Shared State Consistency for Time-sensitive Distributed
Applications *

Vijaykumar Krishnaswamy f Michel Raynal David Bakken
Mustaque Ahamad raynal@irisa.fr bakken@eecs.wsu.edu
{kv,mustaq}@cc.gatech.edu IRISA Washington State U.
Georgia Institute of Technology University of Rennes Pullman, WA
USA France USA
Abstract

Distributed applications that share dynamically changing state are increasingly being
deployed in wide-area environments. Such applications must access the state in a consis-
tent manner, but the consistency requirements vary significantly from other systems. For
example, shared memory models such as sequential consistency focus on the ordering of
operations and the same level of consistency is provided to each process. In interactive
distributed applications, the timeliness of updates becoming effective could be an extremely
important consistency requirement and it could be different across different users. We pro-
pose a system that provides both non-timed and time sensitive read and write operations
for manipulating dynamic shared state. For example, a timed read can be used by a process
to read a recently written value whereas a timed write can make a new value available to
all readers within a certain amount of time. We develop a consistency model that precisely
defines the semantics of timed and non-timed read and write operations. A protocol that
implements this model is also presented. We also describe an implementation and some
performance measurements.
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1 Introduction

As computers become pervasive and homes become better connected, several new applications
will emerge. Such applications will allow remotely located users and services to share informa-
tion that is created and updated dynamically. Examples of such applications include distributed
games, auctions, planning for emergencies and a range of other activities that involve same time
interactions across distributed users. Such applications present a number of challenges for the
systems that will support them. Because of the interactive nature of the applications, user
actions that access the application state must be completed in a timely fashion. If users are not
to perceive unacceptable delays, response time for such actions must be low (in milliseconds).
It is a real challenge to provide such response time in wide area systems where communication
latencies can be very high and can vary across different users.

Many of the user actions in the applications will manipulate the application’s shared state.
For example, in a distributed game, the positions of various entities, which change with time,
could be represented as shared objects. Thus, the system can support such applications by
providing shared objects across distributed users. To meet the response time requirements, the
state can be replicated or cached at or close to user nodes. The users action can be completed
with such a near by copy. If a user action results in an update to shared state, the new value
can be propagated to users according to their timeliness needs. Other users may be willing to
work with a recent (but not the most current) state of the objects and can choose to “refresh”
it when it is necessary or convenient. Such flexible and adaptable coupling between the object
copies at different users is desirable because of a number of reasons. First, users may play
different roles in an application and their timeliness requirements may be different. Second,
the achievable timeliness could depend on communication resources available to a user. If the
amount of available resources drops too low to support the requested level of timeliness, many
users will prefer to lower their requested timeliness and have it met, rather than having the
timeliness be violated, perhaps in unpredictable ways.

In a wide area system, to combat latencies, a shared object system will necessarily employ
techniques such as replication and caching to provide fast response time for user requests.
In such systems, consistency must be maintained across multiple copies. We claim that a
shared object system that addresses timeliness for updating the replicated copies is crucial
for supporting interactive applications. Because the applications may both read and write the
state, the system must support both of these operations. Furthermore, the system must support
timed reads and timed writes. A timed read can be used by a user to inform the system that it
desires to access a recent value of the object. A timed write allows the producer of a new value
to inform its potential readers that the new value has become available.

Consider a stock quote update application. If the stock price changes drastically, the write
that reflects the change can be made timed and all consumers can be informed of the change
within a certain time interval. On the other hand, small changes need not be disseminated
quickly and users, based on their requirements and available resources, can request them using
timed reads. In a distributed game, when one entity moves to a new region, a timed write can
be used to update its state. On the other hand, incremental movements within a region can be
disseminated lazily.

Such application requirements motivate four operations: read(), write(), timed-read() and
timed-write(). The timed operations address the timeliness needs explicitly while others may
be used to access values when there are no timeliness constraints. By including both timed
read and timed write, we provide the mechanisms for both push and pull style dissemination of
updates. Applications can use them based on a policy suited to their needs and the resources
available to them.



Our shared state system supports both timed and non-timed read and writes. Since these
operations may be executed with replicated or cached copies, it is necessary to develop a
precise consistency model for the system when users can use all of these operations. The focus
of existing consistency models is primarily on ordering of reads and writes [13, 1]. Other
models only address timeliness [7]. Our goal is to develop a precise model that characterizes
consistency when processes use both timed and non-timed operations. For the timed operations,
a timeliness interval A is defined and a clock system must be assumed. Informally, any read of
object z that follows a timed write after A time will return its value or a more recent value for
the object. Our model characterizes both time independent and time dependent consistency
requirements and shows how they can be combined to define a model that is well suited for
time sensitive applications.

In addition to the consistency model, we also present a protocol that can maintain the
consistency of object copies as required by the model. The protocol allows different timeliness
for different users. The protocol has been implemented in a distributed object framework called
Quality Objects (QuO) [19], which provides a quality of service layer on top of CORBA. We
use this system to experimentally evaluate the protocol, and study the impact of timeliness
threshold on the communication resources required as well as the response time experienced
by user actions. For example, we show that when timeliness is set to 5 seconds, response time
almost as efficient as a local invocation can be achieved even for workloads with very high
proportion of timed operations.

We briefly review existing consistency models in Sect. 2. We present a new time sensitive
(TS) consistency model in Sect. 3. Section 4 describes the protocol that has been developed
to support timed and non-timed operations. Its implementation and performance results are
presented in Sect. 5, and the paper is concluded in Sect. 6.

