
Open Metadata Formats:
Efficient XML-Based Communication for Heterogeneous Distributed

Systems

Patrick Widener Karsten Schwan Greg Eisenhauer
Technical Report GIT-CC-00-21

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332, USA�
pmw,schwan,eisen � @cc.gatech.edu

Abstract

Definition and translation of metadata is incorporated
in all systems that exchange structured data. We ob-
serve that the manipulation of this metadata can be de-
composed into three separate steps: discovery of the
metadata, binding of program objects to the message
formats represented in the metadata, and marshaling of
data to and from wire formats using the metadata. We
have designed a method of representing message formats
in XML, using datatypes available in the XML Schema
specification. We have implemented a tool, xml2wire,
that uses such metadata and exploits this decomposition
in order to provide flexible metadata definition facilities
for an efficient binary communications mechanism. We
also observe that the use of xml2wire makes possible
such flexibility without intolerable performance effects.

1 Introduction and Background

Today's distributedapplications are highly diverse, rang-
ing from E-commerce and B-to-B frameworks, to mul-
timedia and distributed immersive systems, to collabo-
rative design and manufacturing. Yet, most such ap-
plications interact via and, therefore, transfer structured
rather than unstructured data. Data may describe stock
quotes, parts being designed, graphical objects being
displayed, or scientific data representing atmospheric
volumes and chemical concentrations. Unfortunately, in
many such cases, the needs for efficiency in data trans-
fer have led to the creation of domain-specific or closed

standards for data structure definition and manipulation.
Conversely, where open standards for data structure def-
inition have taken hold, such as CORBA/IIOP, perfor-
mance considerations often limit their utility. Further-
more, most solutions to data structure definition require
the use of specialized programming interfaces, where
communicating programs must either agree to use a sin-
gle communications mechanism or in some other way,
reconcile the differences in how their data is defined.

Equally important to performance is the flexibility of
data definition, so that applications may evolve, com-
municating via enhanced data structures. To date, most
communication mechanisms perform data definition in a
programmatic fashion, thereby embedding the metadata
into the communication or application code itself. While
this may result in good performance for such mecha-
nisms, it can also result in substantial costs when appli-
cations evolve. This is because changes in metadata re-
quire consequent modification and recompilation of the
codes using such metadata. Furthermore, embedding
metadata also `hides' it from just the non-programmer
end users to whom it is typically most useful: the en-
gineers designing parts, the physicists studying atmo-
spheric phenomena, and others, sharing such data in
their distributed collaborative workspaces.

Our work is predicated on the belief that open metadata
systems will become increasingly important and useful,
especially for non-programmers using distributed com-
putations that share substantial amounts of data. This
belief is validated in part by the increasing popularity
of metadata standards like XML. However, the wide ac-
ceptance of open metadata systems requires that their
use does not strongly impede the performance of the dis-

tributed applications using them. This work seeks to rec-
oncile openness and performance.

Efficient Binary Transmission of Structured Data.
Our work addresses interoperability at levels 'below'
those of RPC or CORBA, but with functionality ex-
ceeding that of common data exchange formats like
XDR. Specifically, we are concerned with the efficient
movement of the data structures that are defined at the
'system' level of distributed applications, middleware,
and systems, typically using system implementation lan-
guages like C. Such structured data usually resides in
main memory, and when it is moved across heteroge-
neous machines, one must deal with issues like byte-
order, field alignment, and atomic type representation.
Furthermore, at this level, data transmission in binary
format is critical, due to the high communication band-
widths or low transmission latencies required, or be-
cause of the undue processing loads that would be im-
posed on systems if they were forced to transform infor-
mation from end user readable formats, like text, to bi-
nary formats, for instance. Sample applications requir-
ing binary data transmission include high performance
codes moving scientific or engineering data and wide-
area transfers of operational data, where scalability to
many information clients and sources implies the need
to reduce per-client or per-source processing and trans-
mission requirements. They also include server-based
applications in which single servers must provide infor-
mation to large numbers of clients.

Efficient and `Open' Specification of Data Struc-
ture. In CORBA, the specification of data structure is
achieved with IDL specifications. In RPC, procedure pa-
rameters are characterized by their types specified within
`interface module' descriptions. Openness in metadata
definition implies that data structure specifications are
not linked to certain transmission mechanisms, such as
RPC, or linked to specific protocols, such as those used
in the transmission of manufacturing, parts, or design in-
formation in the automobile industry, or as those used by
specific data storage facilities (e.g., database query lan-
guages). Instead, openness requires that data structure
may be specified independently of data transmission and
use, with translations of such structure to the efficient
lower-level representations used for data tranmission or
manipulation `hidden' from end users.

The open data structure specification created by our
group is based on XML[11]. With XML, metadata or
more simply, information about data structure, is moved
across communication systems along with the actual

data it describes. Unfortunately, existing implementa-
tions of communication systems that employ XML use
text-based representations of such data. These represen-
tations are not acceptable when larger amounts of data
must be moved, or when high scalability in terms of
number of clients sending data to a single server is re-
quired, due to the undue bandwidth and end-system pro-
cessing requirements of text-based data encodings. In
contrast, data transmission in binary format has been
shown to provide significant performance gains over
transmission in text-based formats, as evident from the
ubiquitous use of mechanisms like XDR and others in
communication systems. Consequently, our approach
combines the use of high level, easily readable and in-
terpretable, and open data structure descriptions using
XML, with the efficient transmission of such data us-
ing encodings in binary form. Our approach does not
predicate the use of specific data delivery mechanisms,
which may include standard communication protocols
like TCP/IP, wide-area multicast methods like those of-
fered by TIBCO, and high-performance communica-
tion methods like those offered for cluster systems (e.g.,
Myrinet, Giganet, etc.).

