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Abstract

Monitoring the resources of distributed systems is essen-
tial to the successful deployment and execution of grid ap-
plications, particularly when such applications have well-
defined QoS requirements. The dproc system-level monitor-
ing mechanisms implemented for standard Linux kernels
have several key components. First, utilizing the familiar
/proc filesystem, dproc extends this interface with resource
information collected from both local and remote hosts.
Second, to predictably capture and distribute monitoring
information, dproc uses a kernel-level group communi-
cation facility, termed KECho, which is based on events
and event channels. Third and the focus of this paper is
dproc’s run-time customizability for resource monitoring,
which includes the generation and deployment of moni-
toring functionality within remote operating system ker-
nels. Using dproc, we show that (a) data streams can be
customized according to a client’s resource availabilities
(dynamic stream management), (b) by dynamically vary-
ing distributed monitoring (dynamic filtering of monitoring
information) appropriate balance can be maintained be-
tween monitoring overheads and application quality, and
(c) by performing monitoring at kernel-level, the informa-
tion captured enables decision making that takes into ac-
count the multiple resources used by applications.

1. Introduction

Motivation. The need for flexible and extensible moni-
toring tools for the high-performance computing environ-
ment, particularly for management and development of
dynamic resource-responsive applications, has been docu-
mented many times [15, 17, 3, 8, 1]. Shared memory archi-
tectures provide an easy way to achieve such monitoring,
but distributed memory machines present a more difficult

target. The management of a distributed system is based
on accurate and up-to-date monitoring of the system’s rel-
evant observable quantities and events. Management activ-
ities can include the optimization of application behavior,
the distribution or balancing of application tasks between
hosts, or the distribution of system resources, such as disk
resources, to applications. Observable quantities include
available processor, network, or disk bandwidths, and ob-
servable events include system failures, or the exceeding of
resource utilization thresholds.

As scalable distributed memory and cluster computers
pass to the hundreds or thousands of nodes, the perturba-
tion implied by the frequent exchange of large monitoring
data is clearly unacceptable in most circumstances. How-
ever, run-time monitoring of resources within a cluster is
nonetheless desirable, since it permits the application de-
signer to optimize performance under potentially highly
dynamic conditions. Furthermore, monitoring is becom-
ing increasingly important, as traditional high-performance
computing (HPC) applications (which could presume ded-
icated access to a given set of resources), are being brought
into more dynamic shared environments (such as compu-
tational grids and enterprise work-flow). Application-level
optimizations needed to support these new environments
may include dynamic spawning of subtasks to make use
of newly-available resources, reallocation of workers from
one parallel task component to another to achieve better
load balance, application-driven check-pointing and migra-
tion of tasks, and dynamic optimization of network com-
munications to improve communication/computation over-
lap. In all such cases, to achieve desired levels of perfor-
mance, the requirements on timeliness of data force a per-
turbing monitoring solution.

Many systems have been suggested to address this is-
sue. Recent approaches, such as Supermon [19] and MAG-
NeT [6], have exploited the enhanced performance and
low-latency data paths associated with kernel-level moni-



toring. The dproc system described in this paper follows
a similar path for kernel-level data collection. In addition,
the dproc implementation supports full peer-to-peer com-
munications at kernel-level, thereby improving communi-
cation performance through avoiding central master collec-
tion points (scalability of communications, fault tolerance),
and by using strictly kernel-kernel messaging (avoiding
user/kernel context switches). The advantages of kernel-
level over user-level communication appears in [11], the
principal outcome being that the variation in round-trip
times is much larger for user-level compared to kernel-level
communications.

The main characteristic of dproc considered in this pa-
per is its support for application-specific, customizable re-
mote monitoring. Customization includes well-understood
functionality such as the provision of parameters that de-
termine monitoring frequencies or thresholds. However,
dproc acknowledges the need for more powerful dynamic
customizations facilities by supporting monitoring filters.
These filters are functions, specified by an application at
run-time, that can be distributed via dproc to other hosts.
They are then compiled dynamically, allowing for the on-
line deployment of new monitoring functionality. Since the
compilation takes place at the host that will execute and uti-
lize this function, heterogeneity of hardware and software
is supported while maintaining the performance advantages
of binary code. These filters can customize monitoring be-
havior as follows:

• they can implement complex relationships between
monitoring results (e.g., “monitor the available mem-
ory only if disk access times exceed a critical thresh-
old”);

• they can integrate application-level information with
system-level information (such as the number of open
connections in server applications correlated with the
round-trip times on the corresponding sockets); and

• they can dynamically deploy monitoring functional-
ity available in the remote kernel but not directly sup-
ported in dproc (such as the monitoring of the current
battery power in mobile devices).