2 Consistency Models

A variety of systems such as distributed shared memory, distributed file systems and the world-
wide web, allow distributed users to access shared data that is cached or replicated at multiple
sites. A number of consistency models have been developed to define the behavior of concurrent
read and write operations that are executed with the copies of such shared data. If strong
guarantees are provided by the model, programming with the system is easier because the
semantics of read and write operations is closer to a shared memory system. On the other
hand, weaker consistency models offer efficient implementations.

Many of the existing consistency models can be characterized by the type of orderings they
require for read and write operations executed by different processes. Sequential consistency
(SC) [13] requires that all operations appear to execute in a serial order that respects the order
of operations at each processor. Linearizability [8] requires a stronger serial order that must also
respect the time induced order between operations of different processes. Weaker ordering are
explored in models such as causal consistency [1] and PRAM [6]. Distributed shared memory
systems have exploited synchronization operations to weaken the ordering constraints for data
operations. Example of such models include release consistency [4], lazy release consistency [9]
and entry consistency [2]. Distributed file systems such as xFS [3] provide strong ordering
by ensuring that a single writer or multiple readers are able to access a file at a given time.
Other systems permit weaker orderings to deal with disconnections or to improve performance
or availability (e.g., Bayou [18], Coda [10]).

Although orderings of writes is important to determine the value of a shared data item, in
many interactive applications, how quickly write operations become effective is also important.



For example, timeliness has been explored for dynamic content in the web [14]. Ordering
and timeliness are orthogonal requirements that can be used to define a consistency model. For
example, SC requires strong ordering but places no constraints on timeliness. The time sensitive
(TS) consistency model we propose here generalizes the timed consistency model previously
developed by us [5]. In particular, we allow timeliness constraints to be defined for some read
and write operations while other operations may not have any timeliness requirements. It is
also possible to combine various ordering and timeliness requirements to create several different
consistency models. Thus, the TS consistency model not only provides enhanced flexibility but
also allows different sites to observe different levels of consistency based on their application
needs or the resources available to them for maintaining consistency.

3 TS Consistency Model

3.1 Notations

We assume a distributed system that is composed of a finite set of sequential processes P4, ..., P,
that interact via a finite set X of shared objects. Each object z € X can be accessed by read and
write operations. These operations can either be timed or non-timed. Although the timeliness
threshold could be different for different operations, for simplicity, we assume it to be A for all
timed operations. A non-timed write (w) and a timed-write (tw) into an object defines a new
value for the object. Similarly the non-timed read (r) and timed-read (#r) operations obtain a
value of the object. In the following discussion, the term timed will be explicitly used to denote
timed operations, if not it is to be assumed that the operations are non-timed. A write of value
v into object = by process P; is denoted w;(x)v and the notation for a timed-write is tw;(z)v.
Similarly a read of = by process P; is denoted r;(z)v and the timed-read as tr;(z)v where v is
the value returned by the read or the timed-read operation.

In situations where a timed-read is not distinguishable from a read operation, R can be
used to represent either of them. Similarly W represents either a write or a timed-write. op will
denote either R (read) or W (write). The function T(op) returns the real-time at which the
operation op got executed. We assume synchronized global clocks. Hence the function 7'() will
be unique across all processes. Also, the timeline for the execution sequence at all processes
start at Tstrt, though the operations may not immediately commence at that time. All the
objects values are initialized to zero at the start by an initial fictitious write operation. For
simplicity, as in [16, 17], we assume all values written into an object z are distinct!. Moreover,
the parameters of an operation are omitted when they are not important.

3.2 Semantics of Operations

A timed-write (tw) into an object defines a new value for the object and also ensures that this
value is perceived at all the processes no later than A time units after the completion of the
write. A timed-read (¢r) obtains a value of the object that is no older than the the “most
recent” value at time ¢ - A where ¢ is the execution time of ¢r. The operations write (w) and
read (r) make no such time based guarantees. Figure 1 shows an example timeline for a timed-
write operation for three processes P1, Po and P3. The operation tw; (x)1 occurring at time
t1, will be definitely made visible A time (i.e, at #; + A) after its completion. Hence the read
operation rs(x) 1, occurring after A time, returns the value written by twy (x)1, while r3(x)0
which completes before 1 + A does not return 1. More generally, this means that at any time

Intuitively, it can be seen as an implicit tagging of each value by a pair composed of the identity of the
process that issued the write plus a sequence number.
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after £; + A, no value of z older than the one at ¢; is accessible. Similarly, Fig. 2 is an example
timeline for a timed-read. The timed-read tr; (x)1 at time #» reads the value corresponding to
the most recent write before #, -A (i.e., wo(x)1), while this value is necessarily not available to
the read operation r3(x)0 which is non-timed.

3.3 Histories

Although operations occur at certain times, an order based on their completion time may be
too strong and costly to implement. Because of these reasons, other ordering constraints have
been considered in various consistency models. They are obtained by imposing some ordering
constraints on the set of operations issued by the program. These constraints can either be
independent of time or based on it and are discussed below.

3.3.1 Time Independent History

The local history (or local computation) ﬁz of P; is the sequence of operations issued by P;.
If op; and opy are issued by P; and op; is issued first, then we say op; precedes ops in P;’s
process-order, which is denoted as op; —; opz. Let h; denote the set of operations executed by
P;; then the local history h; is the total order (h;, —;). R

A time independent ezecution history (or simply a history, or a computation) H of a shared
object system is a partial order H = (H,—p) such that :

e H=,hi,i=1...n
e op1 — g ops if :

i) 3 P; : op1 —; opz (in that case, — g is called process-order relation),
or ii) op1 = Wi(z)v and opy = 7j(x)v (in that case —y is called read-from relation),

or 4ii) Jops : op1 —m op3 and ops — i opa.