The approach to high performance, open metadata sys-
tems we have developed decomposes the transfer pro-
cess for structured data into several components, ulti-
mately resulting in efficient, binary (not text-based) low-
level encodings of the data, while also maintaining open
user-readable and -comprehensible data structure def-
initions. More concretely, we describe in this paper
a tool that provides flexible metadata definition, using
XML, while also supporting high-performance, binary
data tranmission. This tool is called `xml2wire'.

The encoding we have chosen for actual data transmis-
sion is a step beyond those of current commercial soft-
ware, which uses XDR to translate data across heteroge-
neous systems. Instead, we transmit data in NDR (Natu-
ral Data Representation), which permits us to move data
directly out of memory onto the transmission medium,
and directly from the transmission medium into mem-
ory, thereby eliminating both computational and copy
overheads occurring for XDR-based transmissions.

With this approach, we are able to demonstrate signif-
icant performance gains due to elimination of inappro-
priate `wire formats' for data transmission. Specifically,
when transmitting XML data, our NDR-based approach
to data transmission demonstrates performance an entire
order of magnitude larger than existing, text-based XML
transmission approaches. When transmitting structured
binary data, we show substantial (often exceeding 50%)
performance gains compared to commercial platforms

that use XDR-based data representations.

The reasons for our performance gains are simple: the
performance of transmission systems strongly depends
on the wire formats they use. Our approach is to entirely
eliminate common wire formats like XDR and instead
transmit data in the sender's native format (which we
term Natural Data Representation or NDR), along with
efficiently represented meta-information that identifies
the precise formats of transmitted data. When data con-
version is necessary on the receiving side, it is performed
by custom routines created on-the-fly through dynamic
code generation.We achieve these gains for XML by
separating the discovery and binding tasks, and we posit
that as a result, XML becomes a broadly useful, open
mechanism for description of data structure.

2 An Application Scenario

As motivation for our work in this area, consider the
following example of an airline operational information
system. Such a system has several data capture points
that provide structured information streams. These in-
formation streams might be “live” data on aircraft air or
ground movement provided by the FAA or airport au-
thorities, weather information being streamed from geo-
graphically remote sources such as other airports or cen-
tralized sources such as the NOAA, or they may be pro-
duced by data mining processes that periodically exam-
ine corporate data stores for trends or patterns of interest.

The communications infrastructure for these streams is a
system-wide event backbone. Applications wishing ac-
cess to the information streams subscribe using the ser-
vices provided by the event backbone. Examples of ap-
plications that are consumers of these streams include
data display points (such as real-time aircraft position
and weather indicators) and data access points (such as
the data terminals used by gate agents to process reser-
vations information). Future data access points may in-
clude handheld devices which join the network when ac-
tivated by their owners and leave the network when their
work is done.

Since the data carried by streams has well-defined struc-
ture, the applications using such data must become dy-
namically aware of such structure. Furthermore, realistic
models of modern deployed information systems must
necessarily assume heterogeneity among the different
machine architectures comprising the system. Efficiency
concerns dictate that messages be exchanged as rapidly

as possible, precluding architecture-neutral wire-format
solutions such as ASCII. Also, it is desirable to allow
the introduction of new data streams into the system at
arbitrary times; this implies that applications should be
able to discover the structure of messages sent over these
streams without experiencing downtime due to recompi-
lation.

This combination of factors is a difficult one to ad-
dress using available technology. Efficient communi-
cation is possible, but at the cost of inflexibility with
respect to admitting new message formats or changing
existing ones. Flexibility in message structure is pos-
sible, but existing solutions use data transport mecha-
nisms that are inappropriate for high-performance appli-
cations. Clearly, the resulting tradeoff between flexibil-
ity and performance must be reconciled.

3 The Use of Metadata

All binary communications mechanisms (BCMs) de-
pend on a set of metadata. This metadata describes any
messages to be sent in a level of detail that is sufficient
for binary transport. These details include but are not
limited to characteristics of the compiler in use, word
and pointer sizes of the host architecture, and the set of
data types available in the programming language be-
ing used. Preparing program data for transmission in
a binary format requires significant manipulation of the
corresponding metadata.

The `xml2wire' tool decomposes metadata usage and fi-
nally, the transfer of structured data described by meta-
data into three components, thereby separating the three
actions necessary for the transmission of structured data:
(1) discovery, (2) binding, and (3) marshaling. Discov-
ery concerns finding the metadata that defines the struc-
ture of data being transmitted, whereas binding is the
association of such metadata with specific data being
transmitted. Marshaling refers to the actual conversion
of data from a structured format to or from a wire format.
One issue with existing XML-based data transmission
methods, for instance, is that these three components are
not separated, thereby unnecessarily forcing data to be
transmitted in the same forms in which metadata is be-
ing set (i.e., as ASCII text). Instead, we maintain the
association of metadata with data at the level of XML,
but then use efficient encodings of both for actual data
transmission.

Event Backbone

Event Consumers
Access Points, Display Points

Capture Points

Information Streams

Figure 1. An Airline Operational Information System

3.1 Discovery, Binding, and Marshaling

Discovery Any BCM must somehow discover the
metadata it will use for transmission of a given message.
This discovery process can take several forms. It is pos-
sible for a BCM to be built into a program in such a way
that the metadata for all possible messages is contained
in the program code (for example, the communications
stubs produced by an IDL compiler). In such a case, the
metadata is directly available and the discovery process
is obviated. Designs such as this, however, are difficult
to implement correctly and still more difficult to main-
tain.