The result is an application-aware monitoring system
which propagates only the monitoring data of interest
across the cluster. Coupling this with the peer-to-peer com-
munication infrastructure and the kernel-level data capture
and analysis provides an efficient, scalable monitoring plat-
form.

Our experimental evaluation in a cluster of 8 nodes
shows that dproc performs monitoring with small overhead
and low response times, which shows that dproc is an
efficient and scalable solution to cluster monitoring. In this
paper, the benefits of using the dproc monitoring system

are demonstrated with a large scale real-time scientific
visualization application called SmartPointer. We show in
our experiments that monitoring of the resources like CPU,
network, and disk at the clients provide the server applica-
tion with the information necessary to customize the data
streams it sends to clients. Such customizations decrease
the total lag in the system and increase stream transfer
rate. We also demonstrate the importance of kernel-based
monitoring support by showing how monitoring multiple
resources can prevent conflicting adaptations and increase
total throughput.

Related Work. Different monitoring tools operate at dif-
ferent levels of granularity with consequent trade-offs be-
tween the quality of the information monitored and the
overhead associated with it. Cluster performance moni-
toring tools have been developed to allow system admin-
istrators to monitor cluster state. A typical tool consists of
two major entities: a server that collects state information
of a cluster and a GUI-based front-end, which provides a
visualization of system activity. Parmon [2], Ganglia [7],
Smile [20], and many others belong to this kind. These
tools cannot deliver very frequent monitoring updates.

Paradyn [15] is a tool that does performance monitor-
ing for long running parallel and distributed applications.
It adapts the performance of these applications by dynami-
cally instrumenting them at run-time using the monitoring
information that it collects. The Pablo [17] toolkit focuses
on collecting and doing statistical analysis of performance
data in scalable parallel systems. Falcon [9] is an appli-
cation specific on-line monitoring system that provides its
own set of instrumentation libraries and controls which the
developer of an application can use to tune its performance.

The Supermon [19] cluster monitoring system uses a
modified version of the SunRPC remote-status rstat pro-
tocol [10] to collect data from remote cluster nodes. This
modified protocol is based on symbolic expressions which
allows it to operate in a heterogeneous environment. The
Supermon kernel patch exports various kernel monitoring
information via a sysctl call. Scalability can be a problem
in Supermon because of the centralized data concentrator,
which collects monitoring data from all cluster nodes.

HPVM’s performance monitor [18] is targeted towards
Windows NT clusters. Like dproc, HPVM has the ability
to automatically adapt cluster applications. The SHRIMP
performance monitor [13] makes a compromise between
high level software monitoring and low level kernel moni-
toring to accurately monitor various resource information.
MAGNeT [6] uses an instrumented kernel to export kernel
events to user space. It maintains a circular buffer in the
kernel where all events are recorded and other nodes can
obtain these records by contacting a daemon, called mag-
netd. The kernel must be configured at compile-time to



enable the monitoring, which increases the administrative
overhead as monitoring needs change.

In comparison, dproc provides a low overhead, fine-
grained, kernel level monitoring facility, with communi-
cation based on strict kernel-kernel messaging. Dproc is
extensible, i.e., new monitoring functionality can be added
dynamically, e.g., through loadable kernel modules. Fur-
ther, dproc is customizable, i.e., applications can fine-tune
the distributed resource monitoring via parameters and dy-
namically generated code, as described in detail in the fol-
lowing sections.

2. Architecture

Dproc is an extensible, scalable, kernel-level monitor-
ing toolkit for Linux-based cluster systems. The toolkit
provides a single uniform user interface available through
/proc, which is a standard feature of the Linux operating
system. The /proc mount point provides a reasonably com-
plete set of local monitoring data, including system load,
memory utilization information, and per-process system re-
source utilization. The dproc project, whose name comes
from ’distributed /proc’, extends the local /proc entries of
each of the cluster machines with relevant information from
the other nodes within the cluster.

/proc

 cluster

alan maui etna

mem net cpu disk net cpu net cpu disk

Figure 1. Dproc file hierarchy.