Two operations op; and opy are concurrent in H if neither 0p1 — g Op2 NOT 0Py —> g Op1 i
true ( denoted as op1||op2).

3.3.2 Time Dependent History

A time dependent execution history T of a shared object system is a partial order T = (H,—T)
such that :

e H=J,hyi=1...n



® op1 —71 opy if :

i) op1 —H op2
or #) T(ops) — T(op1) > A and op; = tw and opy € {R,W}.
or ii1) Jops : op1 =1 ops and ops —1 ops.

Time dependent execution history forces any op occurring A units after a timed-write (fw) to
be ordered after tw. Hence — enforces a time (based) order among the set of operations.

3.4 Legality Constraints

The legality concept is a key notion on which our definition of T'S consistency is based. Legality
can also be separated out into time-dependent and time-independent components.

3.4.1 Time Independent Legality Constraints

A read operation R(z)v is legal in history S = (H,—g),if: (i) I W(z)v : W(z)v =5 R(z)v
and (ii) A op(z)u : (u # v) A (W(z)v —5 op(x)u —g R(z)v). A history H is legal if all its
read operations are legal.

3.4.2 Time Dependent Legality Constraints

A timed-read operation ¢r(z)v, in history § = (H,—g) is time-legal if : (i) 3 W(z)v
W(z)v =g tr(z)v and (i) A op(z)u : (u # v) A (T(tr) — T(op) > A) A (T(W) <

A history H is time-legal if all its timed-read operations are time-legal.

In a legal history no read operation can get an overwritten value and in a time-legal history, no
timed-read (tr) operation will return a value older than the “most recent” value at T(tr) - A.

3.5 Definition of TS Consistency Model

Although timed write operations must become effective after A time, the value of a timed write
can become available to processes at different times in the A interval. Similarly, non-timed
writes can become effective at different times. Thus, it is not possible to create a single serial
history comprising of all operations of the processes that is legal. Instead, we define a history
for each process that includes its reads and all writes (this approach has been used to define
several models [1]). Let T, be the sub- history of T from which all read operations not issued
by P; have been removed?. The history T = (H,—7T) is TS consistent, if for each process P;,
T; is both legal and time-legal.

In Fig. 3, it is possible to obtain a history T, = (T, =) for a process P; consisting of the local
operations and all the write operations as follows:

T, = {tws (y)15[w2 (y)10},

Ty = {wy(y)10,72(y)10][tws(y)15,72(y)15}

15 = {tws(y)15|[w2(y)10}
These histories respect the time order( —7) as well as the time legality conditions. Therefore
the given execution sequence is TS consistent. The execution in Fig. 4 is not TS consistent for
the following reasons. Consider the following partial order

*More formally, T} is the sub-relation of H induced by the set of all the writes of H and all the reads issued
by Pi.
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Figure 3: An example operation sequence that re- Figure 4: An execution trace that violates TS consis-
spects time sensitive consistency model. Assume a time- tency (A=3, Tstert = 0). P1:tr(y)15 does not respect
liness value (A) of 3 units and Tstart = 0. The timed- the time-legality constraint.

write P3:tw(y)15 gets ordered before operations hap-

pening after T = 5 (i.e, P2:r(y) 15).

T = {wa(2)2, we(y)10, (w3 ()5, w3(y)15)||twe ()15, (tr1(y)15, 1 (2)15)||ws(y)20},
for process P; comprising of its local operations and all the writes. 1/1\1 is not time legal because
tr; (y) 15 does not return a value that is latest at the time 5 (corresponding to w(y)20). Thus
timed legal history for P; cannot be constructed. A similar problem exists for T; Hence the
execution is not TS consistent.

Other consistency models which specify different orderings can be obtained by setting dif-
ferent values for the timeliness threshold A, and restricting the type of operations allowed (say
only timed-writes and any reads etc.). For a timeliness value of infinity, i.e, A = oo, there is
no upper bound on the time-guarantees for timed-read and timed-write operations. Hence a
timed-read can return a value that is arbitrarily stale, while a timed-write does not have to be
perceived in bounded time. In other words, the semantics of timed-reads and timed-writes is
not different from their non-timed counterparts. The system execution effectively reduces to a
set of non-timed operations that are bounded by the time independent legality constraint (read
legality). The time independent partial history T = (H,—pg), thus obtained will respect the
read legal constraints, which is same as the definition of causal consistency. Therefore for a
timeliness value of infinity, a T'S consistent system reduces to a causally consistent system.

For a timeliness value of 0 (A = 0), a timed-read is guaranteed to perceive the most-recent
write that was completed before the read operation, while a timed-write with zero timeliness
is visible immediately after its completion at all the processes. In a system in which all writes
are timed, it is possible to obtain an ordering for the operations that is similar to real time
ordering. Thus for a timeliness value of zero and for a system which permits only timed-writes,
TS consistency reduces to linearizability.