Modular programming practice has led to the abstrac-
tion of BCMs into library code featuring well-defined
interfaces, and consequently to the decoupling of meta-
data from BCM processing. This decoupling forces the
discovery process to become explicit. Several alterna-
tives have been devised to address metadata discovery.
At one extreme is an approach only slightly removed
from the approach described above, in which metadata
is provided in the program code. In such systems, the
metadata is provided in a structured manner defined by
the BCM, and made programmatically available to the
BCM library as part of program execution. This type of
approach benefits from being able to make architectural
decisions at compile time, which allows direct exami-
nation of the behavior of the compiler and examination
of the host architecture. However, since the metadata is

compiled into the system, it is not readily modifiable (al-
though several systems have taken pains to increase the
robustness of such metadata at runtime).

Other approaches rely on Interface Definition Lan-
guages (IDLs), which provide an abstract, architecture-
independent set of message definitions that all parties to
a communication can use. An IDL compiler then trans-
lates these definitions for each communicating party on
each host platform into architecture-dependent defini-
tions, and code generators provide predefined library
code to translate messages at run-time. Still others es-
chew compile-time definition completely, relying on di-
rectory or other lookup services to retrieve metadata.
These systems incur an added overhead due to the
lookup, but become more flexible due to the fact that the
actual metadata is not compiled into the program code.

Binding The discovery process results in the availabil-
ity of metadata describing the message to be sent. Asso-
ciation of a particular metadata format with a particular
piece of program data is a process we call binding. In
compiled-metadata systems, an API call usually exists
to associate a particular program variable with a meta-
data format. The programmer is responsible for ensuring
the compatibility of the program data and the metadata
in such systems. In IDL-based systems, format-specific
subroutines are generated by the IDL compiler and serve
the same purpose. Binding usually results in the con-
struction of some type of message format descriptor or

token which the programmer can use during marshaling.

3.2 Marshaling

The purpose of BCMs is to translate messages from in-
memory formats to a wire format. All BCMs define wire
formats that define how any data will actually be trans-
mitted over the communications transport layer. These
wire formats vary among BCMs, although some stan-
dard ones do exist. A message is provided to a BCM as
a region in the address space of a process whose contents
must be translated to the wire format.

The marshaling process usually takes the following
form. The message is considered as a record contain-
ing a set of fields. The metadata describes each of these
fields: the field size, the layout of the field within the
record, and the type of the field. This information is
used by the BCM to generate wire format records that
contain enough data for the receiver to properly recon-
struct the message. Marshaling is not always a one-pass
process; some BCMs are designed to convert metadata
into an internal representation and only later use the in-
ternal representation to generate wire format transport-
layer messages.

3.3 Orthogonality

It should be clear that how metadata is provided to a
BCM does not in any way influence how that metadata is
used for binding or marshaling. Where a BCM uses an
internal representation of metadata as described above,
for example, it is possible to construct a system that can
switch from compiled-in metadata to that provided by a
directory server, with each set of metadata being con-
verted to internal representation. In such a system, the
method of metadata discovery changes, but the method
of metadata binding does not. Conversely, a BCM that
relies on IDL descriptions of the messages it sends can
make different binding decisions (choosing from among
versions of message formats, for example) without af-
fecting the method of metadata discovery.

All communications systems using structured data must
perform these three steps. We have seen that there is a
fair amount of flexibility in how a BCM performs each
step, but the important point is that the steps are inde-
pendent. We observe that changes in marshaling ap-
proaches are most likely to result in incremental per-
formance gains, since marshaling is a repeated process

and performance of the BCM is largely determined by
the efficiency of the wire format representation is uses.
Changes to the discovery process, on the other hand,
are not likely to result in performance gains. Message
formats change infrequently with respect to the number
of messages sent by typical systems, and discovery of
metadata is generally performed either only at program
startup or else infrequently during program execution.

If changes to the discovery process do not result in sig-
nificant performance gains, they can result in significant
usability gains. Systems in which metadata is provided
through compiled information suffer from inflexibility
with respect to message format changes. Although in-
frequent, message format changes in such systems re-
quire source-code-level modification and recompilation
of all affected installations, a tremendous penalty to pay
even infrequently. As noted earlier, some BCMs have
gone to great lengths to make compiled-format systems
robust in the face of changing or inconsistent message
formats, but such features are binding rather than dis-
covery features (in order for the BCM to encounter two
inconsistent message descriptions, each description has
necessarily to have already been discovered), and in any
case this robustness is achieved only through the coop-
eration of programmers at all endpoints of the commun-
ciation.

Introducing an extra layer of abstraction to the discov-
ery process insulates programs from the effects of such
changes. Metadata discovery is performed by consult-
ing an extra-process entity, allowing message format
changes to be either completely or partially centralized.
Although this consultation carries the cost of a network
round-trip, the infrequency with which message formats
change works in favor of a system using remote discov-
ery. Use of a remote discovery method also has fault-
tolerance implications, as a broken network link or hard-
ware failure could leave a remote discovery system with-
out any way of finding the metadata it needs to function.
However, a system that uses remote discovery as a pri-
mary discovery method and compiled-in information as
a fault-tolerant discovery method can provide a useful,
if degraded, level of functionality in such failure situa-
tions.

4 Implementation of an XML-Based
Metadata Tool

In the following section, we will describe the xml2wire
XML-based metadata tool that employs remote discov-

ery of metadata to provide a high level of flexibility
in the definition of message formats. The architecture
also allows for the use of compiled-in metadata to cope
with failure modes that make remote discovery impossi-
ble. This architecture relies on metadata description in
XML (Extensible Markup Language), and uses a well-
exercised BCM to provide fast binary data transmission.

