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The Internet and the Grid are changing the face of high performance computing. Rather than tightly-coupled

SPMD-style components running in a single cluster, on a parallel machine, or even on the Internet programmed in

MPI, applications are evolving into sets of cooperating components scattered across diverse computational elements.

These components may run on different operating systems and hardware platforms and may be written by different

organizations in different languages. Complete “applications” are constructed by assembling these components in a

plug-and-play fashion. This new vision for high performance computing demands features and characteristics not easily
provided by traditional high-performance communications middleware. In response to these needs, we have developed

ECho, a high-performance event-delivery middleware that meets the new demands of the Grid environment. ECho

provides efficient binary transmission of event data with unique features that support data-type discovery and enterprise-

scale application evolution. We present measurements detailing ECho’s performance to show that ECho significantly
outperforms other systems intended to provide this functionality and provides throughput and latency comparable to

the most efficient middleware infrastructures available.

1. Introduction

Wide area distributed computing has been a strong
focus of research in high performance computing, re-
sulting in the development of software infrastructures
like PVM, MPI, and Globus, and in the creation of
the National Machine Room and the Grid by DOE and
NCSA/Alliance researchers. Increasingly, research fo-
cus in this domain has turned towards component ar-
chitectures [2] which facilitate the development of com-
plex applications by allowing the creation of generic
reusable components and by easing independent com-
ponent development. Some of the earliest requirements
for component architectures in high-performance com-
puting were derived from systems that attach scientific
visualizations to running computations, but continu-
ing research has generalized such models to include the
ability to flexibly link general purpose computational
elements as well [22,24,2]. Component-based software
development has been proposed by the software engi-
neering community over the last decade [25,29] and its
advantages have been widely recognized in industry, re-
sulting in the development of systems such as Enterprise
Java Beans, Microsoft’s Component Object Model and
its distributed extension (DCOM), and the developing
specification of the CORBA Component Model (CCM)
in OMG’s CORBA version 3.0.

A common technique for integrating the different
components of a system is event-based invocation, also
known as implicit or reactive invocation, which has his-
torical roots in systems based on actors [15], daemons,
and packet-switched networks. Event-based integration
is attractive as it strongly supports software reuse and

facilitates system evolution [12,11]. In bringing the ben-
efits of component-based software development to the
domain of high-performance computing, our work does
not seek to create a complete component framework.
Instead, we have concentrated on providing the integra-
tion mechanism that will allow the community to obtain
the advantages of such architectures while maintaining
high performance.

This paper discusses the results of our work, an ef-
ficient event-based middleware, ECho, through which
systems of distributed collaborating components can be
constructed. Several attributes of ECho distinguish it
from related work:

High performance sharing of distributed data.
ECho transports distributed data with performance
similar to that achieved by systems like MPI. This level
of performance is required if the integration mechanism
is to support the normally large data flows that are part
of high performance applications. For a distributed vi-
sualization, for example, this level of performance en-
ables end users to interact via meaningful data sets gen-
erated at runtime by the computational models being
employed.

This paper demonstrates ECho’s high performance
across heterogeneous hardware platforms, using net-
worked machines resident at Georgia Tech. In previous
work, we have used ECho in Internet-wide collabora-
tions[17], and we have demonstrated its ability to rep-
resent both the control and the data events occurring
in distributed computational workbenches.



2 G. Eisenhauer, et al. / Event Services in High Performance Systems

Dynamic data provision and consumption. ECho
supports the publish/subscribe model of communica-
tion. Thus new components can be introduced into an
ECho-based system simply by registering them to the
right set of events in the system, without need for re-
compilation or re-linking. In addition, components can
be dynamically replaced without affecting other com-
ponents in the system, facilitating system evolution.
Event-based publish/subscribe models like the one of-
fered by ECho have become increasingly popular and
their utility within a variety of other environments,
including Internet- and E-commerce applications[30],
extensible systems[23], collaborative systems[14], dis-
tributed virtual reality[19] and mobile systems[32], has
been well-established. ECho differs from such ongoing
or past research in its efficient support for event trans-
mission across heterogeneous machines, derived from
its ability to recognize and provide runtime translation
for user-defined event formats. While systems like In-
foBus[20] and Schooner[16] have demonstrated the util-
ity of making type information available to middleware,
neither have attempted to attain the high performance

achieved by ECho.