The toolkit adds a /proc/cluster entry into /proc, and the
sub-directories contain the monitoring information for each
of the registered cluster nodes. For instance, on node1, the
loadavg information (average CPU run-queue length) from
node2 would be located in /proc/cluster/node2/loadavg.
For each node entry in /proc/cluster, there is also an associ-
ated control file, which a user-space application can mod-
ify to (a) specify monitoring parameters (e.g., thresholds
or update periods) and (b) deploy dynamically generated
filters for each individual resource or for all resources to-
gether. The associated control file for the previously men-
tioned node (node2) would be /proc/cluster/node2/control.

Typical hierarchies of pseudo-file entries in /proc are
shown in Figure 1. Alan, maui, and etna are the names

of the three nodes in the cluster. Memory, network traffic,
CPU load, and disk usage are monitored on alan, network
and CPU load on maui, and network, CPU load and disk
usage on etna. Dproc makes this information available at
each of these three nodes in the same hierarchy as shown
in Figure 1.

The communications infrastructure is implemented us-
ing a kernel implementation of the ECho event channel in-
frastructure [5], called KECho [16]. KECho provides a
publish-subscribe mechanism for direct kernel-kernel com-
munications. Each kernel connects to both a data com-
munication channel, or monitoring channel, and a control
channel. To improve scalability, the exchange of data is
triggered only when an application (either an executable or
a user from a shell environment) registers interest in receiv-
ing some particular monitoring data.

The low-level implementation of dproc is described in
detail in [11]. As a quick summary, it offers the following
functionality:

• Selective monitoring via kernel-level pub-
lish/subscribe channels. The basic operating system
construct offered by dproc is a pair of kernel-level
channels, one for monitoring and one for control
messages.

• Standard API. Applications need not explicitly handle
monitoring channels. An application accesses dproc
entries through an extension to the standard /proc in-
terface.

• Flexible analysis and filtering. Dproc offers simple
ways of dynamically varying certain parameters of
monitoring actions, such as monitoring rates or de-
sired statistics. Through simple reads and writes to
control files within the pseudo-file system, an applica-
tion can specify the relevant controls. We discuss this
further in the following sections.

• Run-time configuration. Monitoring channels, han-
dlers, and control attributes may be created, changed,
and deleted at any time during the operation of dproc.

A simplified diagram of the dproc architecture can be
seen in Figure 2. The d-mon (distributed monitor) module
is the main module, coordinating the activities in dproc. It
is built on top of KECho, which provides the kernel-level
communication infrastructure as discussed earlier. Once
the two channels are created (monitoring and control), dif-
ferent monitoring modules can register with d-mon using
the register service call which takes as parameter a call-
back function. D-mon maintains a list of all registered ser-
vices and uses this callback function to retrieve monitoring
information from them at regular intervals. D-mon mod-
ules use a channel registry, which is a user-level channel
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Figure 2. Dproc architecture.

directory server, to register new channels and to find exist-
ing channels. The first d-mon module to contact the registry
will create the two channels. All other d-mon modules in
the cluster will retrieve the channel identifiers from the reg-
istry and subscribe to the channels. Subsequently, applica-
tions can communicate with their local d-mon modules via
the /proc interface and customize the behavior of remote d-
mon modules using the dynamic filter approach discussed
in this paper.

2.1. Monitoring Modules

Dproc supports a variety of monitoring modules, which
will be described in this section. Further monitoring
modules are under development and dproc’s extension
interface allows applications to dynamically deploy future
monitoring modules without the need to recompile or
restart the running dproc mechanisms.

CPU MON. This keeps track of the average run-queue
lengths over a period of time, which can be specified by
the application. The default period is 1 minute. In a stan-
dard Linux system, /proc/loadavg contains the average run
queue lengths over 1, 5, and 15 minutes. This pre-specified
time period average may not be useful in a fast system
with constantly varying CPU load. Therefore, dproc’s CPU
monitoring module creates a kernel thread which wakes
up periodically to examine the task list in the kernel and
computes the average of the run-queue lengths over an
application-specified period.
MEM MON. This provides information regarding the
available memory. To obtain this information, the
nr free pages kernel function is invoked.
DISK MON. This measures the average number of disk
writes and reads as well as the average number of sec-