4.1 Underpinnings

Our system builds on two foundations, which we de-
scribe below: an open XML-based schema system for
describing data types, and an efficient binary heteroge-
neous communication package.

4.1.1 XML and XML Schema

XML has been a focus of recent activity in scientific
and other computing communities due to its expres-
siveness in describing and representing arbitrarily com-
plex data structures in a machine-independent manner.
XML achieves this platform-independence in a lowest-
common-denominator manner, by representing all mes-
sages using ASCII text. Entities wishing to use XML to
communicate must be willing to convert any transmitted
data to and from ASCII. This conversion carries a sig-
nificant performance cost of its own, and the resulting
increase in size of the message to be physically transmit-
ted imposes a further penalty. There are several areas in
which the descriptive power available to systems using
XML in this manner outweighs the poor performance
of such systems, or where small data quantities remove
performance as an issue. However, empirical evidence
mitigates against the use of XML as a data transport lan-
guage for high-performance applications [1].

While using XML for data transport is not recommended
in high-performance applications, it is possible to ap-
ply XML as a metadata description language. Such an
XML description would name the structures to be trans-
mitted and their formats, while the actual data transmis-
sion would be performed in some other manner. XML
is also better suited as a data description language rather
than a data content language. For instance, when select-
ing from among several data streams, the nature (format)
of the information being sent along that stream is of pri-
mary importance in the selection process rather than the
content of the data itself.

The ability to use XML as a metadata definition lan-

guage for a fast binary transport mechanism provides
several advantages. First, it adds a great deal of flex-
ibility in the definition of message structures. Instead
of compiling a particular structure definition into a pro-
gram, a Uniform Resource Locator (URL) can be used
instead. The XML description of a message structure
(or multiple definitions contained in the same document)
can be retrieved and used to set up binary-format mes-
saging. Furthermore, a change in the message struc-
ture now becomes a change to the document indicated
by the URL, insulating the program from changes in
the message format. Second, with the message for-
mat represented in XML, the rapidly increasing set of
XML document display and manipulation tools can be
used. In particular, since the structure of a message
will be represented using XML, schema-checking tools
will be applicable to live messages received from other
parties. This ability could be used to determine which
of a set of structure definitions a message most closely
fits. Third, the abstraction process inherent in the use
of XML for metadata removes the need to consider
some platform-dependent features (for example, struc-
ture padding). XML-based metadata allows application
developers to concentrate more on the structure and con-
tent of the message and less on the details of the message
transport.

The benefits of using XML for the metadata definition
process arise from the ability to define arbitrary types
and compose such types into more complex ones. These
types are defined by associating Document Type Defi-
nition (DTD) documents with XML documents. DTDs
provide basic information about the structure of XML
documents, but not enough information to support the
type of structured data exchange in which we are inter-
ested. An additional disadvantage to using DTDs is that
they are not themselves XML documents, although it is
possible to parse them using commonly available XML
parsing software in a relatively straightforward manner.

Application programs draw from a well-understood set
of primitive types that can be used for composition: in-
teger, float, character, string (even if their specific defi-
nitions vary according to architecture and platform). In
order to use XML as a metadata language, a common
set of XML definitions must be used to describe the
data structures to be transmitted. It is possible to de-
rive a set of arbitrary definitions to be shared by all com-
municating parties in a system. However, in the inter-
ests of interoperability, we prefer to appeal to ongoing
open standards defintion efforts. One such effort is the
XML Schema[13] specification, under development by
the World Wide Web Consortium. XML Schema pro-
vides primitive types such as integer, string, and enu-

meration types that can be used to compose new abstract
data types. Using these annotations, enough informa-
tion can be obtained from an XML description of a data
structure to drive a fast binary data transport mechanism.

We believe that the use of XML Schema to define com-
munication message formats is a novel contribution, and
so we present some details of our approach below.

Composing Message Formats from Primitive Types
The basic XML Schema datatypes are referenced by us-
ing the XML namespace convention[12]. This makes
the entire set of data types in a namespace available to
the programmer.

The most “basic” message formats compose a set of data
items, each of primitive type, in a particular order to
form a message. The XML Schema tag complexType
is used to denote the definition of a new type1. The
message forms a type, which is given a name in XML
Schema using the name attribute in the complexType
tag.

Composing Message Formats from User-defined
Types Inclusion of data elements of a previously-
defined type in a new type is accomplished by referenc-
ing the name of an already-defined type in a new XML
Schema elementtag. Each elementtag includes a
type attribute, which is a character string. In order to
use an element of a previously defined type, the type
attribute is set to the name of the previously defined
complexType.

Array Types Array types are also specified using at-
tributes of the element tag. The type attribute is used
to specify the base data type for the array. The maxOc-
curs attribute is used to specify the array bounds, and
may have either a numeric or string value. If the value is
numeric, the value will be used as the absolute size of the
array. If the value is the wildcard character “*”, the array
is treated as dynamically-allocated. Lastly, if the value
is a string, an element of type xsd:integer with an
identical name attribute must be present in the structure
definition; the value of this variable will be used at run-
time to indicate the size of the array. This functionality
allows dynamically-allocated arrays to be specified.

1XML Schema does allow the definition of new simple types by
extension or restriction of primitive types, and these types can be used
in the definition of message formats, but we will not illustrate their use
here.