Dynamic type extension and reflection. One of
the major features differentiating component-based ap-
plications from their tightly-coupled kin is the relative
lack of a priori knowledge about data flows. In order to
be able to “drop” a component into place in a system,
the component must be able to discover the contents
of the data flows it is to operate upon. Even the parts
of an application that were designed to work together
face difficulty maintaining a priori knowledge in a wide
area Grid environment. As different pieces of an ap-
plication are changed or upgraded over time it may be
necessary to modify their data flows, invalidating other
pieces that rely on previous knowledge and/or requir-
ing their simultaneous upgrade. Because of these diffi-
culties, component-based systems typically provide an
integration mechanism that offer some degree of type
extenston and reflection. Those terms, borrowed from
object-oriented systems, express the ability to transpar-
ently extend existing data types while preserving the va-
lidity of code using the old type (type extension) and the
ability for third parties to discover the contents of and
operate upon a data type without a prior: knowledge
(reflection). One of the most important contributions
of ECho is that it provides these features without com-
promising performance, as measurements in this paper
will demonstrate.

Interoperability. ECho-based applications can also
interoperate with CORBA- or Java-based components,
like those used in the Diesel Combustion Collaboratory
or the Hydrology workbench. Thus, end users can con-
tinue to employ tools like the Java-based VisAD data
visualization system or the CORBA-based collabora-

tion services in Deepview, but gain high performance
for data movement (in contrast to event rates attained
for CORBA- or Java-based event systems[3,31]). Inter-
operability with Java- and CORBA-based systems will
be demonstrated elsewhere.

ECho has been available since October 1997, and our
group has used 1t for various large-scale, ongoing devel-
opment and research efforts. Among such efforts, of
principal interest to the high performance community
are the atmospheric and hydrology applications men-
tioned earlier as well as two additional ones now be-
ing developed by our group: (1) a distributed materi-
als design workbench, where multiple end users interact
with each other and with computational tools in order
to jointly design high performance materials, and (2)
a distributed implementation of an N'T-Unix-spanning
system for molecular dynamics and/or for crystal plas-
ticity studies done by collaborators in the departments
of Mechanical Engineering and Physics in Georgia Tech.
Finally, ECho events are one of the key building blocks
of the DARPA-funded Infosphere Information Technol-
ogy Expedition|[26].

The remainder of this paper is organized as follows.
Section 2 describes ECho’s basic functionality. Sec-
tion 3 compares ECho’s event delivery performance to
that of other communication systems which offer some
form of type extension and reflection. In particular, we
examine the performance of a set of middleware systems
which might be considered as alternative candidates for
the integration mechanism of a component infrastruc-
ture, including CORBA event channels, event distribu-
tion via Java’s RMI, and an XML-based communication
scheme; comparing the basic latency of each to that of
ECho and using an MPI message exchange as a baseline
for measurement. We also study the impact of machine
heterogeneity on ECho’s performance and explore the
effects of its type extension features. Finally, Section 4
discusses some key areas of future work and summarizes
our conclusions.

2. ECho Functionality

ECho shares semantics common to a class of event
delivery systems that use channel-based subscriptions.
That is, an event channel is the mechanism through
which event sinks and sources are matched. Source
clients submit events to a specific channel and only
the sink clients subscribed to that channel are notified
of the event. Channels are essentially entities through
which the extent of event propagation is controlled. The
CORBA Event Service[13] is also channel-based, with
channels being distributed objects.
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Figure 1. Using Event Channels for Communication.