tors written and read for a certain period of time. The de-
fault period is 1s, however, as with CPU MON, d-mon can
change this value to any desired number.
NET MON. This module monitors the round-trip times of
established network connection, the used bandwidth of all
connections at a node and of all individual connections,
the number of re-transmissions (for TCP), the number of
lost messages (for UDP), and the end-to-end delay for both
TCP and UDP connections.
Performance Monitoring Counters (PMC). Most mod-
ern processors offer performance monitoring counters,
which are accessible from kernel-level. The counters can
be configured to track certain low-level processor events
(depending on particular processor model), such as cache
misses, number of operations, and other potentially inter-
esting chip-level statistics. Many projects and products
have attempted to extend this low-level monitoring to the
application level. In our work, we implement a method
for exposing this monitoring not only locally (through the
pseudo-files and associated control of /proc) but also to the
entire dproc-enabled cluster. This enables an application-
level process on one machine to remotely extend the kernel
of a participating cluster machine, so as to generate very
fine-grained monitoring data which may be relevant to a
particular application. For instance, monitoring of the num-
ber of cache lines loaded (through cache misses) may give
a remote master process a way to track the amount of data
that a worker process has consumed, allowing it to better
tune its data distribution policies.

3. Extensibility in dproc

This paper focuses on the extensibility and filtering
capabilities which have been added to the initial imple-
mentation as described in [11]. With dproc, we offer
parameters and dynamic filters as means for customizing
the communication and processing needs of the monitoring
activities to the specific needs of applications or to the
capabilities of the participating hosts.

Parameters. We distinguish between two types of parame-
ters: (a) ones that modify the update period of information
and (b) ones that modify thresholds. The update period
indicates how often (expressed in seconds) an application
would like to be informed about the current utilization or
availability of a resource. Another option is to specify
thresholds, i.e., an application indicates upper or lower
bounds on resource utilization. Once d-mon recognizes
that a threshold has been exceeded, the new value is
distributed to the remote /proc entries. Combinations of
these two are also possible, e.g., an application can specify
to “update the CPU information once every 2 seconds IF
the CPU utilization is above 80%”. Threshold comparisons



can be expressed as percentage limits (e.g., if x varies by
10% from the last measurement), or as fixed relative values
(e.g., if x < y ∗ 1.1 or x > y ∗ 0.9), or as minimum and
maximum values (e.g., if x is in the range [y, z]). These
parameters allow us to dramatically reduce the amount
of monitoring traffic, and hence increase scalability. For
example, for a batch-queue scheduler, we might need load
average updates only if it is less than the number of CPUs.

Dynamic Filters. An application can deploy filters by writ-
ing the filter code as string to the control file in /proc. It is
d-mon’s responsibility to distribute the string to the cor-
responding hosts via KECho’s control channel. Incoming
filter strings are received by d-mon, which then dynami-
cally generates binary code. The resulting filters are ex-
ecuted by d-mon before any information is submitted to
the channel, allowing the filters to customize (or block)
the monitoring information. Dynamic filters can provide
the same functionality as described in the parameters sec-
tion above. However, they can provide more powerful data
transformations as well, e.g., they can combine multiple
decision making strategies. Note that although dynamic
filters can provide the functionality of parameters, it is typ-
ically ’cheaper’ to use parameters to specify simple rules
because parameters require less book-keeping, and there is
no dynamic code generation overhead.

To extend the previous example, imagine that the batch-
queue scheduler is not interested in loadavg, but instead
in the amount of free memory. However, it still wants the
memory information to be updated only if there is a free
CPU to run its process on. So it will tie the update pe-
riod of the memory information to the load average drop-
ping below the number of CPUs. In this way, we achieve
a much more flexible application-level concept of quality
of service for the monitoring data, with consequently lower
perturbation.

Filter generation in dproc is based on a kernel port of
a binary code generator, called E-code [4]. E-code offers
a small subset of the C programming language, supporting
the C operators, for loops, if statements, and return state-
ments. Code written in E-code can be passed as strings
between hosts via dproc’s control channel and is executed
at the publishing host. Unlike specialized monitoring lan-
guages like GEM [14], the general nature of E-code allows
the application programmer to create arbitrarily complex
subscription criteria.

Figure 3 show a sample filter code using which we can
manipulate the information being sent out by a dproc node
in the cluster. This manipulation reduces the amount of
data sent out to different nodes in the cluster, which in turn
reduces both network and CPU perturbation, thereby in-
creasing the scalability and performance of the overall sys-
tem.