4 A-Time Protocol for TS Consistency

We have developed a protocol that ensures TS consistency for multiple replicas of a shared
object cached at different clients. Clients locally create replicas of an object instantiated at
a server and can perform read and write operations with their copies. The protocol provides
consistency by enforcing the required ordering and timeliness constraints on a group of related
objects. Before describing the protocol, we discuss some of the assumptions made by us.

e The protocol assumes a client-server architecture. The server plays an important role in
maintaining the consistency of the copies cached at the clients. It allows clients to acquire



object and control state. A client need not be aware of the other clients present in the
system. We assume that a group of related objects is managed by a single server.

e We assume the presence of a synchronized global clock. Node clocks are assumed to run
in synchrony with the global clock and are used to timestamp local events. A protocol like
NTP [15] can be used to synchronize node clocks. Both the model and the protocol can
be adapted to clocks that are approximately synchronized, but in the following discussion,
we assume that the clocks are perfectly synchronized.

e A read or a write operation executes in the finite time period [Tyegin, Tend)- Top, the value
returned by the function 7'() for an operation op (the time of occurrence of the operation)
will be a time in this interval. This is called the effective time of the operation.

e Although no assumptions are made about network latency in the model, the protocol is
designed to perform well in situations where A is much greater than the network latency.

The protocol must ensure the following:

e A read operation at any process should never return a value that was overwritten in its
history (causal guarantee).

e A timed-write on a variable, say x, should be made visible to all the client processes
sharing x in A time (timed-write guarantee).

e A timed-read operation that completes at time T should not return a value that was
overwritten at time 7' — A.

4.1 Protocol Variables

The protocol assumes a system of m clients, P = Py, Ps, ..., P, that perform read and write
operations on a related set of n objects, X = X1, Xs,...,X,. Server § coordinates the client
accesses to shared objects in a manner consistent with the T'S consistency model. The objects
are represented as records. Each record has two fields, storing the value of the object (wval)
and the time at which that value was produced (T,,). Thus z.val corresponds to the value of
the object z, while z.T,, is the effective time of the write operation W{(z)val. This record is
exchanged between the clients and the server as a part of consistency messages. An object
cached at a client can either be in an invalid state or as a read-only or writable copy. The
vector state[] at a client stores the current state of all the objects in its local cache. Each
client stores the time of the most recent write to an object as known to it in the timestamp
vector TS[]. A client also keeps the time at which x; was locally made valid in Ty fresn|2i)-

S maintains a record of the clients sharing x (i.e., readers) in readerSet(x), while the
identity of the clients that can write a new value to x (i.e., writers) is stored in writerSet (x).
The time stamp vector TS[] at S has the recent write times for the objects as known to the
server. We use a remote procedure call (RPC) notation for the communication between differ-
ent processes. These functions are invoked by processes interested in propagating consistency
actions. For example, server S can initiate consistency actions at a client, say Py, by invoking
the appropriate remote function f () at Py and this is shown as Py .f() in the protocol.



ACTIONS AT CLIENT Py :
init ()
//initializing client meta data
Vj € [1..n], set
state[j] := invalid
Trefresh [jJ1 1= O //refresh time
TS[j1 := 0 //timestamp

r(xi)
//read
if (state[i] = invalid) then
readmiss (i,nonTimed)
return(x;.val)

tr(x;)
//timed-read
if ((state[i] = invalid )OR
(Teurrent — Trefresn[i] > A)) then
readmiss (i, timed)
return(x;.val)

w(x;,val)
//urite
if (state[i] # writable) then
writemiss (i)
x;.val := val

% -Tw = Teurrent

TS[i] := Tcurrent

tw(x;,val)
//timed-urite
if (state[i] # writable) then
writemiss (i)
x;.val := val
Xi.Tw = Teurrent
TS[i] := Teurrent
S.update(x;, TS)

readmiss (i, isTimed)
//z; invalid or staler than A
<X;,TSg , Tgpp> =
S.readableCopy(i,isTimed,Py)

T'ref’resh [i] := Tsvr
invalObjs(TSs)

TS[i] := max(TS[i],x;.Tw)
state[i] := read-only

writemiss (i)

//x; not writable
S.writableCopy(i, Pg)
state[i] = writable

update(i,TSs[1..n])
//timed-write intimation
invalObjs(TSs)

state[i] := invalid

invalObjs(TSs [1..n])
Ve [1..n], if(TSs[j] > TS[j]) then
state[j] := invalid
TS[j1 := TSs[j]

getCopy(xs;)
//S requests a new copy
if (xs;.Tw < x;.Ty) then
return <true, x;, TS>

else return <false,null ,null>

ACTIONS AT SERVER S :

init ()

//initialize server meta data

Vj€ [1..n], set
writerSet[j] := empty /fuwriter list
readerSet[j] := empty //reader list
x;.val := 0
//recent timestamps as knouwn to S

TS[jl := 0

readableCopy (i, isTimed, Pj)

//request for shared copy
readerSet[i] .add (Py)
if (¢sTimed OR(z;. T, < TS[i])) then
V Powner € writerSet[i]
<isNew, X¢empsTStemp> =
Powner - getCopy (x;)
if (isNew = true) then

Xi = Xtemp
TSC = TStemp
Vj€[l.n],

TS[j] := max(TS.[j1, TSLjl1)
return <x;, TS, Teurrent>

writableCopy (i, Py)

//request for a writable copy
readerSet[i].add (Py)
writerSet[i].add (Pg)

update (x.;, TS.[1..n])
//timed-write update
Xi = X
Vj € [1.n],
TS[j] := max(TS[j]1,TS.[j1)
V P'reader € readerSet [1]
Preader-update(i, TS)

readerSet[i] .remove (P,cqder )
writerSet[i] .remove (P cqder)

Figure 5: A-Time Protocol for m clients sharing n related objects. It shows consistency actions happening at

a client Py and the Server S for the it" object x; in a grgup X = {x1, %2,

., X, } of nrelated objects.
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4.2 The Protocol

We first present a simple conservative protocol and then address many of the optimizations.
This protocol is shown in Fig. 5. It shows the implementation of r,w,tr and tw operations at
the client process Py and the consistency calls made between Py and the server S, for object x;.
For ease of understanding, we will describe the operations for a single object, say x. The object
is initially in an invalid state at all the clients. S initializes x and its write timestamp to 0 at
the start. It also sets readerSet and writerSet to be empty.