2.1. Efficient Event Propagation

Unlike many CORBA event implementations and
other event services such as Elvin[28], ECho event chan-
nels are not centralized in any way. Instead, channels
are light-weight virtual entities. Figure la depicts a set
of processes communicating using event channels. The
event channels are shown as existing in the space be-
tween processes, but in practice they are distributed
entities, with bookkeeping data residing in each pro-
cess where they are referenced as depicted in Figure 1b.
Channels are created once by some process, and opened
anywhere else they are used. The process which cre-
ates the event channel is distinguished, in that it is
the contact point for other processes wishing to use
the channel. The channel ID, which must be used to
open the channel, contains the contact information for
the creating process (as well as information identify-
ing the specific channel). However, event distribution is
not centralized and there are no distinguished processes
during event propagation. Event messages are always
sent directly from an event source to all sinks and net-
work traffic for individual channels is multiplexed over
shared communications links.

ECho is implemented on top of DataExchange[10]
and PBIO[8], packages developed at Georgia Tech to
simplify connection management and heterogeneous bi-
nary data transfer. As such, it inherits from these pack-
ages portability to different network transport layers
and threads packages. DataExchange and PBIO oper-
ate across the various versions of Unix and Windows
NT, have been used over the TCP/IP, UDP, and ATM
communication protocols and across both standard and
specialized network links like ScramNet[6].

In addition to offering interprocess event delivery,
ECho also provides mechanisms for associating threads
with event handlers allowing a form of intra-process

communication. Local and remote sinks may both ap-
pear on a channel, allowing inter- and intra-process
communication to be freely mixed in a manner that
is transparent to the event sender. When sources and
sinks are within the same address space, an event is de-
livered by directly placing the event into the appropri-
ate shared-memory dispatch queue. While this intra-
process delivery can be valuable, this paper concen-
trates on the aspects of ECho relating to remote de-
livery of events.

2.2. Event Types and Typed Channels

One of the differentiating characteristics of ECho is
its support for efficient transmission and handling of
fully typed events. Some event delivery systems leave
event data marshalling to the application. ECho al-
lows types to be associated with event channels, sinks
and sources and will automatically handle heteroge-
neous data transfer issues. Building this functionality
into ECho using PBIO allows for efficient layering that
nearly eliminates data copies during marshalling and
unmarshalling. As others have noted[18], careful layer-
ing to minimize data copies is critical to delivering full
network bandwidth to higher levels of software abstrac-
tion. The layering with PBIO is a key feature of ECho
that makes it suitable for applications which demand
high performance for large amounts of data.

Base Type Handling and Optimization. Functionally,
ECho event types are most similar to user defined types
in MPI. The main differences are in expressive power
and implementation. Like MPI’s user defined types,
ECho event types describe C-style structures made up
of atomic data types. Both systems support nested
structures and statically-sized arrays. ECho’s type sys-
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Figure 2. A comparison of latency in basic data exchange in event
infrastructures

tems extends this to support null-terminated strings
and dynamically sized arrays.

While fully declaring message types to the underly-
ing communication system gives the system the oppor-
tunity to optimize their transport, MPI implementa-
tions typically do not exploit this opportunity and of-
ten transport user defined types even more slowly than
messages directly marshalled by the application. In
contrast, ECho and PBIO achieve a performance ad-
vantage by avoiding XDR, ITIOP or other ’wire’ repre-
sentations different than the native representation of
the data type. Instead, ECho and PBIO use a wire
format that is equivalent to the native data represen-
tation (NDR) of the sender. Conversion to the native
representation of the receiver is done upon receipt with
dynamically generated conversion routines. As the mea-
surements in [4] show, PBIO ’encode’ times do not vary
with data size and ’decode’ times are much faster than
MPI. Because as much as two-thirds of the latency in a
heterogeneous message exchange is software conversion
overhead[4], PBIO’s NDR approach yields round-trip
message latencies as low as 40% of that of MPI.

