mission-
critical dependence upon information that is acquired,
processed, transported, and delivered with well-defined
quality of service properties. The intent is to attain
competitive advantages in decision-making, customer
care, and to react in a timely manner to changes in
current state. We must manage the processing and
communications performed by multiple components of a
large-scale distributed application. This application
consists of large number of complex information flows,
where operations applied to these flows have the purpose
of extracting `useful' data from them. Information
extraction must be performed under constraints like
timeliness and continuous availability. Not meeting these
constraints results in costs incurred by the organization.

In this section, we describe the research opportunities
and academic interest in components of the OIS
infrastructure.

9.1.1 EDE Scaleability

The EDE must be highly available and scaleable
while also employing rapidly evolveable, plug-and-play
hardware and software infrastructures, so that new
services are easily added, data formats changed or
updated, and additional streams and clients supported.

An opportunity to improve scalability of the EDE is
parallelism of the transaction histories. Specifically,
transaction histories from TPF can be executed in the
EDE under the assumption of causality, which maximizes
the parallelism in the stream.

An additional enhancement of the EDE is one that
also replicates the DWS itself, to attain high levels of
availability and scalability. We are designing solutions
based on event mirroring and/or hot standbys, again using
additional cluster computing engines.

9.1.2 Low Latency Events

One issue is the latency of outbound events, generated
in response to the receipt of new input events by the EDE
and subsequent state updates. High latency for such
events has strong effects on operational capabilities and
on the customer experience, the latter exemplified by
Delta’s ability to rapidly display flight and gate change
information. Latency is affected by both event transport
and event processing overheads. We first consider
processing overheads. While these overheads are reduced
by using an in-memory representation of the EDE’
operational working set, there exist additional latency and
bandwidth issues caused by verbose event representations
and the unnecessary copying of events in interactions
with the event-based communication infrastructure.

We are addressing these issues as performance
opportunities by incorporating portable binary
input/output (PBIO) encodings of event transfer formats
along with “Just In Time XML” [2],[3],[4]. Effectively,
by organizing the in-memory representation of the DWS
to more closely match the application-friendly/discrete
events, the PBIO technique allows the EDE to simply
drop the memory image on the wire. This dramatically
reduces buffer coping in the sender, since marshaling to
an intermediate representation such as XDR or XML is
not necessary. To deal with sender memory packing and
endianness, the receiver has pre-cached meta-information
that describes the memory structures that it receives as
events from the sender. The receiver re-constructs the
data structure in its native packing and endianness format
and additionally translate the message into a
contemporary format such as XML. This process occurs
under the PBIO library and is abstracted from the
receiver’s application code via some middleware package.

9.1.3 Communications Scaleability

Many applications can operate successfully in the
presence of message loss and can take advantage of
relaxed reliability protocols. This characteristic does not
imply that the applications must be concerned with
inconsistent views of the data. This characteristic means

there are natural alternative means to ensure application
information integrity. What is fundamentally required in
this scenario, is the ability to detect event loss and the
ability to re-synchronize a client application upon
detection of message loss. Such is the case of the FIDS
application of the OIS. If message loss occurs the FIDS
client can re-synchronize by requesting an initial state
and begin receiving events that update that state.

The performance/reliability tradeoffs of receiver- vs.
sender-initiated multicast protocols are well known,
offering stronger vs. weaker reliability vs. throughput,
respectively [6]. For our environment, we have developed
and are now evaluating a hybrid approach, in which
attributes of both types of protocols are used to achieve a
compromise for required reliability with high throughput.
In this protocol, the receiver is responsible for lost
message detection via sequence number analysis, and the
sender buffers messages to accommodate retransmission
requests. Periodically, the receiver issues a consolidated
ACK for some sequence of messages, such that the sender
can purge buffers.

To account for the implosion of these consolidated
ACKS and NAKS by many receivers, NAK and ACK
concentrators serves as a representative for some number
of assigned receivers [5]. A sender is initiated and waits
for a specified number of concentrators to join as
representatives of the receivers. Next, the concentrators
are launched, where they wait for a specified number of
receivers to join their respective concentrator. When all
expected receivers join the concentrator, the concentrator
joins the sender and message flow begins. All ACKS and
NAKS are forwarded via the concentrator.