The messages exchanged during the execution of a timed read operation are shown in Fig. 6.
During a timed-read operation on object x, a client process Py, verifies if the current cached copy
is in a valid state and if the current time (Tcyrrent) does not exceed the time when the copy
was locally refreshed by more than A units. If so, the cached copy is good and the timed-
read completes locally. Otherwise, the client contacts S for a more recent copy, if one exists
(S.readableCopy). S polls all the writers of x (Pyriter - getCopy) and chooses the copy with the
most recent timestamp. It then updates its local value of x and sends it to Pg. P; marks the
local copy to be in valid state and updates the refresh time. Similarly a read operation checks
if the local copy is valid, if so, then the value of the copy is returned, otherwise the readmiss
function contacts S. If the local copy at S is valid, then it will be returned, even though the
copy may be old. The server contacts the writers only when its copy is in an invalid state.

When a process P, executes a timed-write or a write operation on x, it checks to see if it has
a writable copy of x. If not, the writemiss function is called, which contacts S for a writable
copy of x (S.writableCopy). S adds Py to the readerSet as well as the writerSet of x and
allows Py, to make modifications to x. On completing the timed-write, Py, contacts S propagting
the new value of x (S.update). S updates its local copy and sends invalidation messages
to all the readers (Preqger-update). The readers invalidate their local copy. On receiving
acknowledgements for the invalidation messages from the readers, S removes them from the
writerSet and the readerSet of x. This pruning of readers and writers will eliminate any
unwanted messages between the server and clients for a consistency action in the future. S then
responds back to Py, allowing the timed-write operation to proceed to completion. Figure 7
shows a timed-write in action. A write operation is similar to a timed-write. However, the
operation only updates the local state of the object and the writer does not propagate this new
value to S.

The protocol manages a group of objects instead of a single object as explained above.
Whenever a consistency call is made between a client and the server, TS vector, having the
most recent write time as known to that client, is also exchanged. This vector is compared
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Figure 7: An example time line showing a timed-write in action. The distributed system has three clients P;,
P5, P3 and a server S. Also readers(x)= {P2, P3}. The S server sends messages to the readers requesting them
to invalidate their copies.

with the local timestamp vector and all the objects with local write timestamps less than the
timestamps received in the consistency message are invalidated. This ensures that a client will
not read causally overwritten value even when there are no timeliness requirements.

4.3 Optimizations

The protocol for timed-read and timed-write operations as discussed above would be expensive
to implement for the following reasons. The server asks readers to invalidate their copies when
it receives a request for a timed-write operation. However, according to the definition of a
timed-write operation, readers can continue to read the older values until after A time has
passed since the completion of the write. This results in potentially unnecessary consistency
messages exchanged between the server and the readers. Also, as is seen from Fig. 7, the server
sends invalidation messages to the readers for every timed-write. For timed-writes occurring
in a A time interval, multiple invalidation messages can be exchanged between the server and
the readers, if readerSet gets updated between two timed-writes. Another shortcoming of the
protocol is that whenever a writer requests a writable copy, it gets added to the writer list
for that object and is contacted for every subsequent timed-read, even when it has stopped
making updates to the object. Similarly, for a timed-read operation, the server does not need
to poll the writers when its copy of the object is no older than A time before the read. These
observations motivate the following optimizations to the protocol.

e For a timed-write operation, the server will send invalidation messages to the readers to
request them to invalidate their copies after A time. This allows them to continue to read
the cached value until it is no longer consistent.

e The writers are leased a copy of an object when a writable copy is requested, rather than
a indefinite ownership. This way the server can periodically prune the writer list for an
object, effectively reducing the number of consistency messages generated during a timed-
read operation. Also during a timed-write, the server can reset the lease for a writer to
be valid for the next A time units. Assuming A to be smaller than the lease time, this
can effectively reduce the number of messages generated for a consistency action due to
a timed read.

e For a timed-read, the server will only poll the writers if the timestamp of its local copy
indicates that it is older than the timeliness threshold. If not, it will return its copy. For
a normal read operation that has faulted, server can return its own copy as long as the
write time (T,,) is not less than time stamp entry in TS for that object (causal ordering).
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A complete protocol that incorporates these optimizations is presented in Appendix A.
The performance results discussed in the next section are based on an implementation of this
optimized protocol.

5 Performance Measurements

5.1 Implementation of A-Time protocol

The A-Time protocol for TS consistency has been implemented in a distributed object caching
framework developed by us. The framework can transparently cache objects at clients that
invoke them. It supports different notions of quality of service (QoS) for shared state. For
example, it is possible to set the timeliness threshold to different values in the A-time protocol
for different clients. The Quality Objects(QuO)[19] framework provides an interface which
can be used by applications to specify and adapt to different QoS guarantees offered by the
underlying system. In our earlier work, we have used QuO to define shared state QoS interfaces
to our caching framework [11]. Our current caching prototype has been developed in Java. It
provides the same interface to the applications as Java RMI (Remote Method Invocation).