4.1.2 PBIO

The wire-format package we use is PBIO [3], developed
here at Georgia Tech. PBIO provides facilities for en-
coding application data structures so that they may be
transmitted in binary form over computer networks or
written to data files in a heterogeneous computing envi-
ronment. PBIO relies on compiled knowledge of struc-
ture metadata, embedded as language-level constructs
in the application program. While PBIO does have the
ability to select from among different metadata formats
for a specific encoded record, providing flexibility in the
face of small structure changes, we sought to remove
compiled-in structure formats as a requirement of its op-
eration. However, this ability allows us to retain robust-
ness in situations where remote metadata is unavailable
due to network, application, or machine failure. Using a
small set of compiled-in message formats, applications
can still conduct a basic level of communication (for ex-
ample, such formats could allow communication with a
configuration server or broker in order to determine a
new location from which to obtain metadata).

4.2 xml2wire

Our realization of the principles we've discussed in this
paper is a software tool called xml2wire. In this section,
we describe the implementation of this tool and how it is
used with an efficient binary communication package.

4.2.1 xml2wire Architecture

xml2wire consists of two main modules. The first mod-
ule is responsible for parsing XML documents contain-
ing format definitions and constructing an internal rep-
resentation of each format. Currently, XML documents
are processed by specifying their location in the local file
system; however, the architecture of the tool is designed
to accept documents indicated by URLs of remote net-
work locations. The second module converts the internal
representation of the discovered message formats into a
“native” metadata of the underlying BCM. Each mod-
ule is designed to accept a different compatible parsing
engines or BCM, respectively, with minimal integration
effort.

4.2.2 Generating and Registering PBIO Metadata

The parser module builds a list of information about the
fields as they are encountered in turn. For each message
field, a internal Field structure containing all the neces-
sary information to register that data element with PBIO
is generated. The Field structure is populated as follows:

Field Type The field type is determined from the type
attribute of the element tag. PBIO defines a set
of primitive data types such as “integer”, “float”,
“char”, and “string”. A straightforward mapping is
performed between the type attribute (which de-
notes one of the XML Schema data types) and a
corresponding PBIO type. One feature of PBIO
is that it separates the notion of field type from
that of field size; the data type specifies a marshal-
ing/unmarshaling technique to be applied irrespec-
tive of the size.

For data types that are built by composition of other
previously defined data types, a Catalog is kept of
known format definitions. The type attribute for
such a format contains a string which is the name of
the previously defined type, and this name is used
to retrieve size information from the Catalog.

Field Size Field size is determined by using the C
sizeof operator on the native data type result-
ing from the Field Type mapping performed in the
previous step. Note that there is no size informa-
tion specified in the XML format definition. This
provides a measure of architecture independence,
as “integer” may be a 2-word type on some ma-
chines and a 4-word type on others. By provid-
ing xml2wire as a run-time toolkit, we are able to
record the same size in a format as is used in the
application structures that format represents.

Field Offset A naive calculation of field offset simply
computes the offset of field � as the sum of the
sizes of fields � through ����� . However, this ap-
proach fails due to padding inserted by compilers to
generate more efficient code by ensuring that struc-
tures align on word boundaries. PBIO provides fa-
cilities to determine these offsets at compile time
through a macro which computes the offset accord-
ing to the structure layout produced by the com-
piler. xml2wire uses the type parameterization fea-
tures of C++ to accomplish this task with minimal
coding effort. A C++ template function is used to
produce this offset value for each data type consid-
ered by the tool.

Note that since the platform-dependent calculations are
carried out in the same manner and on the same machine
which will actually perform the PBIO calls, they are nec-
essarily correct for that machine.

After the entire metadata document has been parsed, a
list of Field structures exists that is a functional equiva-
lent to the XML metadata. This list is then used to gen-
erate and register PBIO-style metadata. As xml2wire
does not perform marshaling, the PBIO objects that rep-
resent the newly-registered format are made available to
the programmer for later use. Figure 2 illustrates this
process.

4.3 xml2wire vs. Generated Metadata

Systems that use IDLs (such as CORBA-based systems
and Sun RPC[8] to define data structures for all inter-
ested parties employ stub generators to convert the inter-
face definitions into code that performs marshaling and
unmarshaling. It would be straightforward to use XML
as a foundation for an IDL, using the XML Schema
datatypes and composition methods similar to those out-
lined here, and then convert that IDL into marshaling
stubs. However, it is unclear what such an XML-based
IDL would have to offer over existing IDL specifica-
tions, aside from simply being defined in XML. It is true
that IDL compilers could be written to retrieve interface
definition modules from remote locations, but as long
as compiled-code stubs are generated, applications will
still pay a penalty in the form of recompilation when for-
mats change. In contrast, metadata discovery systems
that operate at runtime (like xml2wire) allow applica-
tions to dynamically react to message format changes.

4.4 xml2wire in the Application Scenario

xml2wire can be used to address problems in the airline
operational information system depicted above in Fig-
ure 1. xml2wire is used as a run-time tool to discover
and register new message formats for use by the under-
lying BCM. Each participant in communication can dis-
cover metadata for any information stream and gain the
ability to subscribe to the stream using the event back-
bone. Figure 3 shows a potential system construction
relying on xml2wire for metadata discovery.

Newly created streams can make their metadata avail-
able as XML Schema documents on a publicly known
intranet server. The server can also be extended to

(wire format)
Buffer

XML
Metadata

xml2wire

PBIO Metadata

Descriptors
& Format

Application
Data

Encoded

 Field

 Field

 Field
 Field

 Field
 Format

 Field
 Format
Catalog

Figure 2. The xml2wire process. Metadata descriptions in XML are retrieved and converted
to a Catalog of Format and Field structures. PBIO (or possibly other BCM) metadata is then
generated from the Catalog.

dynamically generate metadata (recall that each piece
of metadata is an XML document) based on informa-
tion such as requestor location or authentication creden-
tials. With sufficient support from the BCM, this ability
can introduce “format-scoping” behaviors where certain
“slices” of each information stream are exposed or hid-
den based on attributes of each subscribing application.