Type Extension. ECho supports the robust evolution
of sets of programs communicating with events, by al-
lowing variation in the data types associated with a
single channel. In particular, an event source may sub-
mit an event whose type is a superset of the event type
associated with its channel. Conversely, an event sink
may have a type that is a subset of the event type as-
sociated with its channel. Essentially this allows a new
field to be added to an event at the source without inval-
idating existing event receivers. This functionality can
be extremely valuable when a system evolves because
it means that event contents can be changed without
the need to simultaneously upgrade every component

1 In the case of dynamically sized arrays, the array size is given
by an integer-typed field in the record. Full information about
the types supported by ECho and PBIO can be found in [8].
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Figure 3. A comparison of delivered bandwidth in event infras-
tructures

to accommodate the new type. ECho even allows type
variation in intra-process communication, imposing no
conversions when source and sink use identical types but
performing the necessary transformations when source
and sink types differ in content or layout.

The type variation allowed in ECho differs from
that supported by message passing systems and intra-
address space event systems. For example, the Spin
event system [23] supports only statically typed events.
Similarly, MPI’s user defined type interfaces do not of-
fer any mechanisms through which a program can in-
terpret a message without a priori knowledge of its con-
tents. Additionally, MPI performs strict type matching
on message sends and receives, specifically prohibiting
the type variation that ECho allows.

In terms of the flexibility offered to applications,
ECho’s features most closely resemble the features of
systems that support the marshalling of objects as mes-
sages. In these systems, subclassing and type extension
provide support for robust system evolution that is sub-
stantively similar to that provided by ECho’s type vari-
ation. However, object-based marshalling often suffers
from prohibitively poor performance. ECho’s strength
is that it maintains the application integration advan-
tages of object-based systems while significantly out-
performing them. As the measurements in the next
section will show, ECho also outperforms more tradi-
tional message-passing systems in many circumstances.

3. ECho Performance
3.1. Breakdown of Costs

Figures 2 and 3 represent the basic performance char-
acteristics of a variety of communication infrastructures
that might be used for event-based communication in
high performance applications. The values are of basic
event latency and bandwidth in an environment con-
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ECho CORBA MPICH XML
(ORBacus)
Total Round-Trip 30.6 53.0 80.1 1249
Sparc Encode 0.037 0.74 13.3 176
Network Transfer 13.9 13.9 13.9 182
x86 Decode 1.6 1.6 11.6 276
x86 Encode 0.015 0.64 8.9 124
Network Transfer 13.9 13.9 13.9 182
Sparc Decode 1.2 0.58 15.4 486
Table 1

Cost breakdown for heterogeneous 100Kb event exchange (times
are in milliseconds).

sisting of a x86-based PC and a Sun Sparc connected
by 100 Mbps Ethernet.? Note the use of a logarithmic
vertical scale in Figure 2. This is useful in presenting la-
tencies for a range of message sizes on the same graph,
but it tends to minimize the substantial performance
advantage that ECho demonstrates as compared to the
other infrastructures.

The infrastructures compared don’t all share the
same characteristics and features, a fact that accounts
for some of their performance differences. ECho’s
strength is that it provides the important features
of these systems while maintaining the performance
achieved by traditional high-performance systems like
MPICH.

In particular, ECho provides for event type discov-
ery and dynamic type extension in a manner similar to
that of XML, or that which can be achieved by serializ-
ing objects as events (as in Java RMI). CORBA is also
gaining acceptance as distributed systems middleware
and its Event Services provide similar features. This
section will examine ECho’s performance characteris-
tics in more detail and contrast them with these other
infrastructures.

Table 1 shows a breakdown of costs involved in the
roundtrip event latency measures of Figure 2. We
present round-trip times because they naturally show
all the combinations of send/recv on two different ar-
chitectures in a heterogeneous system. The time com-
ponents labeled “Encode” represent the span of time
between an application submitting data for transmis-
sion and the point at which the infrastructure invokes
the underlying network ’send()’ operation. The “Net-
work Transfer” times are the one-way times to trans-
mit the encoded data from sending to receiving ma-
chines. The “Decode” times are the time between the
end of the “recv()” operation and the point at which
the data is presented to the application in a usable form.
This breakdown 1is useful for understanding the different
costs of the communication and in particular, how they
might change with different networks or processors.