The caching framework has provisions for caching objects individually or as a group. Con-
sistency protocols used to govern the cached objects can be specified at runtime via a high level
shared state QoS property. The protocols are implemented as client side and server side consis-
tency objects. For example, the actions at client Py for the protocol described in Appendix A
will be implemented as a client side consistency object and the actions at S will be implemented
as the server side consistency object. The framework also allows caching and non-caching clients
to co-exist. The other components of the framework include smart delegates which forward in-
vocations to the locally cached objects or remote clients based on QoS requirements, meta-state
regarding the read and write access information for member functions of objects, infrastructure
to ship the byte code corresponding to the object definitions from the server in case the defini-
tions are not locally found at the clients, and a transport object that provides communication
channels between server and clients for the dissemination of consistency actions. Additional
details of the framework can be found in [11] and [12].

5.2 Evaluation

The goal of this section is to experimentally evaluate the performance of the A-time protocol in
our caching system to quantify the benefits of a T'S consistent object system. We evaluated the
optimized version of the protocol which is described in Appendix A. We measure the response
time for invoking a shared object. We first measure the response times of a local invocation
and a remote invocation executed at the server. To determine the cost of invocation for the
A-time consistency model, we use a synthetic workload derived from attributes of an interactive
distributed application.

The experiments were conducted on a cluster of 248 MHz Sparc Ultra-30’s connected by
a 100 Mb Ethernet. The machines were all equipped with 128 MBytes of memory. The
Java virtual machine used was Java2 from Javasoft and we used it with the just-in-time (JIT)
compilation option enabled. There were no other applications running on the machines when
the experiments were conducted and hence the numbers generated were repetitive. We ran each
of the experiments three times and the numbers presented here are averaged across multiple
runs and over multiple clients. It was difficult to generate numbers that were repetitive in a
wide-area environment. This was primarily due to our lack of control on the network. Because
of this reason, we are only presenting the measurements for the local-area environment in this
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paper. In the future, we plan to repeat these with widely distributed sites connected by the
Internet, possibly using an Internet emulation test bed.

In our experiments clients invoked an object X implemented by the server. The definition
of X has four member functions: read(), write(), timed-read(), and timed-write(). The read and
the timed-read method have a null body while the write and the timed-write methods increment
the state of a shared counter. Since little time is spent in the execution of the methods, the
average invocation time obtained in the experiments is a direct measure of the communication
and computation costs associated with the protocol.

We used synthetically generated workloads based on important parameters of interactive
applications to evaluate our system. We briefly describe some of the parameters that were
considered in generating the workloads.

Number of Objects: There are n related objects X1, Xs, ..., X,,. They are all instantiated
at the same server. In our experiment we used a value of 64 for n. Also the size of all the
objects was 64 bytes.

Number of Clients: There are m clients P = Py, Py, ..., P,, that can make invocations
on the objects. We assigned a value of 16 to m.

Number of Invocations per Client: Each client makes k invocations. k£ was chosen to be
50,000.

Ownership: The owners can make modifications to the objects. An object can be owned by
multiple clients at the same time. The owner set for an object (O) is a randomly generated
and is a subset of the total client set (O C P).

Read Frequency: Assuming that interactive applications are visual and require frequent
screen updates, we generated read requests to a random set of objects once in every 30 mil-
liseconds.

Write Frequency: The writes in these applications may be because of user actions or because
of movement of autonomous entities (e.g., movement of an entity in a predetermined trajec-
tory). We also assumed that a user does not recognize events happening in a time period less
than 100ms. So the lower limit for the time between writes is 100ms (for autonomous entity
movement) and the higher limit was fixed at 3 seconds (for user actions). The writes were
generated at random in the [.1, 3] second range.

Timed/Non-timed operation ratio : The percentage of timed-operations was varied be-
tween 0 (none), 10, and 100 (all), to study the impact of timed operations on the invocation
response time.

We synthetically generated five different workloads (tr0-tw0, tr-10, tr-100, tw10 and tw-100)
based on the above parameters. Each workload has 8 traces of 50,000 invocations that were
used to drive the clients (8 of them). tr0-tw0 was generated for non timed read and write
operations. It was used as the base and all the other workloads were generated from it. For
example, tr-10 was generated by randomly choosing read operations from tr0-tw( and changing
them to timed-reads such that the timed to non-timed read ratio was 1/9. Similarly, ¢r-100 has
100% timed-reads, while tw-10 and tw-100 have 10% and 100% timed-writes respectively.

Table 1 shows the cost of making an invocation locally on a cached copy with no consistency
actions, and at a remote server with 8 active clients. It takes 25 microseconds for an invocation
on an object stored locally by the caching framework, while it takes about 11.01 milliseconds?
for a remote call to the server to complete in the presence of 8 active clients. These numbers do
not depend on the type of workload used. We want to treat these as the boundary cases and

3An RMI invocation at a remote server by a single client can be executed in 1.24 milliseconds. However, when
the server is concurrently invoked by 8 clients, this time increases to 11.2 milliseconds
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Invocation Execution Invocation Time in milliseconds

At locally cached copy 0.025

At remote server 11.013

Table 1: Comparison of the time per invocation in milliseconds averaged over 50,000 invocations. The invocation
times for locally cached copies and invocations at the server with 8 active clients. The size of the object was 64
bytes and a group of 64 related objects were used.

Interactive workload (r, tr, w) Interactive workload (r, w, tw)
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Figure 8: The invocation time averaged over 50000 invocations with § clients and 64 objects for A-time protocol.
The first graph was generated from workloads with no timed operations, 10% timed-reads and 100% timed-reads
respectively, while the second one was for non timed, 10% and 100% timed-writes.

would like to determine the values of timeliness threshold for which the invocation latencies for
A-time protocol will be between the local invocation and invocation at the server.