{
        int i = 0;
        if(input[LOADAVG].value > 2){
                output[i] = input[LOADAVG];
                i = i + 1;
        }
        if(input[DISKUSAGE].value > 10000 && 
                  input[FREEMEM].value < 50e6){
                output[i] = input[DISKUSAGE];
                i = i + 1;
                output[i] = input[FREEMEM];
                i = i + 1;
        }
        if(input[CACHE_MISS].value > 
                input[CACHE_MISS].last_value_sent){
                output[i] = input[CACHE_MISS];
                i = i + 1;
        }
}

Figure 3. Filter code example.

4. Evaluation

All experiments are performed on a cluster of 8 quad-
Pentium Pro 200MHz machines with 512KB cache and
512MB RAM. The cluster is connected via a switched
100Mbps Fast Ethernet and the cluster nodes run RedHat
Linux 7.1 (kernel version 2.4.18). The communications in-
frastructure (KECho) as well as the dproc monitoring sys-
tem are implemented as loadable kernel modules.

The goal of the experiments in this section is to show
the following:

• application-specific filtering of monitoring informa-
tion can reduce the overhead and perturbation caused
by the monitoring mechanisms,

• monitoring information can be used to make intelli-
gent decisions how to manipulate and customize data
streams in order to reduce resource requirements and
to adapt streams to a clients’ capabilities,

• and resource monitoring information has to comprise
information about multiple resources in a system to
enable an application to properly identify and remove
resource bottlenecks.

4.1. Microbenchmarks

We evaluate the scalability and performance of the dproc
monitoring toolkit by conducting a set of experiments. For



discussion purposes, we will concentrate on the following
three cases:

• dproc with an update period of 1 second,

• dproc with an update period of 2 second,

• dproc with a ‘differential filter’: monitoring informa-
tion is sent only if the utilization of a resource varies
by at least 15% from the last measured result.

For this set of experiments, dproc monitors CPU load,
disk usage, memory usage, and network traffic, resulting
in monitoring events of about 50–100 bytes of information.
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Figure 4. CPU perturbation analysis.

CPU Perturbation. The CPU overhead of dproc is
evaluated in terms of performance of linpack 1. Linpack
is a CPU-intensive benchmark commonly used to measure
the floating point computation power of CPUs in Mflops.
We measure the change in linpack performance by running
dproc on 0-8 nodes in the cluster and running linpack on
one of them. Figure 4 shows that in all three cases the
number of Mflops, as measured by linpack, decreases only
slightly as the number of participating nodes increases in
the cluster. However, the decrease in the measured Mflops
is less accentuated in the case of the differential filter.

Network Perturbation. Dproc sends out monitoring
information to other nodes in the cluster and therefore
decreases the available bandwidth. We performed a
network perturbation analysis using Iperf 2 version 1.6
and found that the available bandwidth is hardly affected.
We repeated the setup of the previous experiment and
measured the available bandwidth between two nodes in

1http://www.netlib.org/linpack/
2http://dast.nlanr.net/Projects/Iperf/
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Figure 5. Network perturbation analysis.

the cluster by running Iperf in UDP mode. Figure 5 shows
the results of the network perturbation analysis of dproc.
The plot shows that dproc generates only small amounts of
network overheads, e.g., the bandwidth drops by less than
0.5% for an update period of 1s and remains constant for
update periods of 2s and the differential filter.
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Figure 6. Event submission overhead.

Event Submission Overhead. Every second, d-mon polls
each of the registered monitoring modules and sends the
collected information to interested clients. Figure 6 shows
the event submission overheads during one polling itera-
tion of d-mon. Since the overhead is very small, it is mea-
sured by counting the number of CPU cycles using the rdtsc
(Pentium time-stamp counter) instruction. The overhead is
calculated by timing 100 polling iterations and taking the
average. The plot shows that if the differential filter is used,



the overheads remain within 100 microseconds, even for 8
nodes.
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Figure 7. Submission overhead of events of
larger size.

Figure 7 repeats the previous experiment, however, this
time with monitoring events of average size 5KB. Although
the overheads have increased, the results show a similar
behavior as in Figure 6.
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Figure 8. Overhead in receiving incoming
events.

Event Receiving Overhead. Every second, d-mon polls
the listening sockets to check whether an event has arrived
or not. If there is an event in the receive queue, d-mon
invokes the appropriate handler to consume the event. Fig-
ure 8 shows the overhead caused by handling these incom-
ing events in one polling iteration of d-mon. Again, the

overhead is calculated by timing 100 polling iterations and
taking the average. The plot shows that even when the num-
ber of nodes in the cluster is increased to 8, the overhead
remains less than 1ms in the case of an update period of
2s and the differential filter, and less than 2.2ms when the
update period is 1s.