2 The Sun machine is an Ultra 30 with a 247 MHz cpu running
Solaris 7. The x8 machine is a 450 MHz Pentium 11, also
running Solaris 7.
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Figure 4. Send-side data encoding times.

We have excluded Java RMI from the breakdown in
Table 1 because it performs its network ’send()’ op-
erations incrementally during the marshalling process.
This allows Java to pipeline the encode and network
send operations making a simple cost breakdown impos-
sible. However, as a result of this design decision, Java
RMI requires tens of thousands of kernel calls to send
a 100Kb message, seriously impacting performance.

Additionally, while the round-trip times listed in Ta-
ble 1 are near the sum of the encode/xmit/decode times,
this is not true for the CORBA numbers. This is
because implementations of the CORBA typed event
channel service typically rely on CORBA’s dynamic in-
vocation interface to operate. In the ORBs we have ex-
amined, DII does not function for intra-address-space
invocations. The result of this is that the CORBA
typed event channel must reside in a different address
space than either the event source or event sink, adding
an extra hop to every event delivery. This could be
considered an implementation artifact that might be
handled differently in future CORBA event implemen-
tations.

3.1.1. Sending side costs

ECho’s most significant performance feature is its use
of the native data format on the sending architecture
as its ‘wire format’. The effects of this approach are
most noticeable when comparing the “Encode” times
for the different communication infrastructures. Fig-
ure 4 expands upon the summary data of Table 1 and
shows sender-side data encoding costs for a variety of
communications systems. For example, MPICH uses a
very slow interpreted marshalling procedure for hetero-
geneous communication of MPT user-defined data types.
That this has a significant impact on MPICH perfor-
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mance 1s apparent in Table 1 which shows MPICH de-
voting as much as 60% of its round-trip message time
to encoding and decoding.

CORBA’s ITOP wire format differs from the architec-
tures’ native data layout in its alignment requirements.
As a result, CORBA must copy all application data be-
fore sending. In ORBacus, this copy is performed by
compile-time-generated stub code, resulting in better
performance than with the MPICH approach. How-
ever, ECho is significantly faster because it performs
very little processing prior to the network send opera-
tion.

Using XML as a wire format is obviously a decision
which has a significant performance impact on an event
system. Table 1 makes clear two of the most signif-
icant issues: the large encode/decode times, and the
expanded network transmission times. The former is
a result of the distance between the ASCII represen-
tation used by XML and the native binary data repre-
sentation. XML encoding costs represent the processing
necessary to convert the data from binary to string form
and to copy the element begin/end blocks into the out-
put string. Just one end of the encoding time for XML
i1s several times as expensive as the entire round-trip
message exchange for the other infrastructures. Net-
work transmission time is also significantly higher for
XML because the ASCII-encoded data (plus the be-
gin/end labels) can be much larger than the equivalent
binary representation. How much larger depends upon
the data, the size of the field labels and other details
in the encoding. Thus, XML-based schemes transmit
more data than schemes which rely on binary encoding.

3.2. Recewving side costs

ECho’s NDR approach to binary data exchange elim-
inates sender-side processing by transmitting in the
sender’s native format and isolating the complexity of
managing heterogeneity in the receiver. As a result, the
receiver must perform conversion of the various incom-
ing ‘wire’ formats to its ‘native’ format. Such a conver-
sion may require byte-order changes (byte-swapping),
movement of data from one offset to another, or even a
change in the basic size of the data type (for example,
from a 4-byte integer to an 8-byte integer).

This conversion is another form of the
ing problem” that occurs widely in RPC implementa-
tions[1] and in network communication. Marshaling can
be a significant overhead[7,27], and tools like USC[21]
attempt to optimize marshaling with compile-time so-
lutions. Unfortunately, the dynamic form of the mar-
shaling problem in ECho, where the layout and even
the complete field contents of the incoming record are
unknown until run-time, rules out such static solutions.
The conversion overhead is nil for some homogeneous
data exchanges, but as Table 1 shows, can be signif-

“marshal-

icantly high for some heterogeneous exchanges (up to
66%).