5 Experimental Results

In this section, we discuss performance implications of
using XML as a metadata definition language (as op-
posed to a wire format). Previous research[1] has in-
dicated that the use of XML as a wire format is inap-
propriate for high-performance systems. This is one of
the motivating factors in the development of xml2wire:

Event Backbone

xml2wirexml2wire

XML Metadata

Capture Points

PBIO Binary−Format Structures

Figure 3. An Airline Operational Information System Using xml2wire

realizing that there are phases in the data communica-
tions process where choosing each side of the tradeoff
between flexibility and performance is appropriate. We

show that the metadata discovery phase as implemented
in xml2wire results in a large gain in usability with tol-
erable impact on performance.

Since the introduction of XML metadata into a system
whose communication is performed using PBIO doesn't
add any additional overhead to data transport, it isn't
meaningful to compare communications times of sys-
tems with and without such metadata. Any metadata-
related overhead occurs only at program startup; since
the approach we describe uses PBIO format registra-
tions derived from the provided XML format descrip-
tions, PBIO-based communications can continue as if
normal PBIO metadata were being used.

Table 1 characterizes the time required to parse and reg-
ister metadata for different structure sizes. Format reg-
istration time for xml2wire includes the time necessary
to parse the XML description of the format and regis-
ter the format with PBIO. Structure definitions and the
equivalent XML Schema representations can be found
in Appendix A.

Table 1 characterizes the time required to parse and reg-
ister metadata for different structure sizes. Format reg-
istration time for xml2wire includes the time necessary
to parse the XML description of the format and regis-
ter the format with PBIO. Structure definitions and the
equivalent XML Schema representations can be found in
Appendix A. Structure Size is the size of the language-
level structure in bytes. Encoded Size represents the
size of a buffer resulting from a marshal operation in
PBIO for each metadata approach.

Note that the time required to parse metadata grows pro-
portionally to the structure size. This indicates that the
raw overhead of xml2wire does not impose unduly on
the metadata discovery and registration process. This
experiment was conducted with the structure definitions
retrieved from an XML document available on the local
file system; network latencies for HTTP retrieval of the
document would increase the absolute time required for
discovery and retrieval. However, the increase should
still remain proportional to the size of the XML docu-
ment itself.

The final version of this paper will contain measure-
ments of end-to-end latency of communication between
two endpoints. These comparisons will illustrate that
the overhead introduced by using XML-based metadata
is negligible in the context of the total transmission time.

It is important to remember that metadata discovery and
registration only occurs at stream subscription time or
when metadata changes, and that the associated costs do
not recur with each message exchange in an xml2wire-
based system. This allows the increased cost of discov-
ery and registration to be amortized across the entire set

of messages sent using a particular metadata format. As
the number of messages sent in a particular format can
reasonably be expected to dominate the number of for-
mat discoveries and changes, this implies that the overall
effect on performance will be tolerable2.

6 Related Work

In a sense, most research on high-performance comput-
ing that involves the exchange of structured data is to
some degree related to our work. All such packages have
some facility for describing the structure of messages
that will be exchanged and governing the translation of
messages into a specific wire format. Their differences
with respect to this research lie in how they define and
manage this metadata, and to what degree they can make
use of efficient communication mechanisms.

Packages such as PBIO, PVM[6], and Nexus[5] support
language-level features for defining messages in which
the communicating applications “pack” and “unpack”
messages, building and decoding them field by field..
In such high performance communication packages, the
operational norm is for all parties to a communication
to have an a priori agreement on the format of mes-
sages exchanged. PBIO does support a form of restricted
evolution in message formats in which elements may be
added to message formats without causing receivers of
previous versions of the message to fail. Other pack-
ages, such as MPI[4], allow the creation of user-defined
datatypes for messages and fields and provide some mar-
shalling and unmarshalling support for them internally.

Another general class of communication systems use
IDLs to define the structure of messages. This class of
systems, including Sun RPC[8], and CORBA[7], pro-
vides an implementation-language-independent set of
datatypes that can be arbitrarily composed. The result-
ing structure definitions are processed by a code gener-
ator that produces implementation-language code that is
included in the application program. Our use of XML
Schema serves much the same purpose, with the added
benefits of interoperability and the active state of de-
velopment on analysis and verification tools. We note
that there is no available specification for automated ex-
change of IDL definitions, even though CORBA IDL is

2Note also that in both compiled-metadata and IDL-metadata sys-
tems, format changes require human intervention at every source and
sink point (in the form of recompilation of systems that cannot cope
with the format changes). The resulting effect on end-to-end latency
is, at best, non-trivial.

Structure Size (bytes) Encoded Size Format Registration Time (ms)
PBIO xml2wire PBIO xml2wire

32 72 72 .102 .191
52 104 104 .110 .225

180 268 268 .158 .304

Table 1. Format registration costs using xml2wire and PBIO

relatively mature; by contrast, exchanging metadata de-
fined in XML leverages (nearly) ubiquitous HTTP trans-
port services.

A third class of systems uses object systems technology,
providing for some amount of plug-and-play interoper-
ability through subclassing and reflection. This is a sig-
nificant advantage in building loosely coupled systems,
but they tend to suffer when it comes to communication
efficiency. For example, CORBA-based object systems
use IIOP as a wire format. IIOP attempts to reduce mar-
shalling overhead by adopting a “reader-makes-right”
approach with respect to byte order (the actual byte order
used in a message is specified by a header field). This ad-
ditional flexibility in the wire format allows CORBA to
avoid unnecessary byte-swapping in message exchanges
between homogeneous systems but is not sufficient to al-
low such message exchanges without copying of data at
both sender and receiver. xml2wire compares favorably
to this class of systems. Both commercially [14] and
freely available XML-parsing packages [2, 9] allow run-
time investigation of message formats, providing func-
tionality equivalent to reflection. Also, our integration
with an efficient wire-format provides high-performance
communication.