9.1.4 Bandwidth Conscious Initial States

Some applications of the OIS require initial states on
the order of 3 to 5 MB (non-compressed) in size. In
situations where large numbers of display points
simultaneously join the OIS event flows, this can have
dramatic implications on the server load as well as
bandwidth consumption. Since, display points are
typically connected to the OIS via a WAN link on the
order of 6 Mbs, the bandwidth alone allows 15 initial
states per minute. Incorporating 90% compression
increases the rate to 150 per minute. However,
compression induces additional overhead and 150 initial
states per minute remains far from sufficient.

Delta’s current OIS utilizes a hierarchically organized
distributed server caching architecture for handling initial
state load. Since caching and the computation and re-
computation of initial states can have significant
performance effects, especially for the highly available,
replicated EDE, we are pursuing a scaleable and
bandwidth conscious solution to this problem. Potential
techniques include a combination of techniques, such as,
PBIO, Forward Error Correction, Local Recovery,
Periodic State Multicasting, and Distributed Initial State
Servers.

10. Simulation

To simulate a possible future commercial deployment,
we define our target simulation of an OIS that can support
on the order of 100,000 capture points, with larger future
systems having up to 1,000,000 capture points. We vary
the event types, from 100 for a basic system, to 5,000 for
a complex system. We model a basic, mid-end AP system
as supporting 5 output devices and 5 input devices per
AP, a complex system supporting an additional 500
output devices (e.g., passenger pagers) and able to deal
with inputs from other sources (e.g., direct conversations
with other APs). Consequently, the number of event types
handled per AP varies from 50 to 500. Initially, we
assume the current transaction rate of the commercial
system. However, our research will experiment with much
more demanding event systems, including those that emit
continuous events, such as real-time aircraft status
including pitch, yaw, and thrust, which would be tapped
directly from an on-board control bus.

11. Conclusions, Status and Future Work

We have described the research and commercial
opportunities presented by operational information
systems, and their strategic importance to Delta Air
Lines. An interesting approach to building new systems
pursued by Delta is to tap its legacy operational systems,
then reproduce desired images of operational information
for new, mid-tier operational information systems (OIS).
The idea is to create additional systems on which new
business applications can be developed, without
jeopardizing already existing systems and their operation.

Issues that arise for operational information systems
include: (1) the efficient capture, transport, and delivery
of events carrying operational data, in the wide-area
environment in which Delta must operate, (2) the online

derivation of consistent views of operational data, based
on which various applications in the OIS may be run,
including dealing with incomplete operational data and
with diverse orderings and timing for event receipt, and
(3) creating highly available OIS components.

We are continuing our research into the efficient,
scaleable, and low latency processing and distribution of
events, by evolving our communication/event
infrastructures and OIS event processing and storage
engines. In addition, we will pursue scaleable methods for
wide area event distribution and collection. Finally, we
are investigating the creation of highly available COTS
cluster machines for the new mid-tier OIS' operational
data engines and stores, so that these systems can offer
the availability and reliability now offered by the existing
legacy infrastructure.

12. Acknowledgments

We thank Mark Whitney, Scott Gosline, Deborah
Callahan, and Rick Lawhorn whose vision, dedication,
and perseverance have resulted in the novel OIS described
here. Their work has already been recognized by receipt
of the "Smithsonian Award". Thanks also to other
members of the Delta team including Ron Byrd, Dean
Compton, Bret Martin, and Mike Manatrizio for
supporting our research. Patrick Widener and Mustaq
Ahamad have also participated in our research and
simulation activities.

References

 [1] M. Ahamad. Causal memory: defnitions, implementation,
and programming. Distributed Computing, pages 37{49,
1995.

[2] Greg Eisenhauer. Portable self-describing binary data
streams. Technical Report GIT-CC-94-45, College

of Computing, Georgia Institute of Technology, 1994.
http://www.cc.gatech.edu/tech reports.

[3] Greg Eisenhauer, Fabian Bustamente, and Karsten Schwan.
A middleware toolkit for client-initiated service
specialization. In Submitted to PODC Middleware
Symposium, 2000.

[4] Fabian Bustamente, Greg Eisenhauer, Karsten Schwan and
Patrick Widener, “Efficient Wire Formats for High
Performance Computing”, To appear at SC'2000

[5] J. C. Lin and S. Paul. RMTP: A reliable multicast transport
protocol. pages 1414-1424, March 1996.

[6] Sridhar Pingali, Don Towsley, and James F. Kurose. A
comparison of sender-initiated and receiver-initiated
reliable multicast protocols. In Proceedings of 1994
conference on Measurement and modeling of computer

systems, pages 221-230, 1994.