Generically, receiver-side overhead in communication
middleware has several components:

e byte-order conversion,
e data movement costs, and

e control costs.

Byte order conversion costs are to some extent unavoid-
able. If the communicating machines use different byte
orders, the translation must be performed somewhere
regardless of the capabilities of the communications
package.

Data movement costs are harder to quantify. If byte-
swapping is necessary, data movement can be performed
as part of the process without incurring significant addi-
tional costs. Otherwise, clever design of the communi-
cations middleware can often avoid copying data. How-
ever, packages that define a ‘wire format’ for transmit-
ted data have a harder time being clever in this area.
One of the basic difficulties is that the native format
for mixed-datatype structures on most architectures has
gaps, unused areas between fields, inserted by the com-
piler to satisfy data alignment requirements. To avoid
making assumptions about the alignment requirements
of the machines they run on, most packages use wire for-
mats which are fully packed and have no gaps. This mis-
match forces a data copy operation in situations where
a clever communications system might otherwise have
avoided it.

Control costs represent the overhead of iterating
through the fields in the record and deciding what to
do next. Packages that require the application to mar-
shal and unmarshal their own data have the advantage
that this process occurs in special-purpose compiler-
optimized code, minimizing control costs. However, to
keep that code simple and portable, such systems uni-
formly rely on communicating in a pre-defined wire for-
mat, therefore incurring the data movement costs de-
scribed in the previous paragraph.

Packages that marshal data themselves typically use
an alternative approach to control, where the marshal-
ing process is controlled by what amounts to a table-
driven interpreter. This interpreter marshals or unmar-
shals application-defined data, making data movement
and conversion decisions based upon a description of the
structure provided by the application and 1ts knowledge
of the format of the incoming record. This approach to
data conversion gives the package significant flexibility
in reacting to changes in the incoming data and was our
initial choice when implementing the PBIO technology
ECho is based on.

XML necessarily takes a different approach to receiver-
side decoding. Because the ‘wire’ format is a continuous
string, XML is parsed at the receiving end. The Expat
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Figure 5. Receiver side costs for XML, MPI and NDR. (Logarith-

mic scale used in vertical dimension)

XML parser?[5] calls handler routines for every data el-
ement in the XML stream. That handler can interpret
the element name, convert the data value from a string
to the appropriate binary type and store it in the ap-
propriate place. This flexibility makes XML extremely
robust to changes in the incoming record. The parser
we have employed is quite fast, but XML still pays a
relatively heavy penalty for requiring string-to-binary
conversion on the receiving side. (We assume that for
most high performance computing functions, data is be-
ing sent somewhere for processing and that processing
requires the event data to be in other than string form.
Thus, XML decoding is not just parsing, but also the
equivalent of a C strtod() or similar operation to con-
vert the data into native representation.)

Comparison of receiver-side costs for XML,
ECho, and non-optimized ECho wire formats.
Figure 5 shows a comparison of receiver-side processing
costs on the Sparc for interpreted converters used by
XML, MPICH (via the MPI_Unpack()) call, and NDR.
XML receiver conversions are clearly expensive, typi-
cally between one and two orders of decimal magnitude
more costly than our NDR-based converter for this het-
erogeneous exchange. (For an exchange between ho-
mogeneous architectures, ECho and MPI would have
substantially lower costs, while XML’s costs would re-
main unchanged.) Our NDR-based converter is rela-
tively heavily optimized and performs considerably bet-
ter than MPI, in part because MPICH uses a separate
buffer for the unpacked message rather than reusing the
receive buffer (as we do). However, ECho’s receiver-side
conversion costs still contribute roughly 20% of the cost

3 A variety of implementations of XML, including both XML gen-
erators and parsers, are available. We have used the fastest
known to us at this time, Expat [5].
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Figure 6. Receiver side costs for interpreted conversions in MPI

and ECho and DCG conversions in ECho.

of an end-to-end message exchange. While a portion of
this conversion overhead must be the consequence of
the raw number of operations involved in performing
the data conversion, a significant fraction of this over-
head is due to the fact that the conversion is essentially
being performed by an interpreter.