The average invocation time for A-time protocol for different values of timeliness threshold is
shown in in Fig. 8. The first graph shows different plots corresponding to invocation at server
(S), workloads with no timed operations (tr0-tw0), with 10 (¢r-10) and 100 (¢r-100) percent
timed reads respectively. The plot for ¢r0-tw0 is a straight line as the invocation latency for
non-timed operations is independent of timeliness. The invocation time (40 microseconds) is
higher than the local invocation time (25 microseconds) because of the additional time spent in
executing consistency actions that maintain causality. The plot corresponding to tr-10 shows
that the average invocation latency decreases for higher timeliness thresholds. This is because
for lower values of A, the locally cached copies expire faster, hence the client has to contact
the server and if need arises, the writer to fetch a new copy for faulted invocations. This leads
to higher values of average invocation times. As the timeliness threshold is increased, more
and more invocations are executed locally, resulting in fewer consistency messages, and hence
average invocation time reduces considerably.

A similar trend can be observed for tr-100, but since every read in this trace is timed,
lot more consistency messages are generated in comparison with #r-10, accounting for high
invocation times. For #r-10, even for a low timeliness value of 10 milliseconds, the average
invocation time when caching is enabled is better than the remote invocation at S. tr-100
performs better than S for A values greater than 4 seconds. Similar shaped curves are obtained
for tw-10 and tw-100 in the second graph. However, the average invocation times are smaller
than for ¢r-10 and ¢r-100. This is because the write frequencies in tr0-tw(0 are much smaller
than the reads (only about 15% of operations are writes) and as a result far fewer consistency
actions are required, improving the invocation latencies.
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6 Conclusions

In this paper we have presented the T'S consistency model which provides both order and time
based guarantees for copies of shared objects. In addition to the normal read and write, it defines
two new operations, namely timed-read and timed-write , which can be used by distributed
applications for time-based access to dynamically changing shared state. Distributed interactive
applications benefit from the T'S consistency model by smartly exploiting its timeliness property.
We also presented the A-time protocol for T'S consistency. A conservative and an improved
version of the protocol were discussed. The optimized protocol has been implemented in a QoS
enabled caching framework that is being developed by us. The A-time protocol provides better
response time for invocations, almost as small as an invocation on a local object, for a timeliness
threshold value greater than 5 seconds, even for a workload comprising of very high percentage
of timed operations. A more realistic scenario would have fewer number of timed operations

and hence it is possible to obtain even better invocation times for much smaller Avalues.

In the future, we would like to develop a more comprehensive synthetic workload for in-
teractive applications. Actual experiments and simulations driven by the workload will allow
us to perform a detailed evaluation of the protocol implementations. We are also interested in
developing applications with which we can drive the framework to determine the effectiveness
of the system.
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A Optimized Protocol

We discussed some of the optimizations permitted by T'S consistency model which could be used
to improve the performance of a protocol implementing the model in Sect. 4.3. An improved
version of the A-time protocol is presented in Fig. 9. We briefly describe the new variables that
have been introduced in the new protocol to implement these optimizations.

A.1 Protocol Extensions

Tyalid 1S a timestamp vector on the client side which is used to track the validity of an object
until a time in the future. Thus, during a timed-write, the server can set T,q;q4 such that all
objects that have operations on them causally preceding the timed-write will expire in A time
units, rather than invalidating them immediately as in the earlier protocol. Also, the server
leases the objects to the clients for a certain period of time. The lease period of each object is
stored in Tjeqse vector and is used to determine if the client has a valid lease for all write and
timed-write operations. Tycfresp at S stores the time an object was locally refreshed. Server can
use this to determine whether its local copy could serve a timed-read request. writerSet data
structure was used in the original protocol to store the identities of the writers for an object.
In the improved protocol, it stores a tuple containing the identity of the writer client as well
as its lease time for a particular object (<writer-id, leasetime>). S examines this record
before issuing a consistency message to the writer. If a writer’s lease for an object expires then
S removes it from the writerSet it maintains for that object. This pruning of the writers will
reduce the number of messages needed to perform consistency actions for a timed-read request
in the future.

Figure 10 shows a sequence of operations on objects x and y at three clients P, P», P; and
S as permitted by the new A-time protocol. The clients perform both timed and non-timed
operations on x and y. The square bracket on top of an operation marks the start and the
end times of that operation. The lease time for the writers is assumed to be 12 units while
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ACTIONS AT CLIENT Py :

init ()

Vj€e [1..n], set
Toatia[j] = 0
Tref’resh[j] =
Tiease [J] =0
TS[j1 := 0

0

(%)
if (Tyaiia[t] < Teurrent) then
readmiss (i,nonTimed)
return(x;.val)

tr(x;)
if ( (Tvalid[i] < Tcurrent)UR
(Teurrent — T’ref'resh[i] > A)) then
readmiss(i, timed)

return(x;.val)

w(x;,val)
if ( (Tvalid[i] < Tcurrent)OR
(ﬂease[i] < Tcu'rrent)) then
writemiss (i)

x;.val := val
% - Tw = Teurrent
TS[i] := Tcurrent

tw(x;,val)

if ( (Tvalid[i] < Tcurrent)OR
(Tiease [1] < Tcurrent)) then
writemiss (i)

x;.val := val

Xi. Tw = Teurrent

TS[i] := Tcurrent

S.update(x;, TS, Pg)

readmiss (i, isTimed)
<x;,TSs, Tsor> =
S.readableCopy(i,isTimed,Py)