4.2. Scientific Collaboration

Application Description. The need to support scientists
as they collaborate on a local, national and even interna-
tional scale is a great challenge in visualization research
today. Work which our group is already pursuing [21] is
designed to leverage existing collaborative toolkits, such as
the Access Grid3 or the AGAVE project [12], and extend
them with tools which are suitable for handling the very
high data flows which the next generation of scientific com-
puting will demand. Current scientific codes, such as the
Terascale Supernova Initiative4 funded under the DOE Sci-
DAC program, can already generate relevant data at nearly
a gigabit per second. Within the next 5 years, these sizes
are expected to grow by at least a factor of 10. In order to
provide a remote collaborator with an adequate and timely
visualization, the data must be carefully staged and trans-
formed to manage bandwidth, latency, and content repre-
sentation. This become particularly relevant when multiple
streams (such as data, video, and audio) must be synchro-
nized. The sample application which we have designed to
demonstrate the dproc infrastructure is based on a client-
server model that complies with this vision.

The server delivers molecular dynamics data, similar
to what might be generated by large scientific codes in
Physics, Chemistry, or Mechanical Engineering (to name a
few) to different clients which can range from high-end dis-
play like ImmersaDesk to smaller display like iPAQ, stor-
age clients and fast desktop machines. The clients can sub-
scribe to any of a number of different derivations of that
data, ranging from a straight data feed, to down-sampled
data (for example, removing velocity data), to a stream of
images representing the full visualization. Communication
is based on an event service, a server establishes an event
channel and interested clients can subscribe to this chan-
nel in order to receive the data stream. Moreover, clients
can customize the data stream by using data filters, simi-
lar to the concept of filters described earlier in the context
of the monitoring data distribution. For example, resource-
constrained devices such as wireless handhelds can down-
sample a data stream using a filter, while other, resource-
rich, devices can receive the full-quality data stream.

Without a monitoring system, a client must specify
its requirements a-priori depending upon the expected

3http://www.accessgrid.org/
4http://www.phy.ornl.gov/tsi/



resource availability. If the availability of a particular
resource changes beyond that scope, the client must
specify a new filter to adapt. With dproc, we automate this
process. The server can be made aware of the resource
information of different clients via dproc. It uses this
information to customize the data stream being sent to the
clients.

Benchmark Measurements. In our experiments, dproc
provides the following monitoring information from each
client to the SmartPointer server: (a) CPU load, (b) avail-
able network bandwidth, and (c) disk utilization.

To measure the benefits of dproc, we compare the per-
formance of the original SmartPointer application with a
modified SmartPointer application using the dproc moni-
toring information. The data stream to all clients can be
modified with a tunable data filter. The data filter reduces
the information content of the data streams, and therefore
the size of the data. The following three cases are com-
pared:

• SmartPointer application with no filter: The Smart-
Pointer server sends the original data stream to all
clients without any customization.

• SmartPointer application with static filters: The
SmartPointer server does the client-specified cus-
tomization, but does not use the resource availability
information from the clients. The customization crite-
ria remains the same throughout the experiment.

• SmartPointer application with dynamic filters using
monitoring information: The customization filters at
the server use the clients’ resource information from
dproc to customize the data stream.

These tests were performed with three different kinds of
clients: (a) a CPU loaded client, (b) a client connected to
a link with highly varying network traffic, and (c) a hybrid
client.
A CPU Loaded Client: The client was artificially loaded
by running a CPU-intensive application, linpack, which
was used earlier in our microbenchmark experiments. The
load in the system was varied by running different instances
of linpack processes. The experiments show that the sce-
nario using dproc monitoring information outperforms the
other two both in terms of scalability and responsiveness.
Figure 9(a) shows the amount of time required for a data
packet to be submitted by the server and processed by the
client in a CPU loaded system. More than 99% of the time
is spent in processing the event stream at the client. Every
time a new linpack thread is started, the latency increases
in the case where we are not using any filters or only the
static filter, but it remains almost constant for the dynamic
filter. The dproc toolkit informs the server about the change

in load at the client and the dynamic filter uses this infor-
mation to modify the size of data being sent to the client.
The static filter scenario performs better than the scenario
without any filter, but the delay is large in comparison to
dynamic filters (which is less than 4ms). This small delay
is due to events being queued when the load increases in
the system.