Optimizing receiver-side costs for ECho. Our
decision to transmit data in the sender’s native for-
mat results in the wire format being unknown to the
receiver until run-time, requiring a somewhat costly in-
terpreted conversion. Qur solution to this problem to
the problem is to employ dynamic code generation to
create a customized conversion subroutine for every in-
coming record type?. These routines are generated by
the receiver on the fly, as soon as the wire format is
known.

The execution times for these dynamically generated
conversion routines are shown in Figure 6. (We have
chosen to leave the XML conversion times off of this
figure to keep the scale to a manageable size. Again,
please note the use of logarithmic scale.) The dynami-
cally generated conversion routine operates significantly
faster than the interpreted version. This improvement
removes conversion as a major cost in communication,
bringing it down to near the level of a copy operation. In
particular, without dynamic code generation for conver-
sion routines ECho’s practice of eliminating the sender-
side encoding cost by transmitting in the sender’s na-
tive format might not be viable. It is the combination
of these two techniques,

e transmitting in the sender’s native format and

e using dynamic code generation for conversion rou-

tines on the receiving side,
that is the key to ECho’s efficiency. The PBIO binary
code generation facilities exploited by ECho exist for
most popular machine architectures, including Sparc,

4 More details on the nature of the ECho infrastructure dynamic
code generation can be found in [9].
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ORBacus ECho
Send Receive Send Receive
Data size side side side side
overhead overhead overhead overhead
100Kb 0.74 0.40 0.037 0.034
10Kb 0.22 0.046 0.037 0.034
1Kb 0.19 0.016 0.037 0.034
100b 0.17 0.010 0.037 0.034
Table 2

Cost breakdown for homogeneous event exchange. (Times are in
milliseconds. )

MIPS, x86, and 1960 machines.

3.3. Costs for Homogeneous Fxchanges

Because ECho has virtually no sender-side encoding
costs and because its dynamic code generation achieves
performance similar to that achieved through compile-
time stub generation, ECho tends to outperform other
communication infrastructures. This is particularly ap-
parent in heterogeneous message exchanges because the
encode/decode time can play a significant role in overall
message costs.

However, ECho’s approach also yields performance
gains for transfers between homogeneous systems, as
shown in Table 2. For simplicity, this table concen-
trates on the ECho and ORBacus infrastructures. The
higher ORBacus costs for large data sizes represent the
cost of the required data copy in converting the ITOP
wire format to the native data representation. ECho
requires no such copy.® As in the heterogeneous case,
ECho does not pre-process data prior to sending, and
because the ‘wire format’ corresponds to the native data
representation, ECho can deliver received data directly
to the application without copying it from the message
buffer. This is not possible with IIOP because of po-
tential data alignment conflicts between ITOP and the
native data representation.

At common 100Mbps network speeds, these addi-
tional data copy operations are account for a rela-
tively small fraction of the total exchange costs. How-
ever, minimizing data copies is critical to delivering
full network bandwidth to higher levels of software ab-
straction[18]. As gigabit networks and specialized low-
latency communications mechanisms come into more
common use, the additional copy operations imposed
on even homogeneous communications by fixed wire
formats will become a more important limitation on
communication speeds, increasing ECho’s performance
advantage.

5 For the smaller data sizes, the extra copy overhead is small
compared to the fixed delivery costs in these systems.
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Figure 7. Receiver-side decoding costs with and without an un-
expected field — heterogeneous case.