While all of the communication systems above rely on
some form of a fixed wire format for communication,
systems using XML as a wire format[10] take a differ-
ent approach to communication flexibility. Rather than
transmitting data in binary form, their wire format is
ASCII text, with each record represented in textual form
with header and trailer information identifying each
field. This allows applications to communicate with no a
priori knowledge of each others. However, XML encod-
ing and decoding costs are substantially higher that those
of other formats due to the conversion of data from bi-
nary, im-memory format to ASCII and vice-versa. In ad-
dition, XML has substantially higher network transmis-
sion costs because the ASCII-encoded record is larger,
often substantially larger, than the binary original (an ex-
pansion factor of 6-8 is not unusual [1].

7 Summary, Conclusions and Future
Work

This paper has presented the motivation for and details
of the implementation of xml2wire, a tool for run-time
discovery of metadata for high-performance communi-
cations. In addition, we have detailed a original method
of constructing metadata based on data types taken from
the XML Schema specification. We have shown that def-
inition of metadata using our approach is conceptually
simpler than relying on language-level metadata mecha-
nisms, and that the overhead of using xml2wire is tolera-
ble, especially when used in systems with large amounts
of message traffic.

Currently the system we have built relies on the exis-
tence of XML description documents on a file system
directly accessible by the programs using them. It is
our intention to add a format registration mechanism
on top of PBIO that incorporates the HTTP protocol so
that the XML descriptions of PBIO formats can be re-
trieved from remote locations in the same manner that
web browsers retrieve other XML documents. We also
intend to explore dynamic incorporation of new message
formats into applications at run-time, as well as genera-
tion of language-level message object representations in
both the C++ and a planned Java version of xml2wire.

References

[1] Fabian Bustamante, Greg Eisenhauer, Karsten
Schwan, and Patrick Widener. Efficient wire for-
mats for high performance computing. In Proceed-
ings of Supercomputing 2000, November 2000. To
appear.

[2] James Clark. expat - xml parser toolkit.
http://www.jclark.com/xml/expat.html.

[3] Greg Eisenhauer and Lynn K. Daley. Fast
heterogenous binary data interchange. In

Proceedings of the Heterogeneous Comput-
ing Workshop (HCW2000), May 3-5 2000.
http://www.cc.gatech.edu/systems/papers/Eisenhauer00FHB.pdf.

[4] Message Passing Interface (MPI) Forum. MPI: A
message passing interface standard. Technical re-
port, University of Tennessee, 1995.

[5] I. Foster, C. Kesselman, and S. Tuecke. The nexus
approach to integrating multithreading and com-
munication. Journal of Parallel and Distributed
Computing, pages 70–82, 1996.

[6] Al Geist, Adam Beguelin, Jack Dongarra, We-
icheng Jiang, Robert Manchek, and Vaidy Sun-
deram. PVM 3 Users Guide and Reference man-
ual. Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, May 94.

[7] Object Management Group. Com-
mon object request broker architecture.
http://www.omg.org/corba2/.

[8] Sun Microsystems. Xdr: External data representa-
tion standard. IETF RFC 1014.

[9] The Apache XML Project. Xerces xml parser.
http://xml.apache.org/xerces-c/index.html.

[10] Inc. UserLand Software. Xml-rpc specification.
http://www.xmlrpc.com/spec/.

[11] The World Wide Web Consortium
(W3C). The extensible markup language.
http://www.w3.org/TR/1998/REC-xml-19980210,
1998.

[12] World Wide Web Consortium (W3C). Names-
paces in xml. http://www.w3.org/TR/1999/REC-
xml-names/.

[13] World Wide Web Consortium (W3C). Xml
schema. http://www.w3.org/XML/Schema/.

[14] www.xml.com Buyer's Guide. Xml.com - buyer's
guide. http://www.xml.com/pub/buyersguide/.

A Structure, PBIO Metadata, and XML
Schema Definitions

typedef struct asdOff_s
{
char* cntrId;
char* arln;
int fltNum;
char* equip;
char* org;
char* dest;
unsigned long off;
unsigned long eta;

} asdOff;

Figure 4. Structure A with no arrays and no nesting.

IOField asdOffFields[] =
{
{ "cntrID", "string", sizeof (char*), IOOffset (asdOffptr, cntrId) },
{ "arln", "string", sizeof (char*), IOOffset (asdOffptr, arln) },
{ "fltNum", "integer", sizeof (int), IOOffset (asdOffptr, fltNum) },
{ "equip", "string", sizeof (char*), IOOffset (asdOffptr, equip) },
{ "org", "string", sizeof (char*), IOOffset (asdOffptr, org) },
{ "dest", "string", sizeof (char*), IOOffset (asdOffptr, dest) },
{ "off", "integer", sizeof (unsigned long), IOOffset (asdOffptr, off) },
{ "eta", "integer", sizeof (unsigned long), IOOffset (asdOffptr, eta) },
{ NULL, NULL, 0, 0 }

};

Figure 5. PBIO metadata for Structure A.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"
targetNamespace="http://www.cc.gatech.edu/�pmw/schemas">

<xsd:annotation>
<xsd:documentation>
ASDOff
</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="ASDOffEvent">
<xsd:element name="cntrID" type="xsd:string" />
<xsd:element name="arln" type="xsd:string" />
<xsd:element name="fltNum" type="xsd:integer" />
<xsd:element name="equip" type="xsd:string" />
<xsd:element name="org" type="xsd:string" />
<xsd:element name="dest" type="xsd:string" />
<xsd:element name="off" type="xsd:unsigned-long" />
<xsd:element name="eta" type="xsd:unsigned-long" />

</xsd:complexType>

</xsd:schema>

Figure 6. XML Schema-based metadata for Structure A.

typedef struct asdOff_s
{
char* cntrId;
char* arln;
int fltNum;
char* equip;
char* org;
char* dest;
unsigned long off[5];
unsigned long *eta;
int eta_count;

} asdOff;

Figure 7. Structure B with static and dynamically-allocated arrays.