Trefresh [i] := Tsur
invalObjs(TSs, 0)
TS[i] = x;.Tw
Tyatia[1] = o0

writemiss (i)
Tiease [1] := S.writableCopy(i, Pg)
Tvatia[1] (= o0

update(i,TSs[1..n])
invalObjs(TSs, A)
Tvatid [1] = Tcurrent + A

invalObjs(TSs [1..n], invTime)

Vj € [1..n], if(T'Ss[j] > T'S[j]) then

Tyalid [J] = Teurrent + invTime
TS[J] = TSs [J]

getCopy (xs;)
if (zs;.Tw < z;.T) then
return <x;, TS>

ACTIONS AT SERVER S :
init ()
Vje [1..n], set

TS[j] := 0

Trefresh[j] =0
x;.val := 0
readerSet[j]l := empty
writerSet[j] := empty
Vke [1..m]

leaseTime[j] [k] := leaseTime;y

readableCopy(i, isTimed, Pg)
readerSet[i] .add (Py)
if ((GsTimed AND Tourrent — Trefresnli] > A)
OR (z;.Tw < TS[7])) then
V <Powner »Ticase> in writerSet[i])
<xi,TSc> := Powner -getCopy (x;)

TTefTESh [i] := Teurrent
Vj € [1.n],
TS[j] = max(TS.[j1, TS[31)
if (ITlea,se < Tcurrent) then
writerSet[i] .remove (Poyner)

return <x;, TS, Trefresn[1]1>

writableCopy(i, P)
readerSet[i] .add (Py)
Tiease ‘= leaseTime[il [k] + Teurrent
writerSet[i].add(Px, Ticase)
return Tieqse

update(xc; , TSc[1..n], Pg)

X; 1= X¢,

T’refresh [i]l := Teurrent

Vj € [l..n],
TS[j] := max(TS.[j1, TS[jl)

YV Preader € readerSet[il
P’reade’r-update(i, TS)
readerSet[i] .remove (Preqder)
Tiease := Teurrent + A

writerSet[i].set(Preader » Tiease)

Figure 9: Optimized A-Time Protocol for m clients sharing n objects. It shows consistency actions happening

at a client P, and the Server S for the i*” object x; in a group X = {x1, X2, ..., X,} of n related objects.
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Figure 10: A set of operations that obey TS consistency. The dotted lines represent the consistency messages
exchanged across the processes. The square brackets ([ ]) represent the duration of the operation. A network
latency of .5 time units and a A of 6 units is assumed. As seen, the consistency message for the timed-write
tws (x)1 marks the copies at P, and Ps3 to be invalidated at a future time. Also S does not contact the readers
for the timed-write tws (x)3 as the previous timed-write tws (x)2 is from the same process (P3) and the causal
history has not changed in between these two operations.

the timeliness threshold is 6 units. Also for the ease of explanation of the protocol, we assume
a higher bound on the network latency to be 0.5 time units and the computation time for a
consistency message at a node to be negligible. This example demonstrates some of the protocol
improvements for timed-write operations. The processes P, and P; have leased x and y and
hence can make modifications to them, while P; can only read the state of the objects. During
the execution of the timed-write twe(y)1, P> contacts S, which in turn contacts the readers
(Py, P3) asking them to invalidate their copies after A = 6 time units, rather then requesting
for immediate invalidation. So operations on y at P; before this expiration period can be
executed with the local copy. For example, as seen in the figure, P; invalidates its local copy of
y after time 7 and hence the operation ri (y)0 occurring before it executes with the local copy
returning 0, while r; (y) 1 executing after the invalidation results in consistency a message to
S. Similarly, when P3 contacts S for the timed-write tws(x)3, S does not communicate with
the readers because this timed-write is from the same client (P3) as the previous one (twz (x)2)
and also there is no change to the causal history between the two writes.

Figure 11 shows a snapshot of operations executing on object x at five clients Py, Py, Ps, Py, Ps
and S. The lease time for the writers is assumed to be 12 units while the timeliness is set at
3 time units. This example demonstrates the improvements for timed-read operations. The
processes P, and Ps; have leased x and hence can make modifications to it, while P;, Py and P3
can only read the state of x. P,’s lease expires at around 14 time units as shown in the figure,
while P gets a new lease on x when w5(x)1 is executed. During the execution of tre(x)1,
P, contacts the server for a recent copy. S checks the refresh timestamp of its local copy of x.
Since it does not exceed the current time by more than the timeliness threshold, it returns this
copy to P; rather than polling the writers for a newer version of x. This effectively reduces the
number of consistency messages exchanged between the clients and the server for a timed-read
operation. During the timed-read tri(x)3, S polls the writer Py, even though its lease has
already expired. S has to do this because it has to verify if P, has the most recent copy of
x before it can remove it from the writerSet. Once it verifies that, P, is removed from the
writerSet and S will not contact it during subsequent read faults. S cannot send its local copy
of x to P, for the timed-read trs(x)4 because the copy is more than A time units old and
hence may not be suitable for the timed-read. But since S has pruned its writerSet earlier, it
only has to communicate with P5 for a recent copy of x.
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Figure 11: P, and Ps are the writers. Py’s lease expires at the marker, while Ps renews its lease during the
execution of w4 (x)1 and is good for the entire time. S returns its copy of x to P, during trs(x)1 as the current
time does not exceed the local refresh time by more than A time units. Also during the operation trz(x)4, S
does not contact P, as its lease on x has already expired.
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