Figure 9(b) shows the change in the event rate at a
CPU loaded client. This figure shows that in the dynamic
filter case, the client is able to receive and process events
at the same rate at which the server sent them. Therefore
the inter-event arrival delay remains almost constant. The
static filter case cannot adapt itself to the increased load
in the system and hence the queuing delays increase and
the intervals between event arrivals get larger, although the
server is sending these events at a constant rate. The case
without filters shows the worst performance.

A Network-perturbed Client: In this experiment, the
server sends much larger events (3MBytes) than in the pre-
vious case. To see the effect of network perturbation, the
client does very little processing of incoming events. The
link between the client and the server is artificially per-
turbed by running Iperf on two different nodes sharing a
link between the former two and generating continuous
streams of UDP packets. Figure 10 shows how latency is
affected by the decrease in available bandwidth. As the
network perturbation is increased, available bandwidth de-
creases, and latency increases. The capacity of the link is
100Mbps. When there is no perturbation, the server sends
data to the client at a rate of about 30Mbps. Hence the plot
remains horizontal until 70Mbps of perturbation. But as
the perturbation increases beyond 70Mbps, latency drasti-
cally increases for the first two types of filters because the
server is completely unaware of the state of its clients. The
dynamic filter scenario, however, performs better than the
others because the server reduces the data size.

A Hybrid Client: The client remains the same as in the
previous experiment, but now we have both CPU and net-
work perturbation using linpack and Iperf. We increase
the number of linpack threads, thereby increasing the CPU
load and the network perturbation by about 10Mbps. We
compare three different types of dynamic filters in this case:
(a) the first one uses CPU load information, (b) the second
one uses network information and (c) the third one uses
CPU, network, and disk information to customize the data
streams.

Figure 11 shows that the performance is better when
the filter uses more resource information to customize the
data stream. Information about multiple resources allows
the server to make ’smarter’ decisions and prevents adap-
tations that could aggravate the resource shortages. When
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Figure 9. SmartPointer performance in a CPU loaded system.
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Figure 10. Change in latency with varying net-
work traffic.

the CPU load at the client is increased, the filter will pre-
process the data before sending it out so that the client re-
quires less processing. This pre-processing increases the
size of the data stream, which also increases the network
requirements. Also, disk activity increases because of the
increased data rate. If data is down-sampled to better fit
in a congested network the client needs to do more pro-
cessing before being able to render the data. Thus, we see
that adaptation based on only one resource can have a neg-
ative effect on the requirements of another resource. This
underlines the need of monitoring of multiple resources, in
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Figure 11. Change in latency with varying
perturbation.

order to be able to make intelligent stream management de-
cisions.

5. Conclusions and Future Work

This paper introduces the extensibility features of a scal-
able, kernel-level resource monitoring toolkit, called dproc.
To our knowledge, dproc is the first cluster performance
monitoring system designed to exploit kernel-level data
capture as well as kernel-level peer-to-peer communica-



tions. Monitoring events and control information are sent
to other nodes via the KECho publish/subscribe channels.
The dynamic extensibility feature of dproc allows remote
applications to specify complex subscription criteria in the
form of E-code filters, which are compiled and deployed
dynamically at run-time. Monitoring modules can also be
added at run-time to extend the functionality of dproc. Our
microbenchmark experiments show that the CPU and net-
work overheads of dproc are almost negligible.

We also show the advantages of the dproc perfor-
mance monitoring system by using a large-scale, dis-
tributed, scientific visualization application, called Smart-
Pointer. The overall scalability and performance of the sys-
tem is enhanced by using monitoring information provided
by dproc. In particular, the use of dynamic filters using
information about multiple resource can significantly im-
prove data management decisions, e.g., by customizing the
data stream according to the resource availabilities of each
client.

Our future work will focus on using dproc in wide-area
grids and embedded systems, which present a very dynamic
and challenging environment. For example, in wireless and
mobile systems, power has to be considered a first-class
resource. Dproc is part of the Q-Fabric project, which
attempts to provide large-scale distributed systems with a
customizable resource management framework. The mon-
itoring results delivered by dproc can be used by QoS man-
agement mechanisms to optimally allocate resources to ap-
plications and to integrate application adaptation with re-
source management.
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