3.4. Costs for Type Eztension

In addition to efficient operation in basic event trans-
fer, ECho supports the creation and evolution of sets
of collaborating programs through event type discovery
and dynamic type extension. ECho events carry format
meta-information, somewhat like an XM L-style descrip-
tion of the message content. This meta-information can
be an incredibly useful tool in building and deploying
enterprise-level distributed systems because it (1) al-
lows generic components to operate upon data about
which they have no a priori knowledge, and (2) allows
the evolution and extension of the basic message for-
mats used by an application without requiring simulta-
neous upgrades to all application components. In other
terms, ECho allows reflection and type extension. Both
of these are valuable features commonly associated with
object systems.

ECho data type information is represented during
transmission with format tokens which can be used to
retrieve full type information. These tokens are small
and are included in every ECho event transmission as
part of the header information. As such they do not
affect performance significantly.

ECho supports type extension by virtue of doing field
matching between incoming and expected records by
Because of this, new fields can be added to
events without disruption because application compo-
nents which don’t expect the new fields will simply ig-
nore them.

Most systems which support reflection and type ex-
tension in messaging, such as systems which use XML as
a wire format or which marshal objects as messages, suf-
fer prohibitively poor performance compared to systems
such as MPICH and CORBA which have no such sup-
port. Therefore, it is interesting to examine the effect
of exploiting these features upon ECho performance. In
particular, we measure the performance effect of type
extension by introducing an unexpected field into the
incoming message and measuring the change in receiver-
side processing.

Figures 7 and 8 present receive-side processing costs

name.
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Figure 8. Receiver-side decoding costs with and without an un-
expected field — homogeneous case.

for an exchange of data with an unexpected field. These
figures show values measured on the Sparc side of het-
erogeneous and homogeneous exchanges, respectively,
using ECho’s dynamic code generation facilities to cre-
ate conversion routines. It’s clear from Figure 7 that
the extra field has no effect upon the receive-side per-
formance. Transmitting would have added slightly to
the network transmission time, but otherwise the sup-
port of type extension adds no cost to this exchange.

Figure 8 shows the effect of the presence of an unex-
pected field in the homogeneous case. Here, the over-
head is potentially significant because the homogeneous
case normally imposes no conversion overhead in ECho.
The presence of the unexpected field creates a layout
mismatch between the wire and native record formats
and as a result the conversion routine must relocate the
fields. As the figure shows, the resulting overhead is
non-negligible, but not as high as exists in the hetero-
geneous case. For smaller record sizes, most of the cost
of receiving data is actually caused by the overhead of
the kernel select() call. The difference between the
overheads for matching and extra field cases is roughly
comparable to the cost of memcpy() operation for the
same amount of data.

The results shown in Figure 8 are actually based
upon a worst-case assumption, where an unexpected
field appears before all expected fields in the record,
causing field offset mismatches in all expected fields.
In general, the overhead imposed by a mismatch varies
proportionally with the extent of the mismatch. An
evolving application might exploit this feature of ECho
by adding any additional at the end of existing record
formats. This would minimize the overhead caused to
application components which have not been updated.

4. Conclusions and Future Work

This paper examines ECho, an event-based middle-
ware designed to meet the demands of a new genera-
tion of Grid applications. In particular, we consider
the communication/integration demands of component-
based systems in a high-performance computing envi-

ronment and how they might be different from those of
more tightly-coupled applications. ECho meets those
requirements by providing a publish-subscribe commu-
nication model that supports type extension and type
discovery. While object-based and XML-based systems
provide similar functionality, the measurements in Sec-
tion 3 show that ECho does it with significantly better
performance, both in terms of delivered bandwidth and
end-to-end latency. The measurements also show that
ECho matches and, in most cases, outperforms MPICH
in both metrics supporting our assertion that ECho is
suitable for use in the main data flows of Grid applica-
tions.

Future work will examine aspects of ECho which are
beyond the scope of this paper. Those features include
derived event channels, which support for source-side
event filtering and remote data transformation, and
proto-channels, a mechanism through which receivers
can themselves control and customize source-side event
generation. We will also expand upon ECho’s ties to
other systems, including CORBA and Java.
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