IOField ASDOffFields[] =
{
{ "cntrID", "string", sizeof (char*), IOOffset (asdOffptr, cntrId) },
{ "arln", "string", sizeof (char*), IOOffset (asdOffptr, arln) },
{ "fltNum", "integer", sizeof (int), IOOffset (asdOffptr, fltNum) },
{ "equip", "string", sizeof (char*), IOOffset (asdOffptr, equip) },
{ "org", "string", sizeof (char*), IOOffset (asdOffptr, org) },
{ "dest", "string", sizeof (char*), IOOffset (asdOffptr, dest) },
{ "off", "integer[5]", sizeof (unsigned long), IOOffset (asdOffptr, off) },
{ "eta", "integer[eta_count]", sizeof (unsigned long), IOOffset (asdOffptr, eta) },
{ "eta_count", "integer", sizeof (unsigned long), IOOffset (asdOffptr, eta_count) },
{ NULL, NULL, 0, 0 }

};

Figure 8. PBIO metadata for Structure B.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"
targetNamespace="http://www.cc.gatech.edu/�pmw/schemas">

<xsd:annotation>
<xsd:documentation>
ASDOff
</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="ASDOffEvent">
<xsd:element name="cntrID" type="xsd:string" />
<xsd:element name="arln" type="xsd:string" />
<xsd:element name="fltNum" type="xsd:integer" />
<xsd:element name="equip" type="xsd:string" />
<xsd:element name="org" type="xsd:string" />
<xsd:element name="dest" type="xsd:string" />
<xsd:element name="off" type="xsd:unsigned-long" minOccurs="5" maxOccurs="5" />
<xsd:element name="eta" type="xsd:unsigned-long" minOccurs="0" maxOccurs="*" />

</xsd:complexType>

</xsd:schema>

Figure 9. XML Schema-based metadata for Structure B.

typedef struct asdOff_s
{
char* cntrId;
char* arln;
int fltNum;
char* equip;
char* org;
char* dest;
unsigned long off[5];
unsigned long *eta;
int eta_count;

} asdOff;

typedef struct threeAsdOff_s
{
asdOff one;
double bart;
asdOff two;
double lisa;
asdOff three;

} threeAsdOffs;

Figure 10. Structures C and D with arrays and composition by nesting.

IOField ASDOffFields[] =
{
{ "cntrID", "string", sizeof (char*), IOOffset (asdOffptr, cntrId) },
{ "arln", "string", sizeof (char*), IOOffset (asdOffptr, arln) },
{ "fltNum", "integer", sizeof (int), IOOffset (asdOffptr, fltNum) },
{ "equip", "string", sizeof (char*), IOOffset (asdOffptr, equip) },
{ "org", "string", sizeof (char*), IOOffset (asdOffptr, org) },
{ "dest", "string", sizeof (char*), IOOffset (asdOffptr, dest) },
{ "off", "integer[5]", sizeof (unsigned long), IOOffset (asdOffptr, off) },
{ "eta", "integer[eta_count]", sizeof (unsigned long), IOOffset (asdOffptr, eta) },
{ "eta_count", "integer", sizeof (unsigned long), IOOffset (asdOffptr, eta_count) },
{ NULL, NULL, 0, 0 }

};

IOField threeASDOffFields[] =
{
{ "one", "ASDOffEvent", sizeof (asdOff), IOOffset (twoAsdOffsPtr, one) },
{ "bart", "double", sizeof (double), IOOffset (twoAsdOffsPtr, bart) },
{ "two", "ASDOffEvent", sizeof (asdOff), IOOffset (twoAsdOffsPtr, two) },
{ "lisa", "double", sizeof (double), IOOffset (twoAsdOffsPtr, lisa) },
{ "three", "ASDOffEvent", sizeof (asdOff), IOOffset (twoAsdOffsPtr, three) },
{ NULL, NULL, 0, 0 }

};

Figure 11. PBIO metadata for Structures C and D.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"
targetNamespace="http://www.cc.gatech.edu/�pmw/schemas">

<xsd:annotation>
<xsd:documentation>
ASDOff
</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="ASDOffEvent">
<xsd:element name="cntrID" type="xsd:string" />
<xsd:element name="arln" type="xsd:string" />
<xsd:element name="fltNum" type="xsd:integer" />
<xsd:element name="equip" type="xsd:string" />
<xsd:element name="org" type="xsd:string" />
<xsd:element name="dest" type="xsd:string" />
<xsd:element name="off" type="xsd:unsigned-long" minOccurs="5" maxOccurs="5" />
<xsd:element name="eta" type="xsd:unsigned-long" minOccurs="1" maxOccurs="*" />

</xsd:complexType>

<xsd:complexType name="threeASDOffs">
<xsd:element name="one" type="ASDOffEvent" />
<xsd:element name="bart" type="xsd:double" />
<xsd:element name="two" type="ASDOffEvent" />
<xsd:element name="lisa" type="xsd:double" />
<xsd:element name="three" type="ASDOffEvent" />

</xsd:complexType>

</xsd:schema>

Figure 12. XML Schema-based metadata for Structures C and D.

