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Abstract 
Continual queries for information flows are attracting 

increased interest. However, two important characteristics 
of information flows are not adequately addressed by 
current continual query packages: distribution and 
Quality-of-Service (QoS). In this paper, we use Infopipes, 
an abstraction for information flows, and the Infopipes 
Stub Generator to create a distributed version of the 
Linear Road benchmarking application around an existing 
continual query server (CQ server). Then, we install a 
QoS event generator/monitor pair that observes system 
response latencies. Receipt of each query result generates 
a feedback event reporting the latency (response time) for 
that request. If latencies exceed a threshold as 
parameterized by a WSLA, then the Infopipes controlling 
the CQ server can attempt to restore latencies to an 
acceptable level by generating an adaptation event for the 
Infopipes managing the CQ server.  

 
 

1. Introduction 

Continual streams of information are becoming 
increasingly common as more devices are attached to 
networks [1]. For instance, a car with a GPS receiver will 
emit a string of location data points, or an environment 
monitor creates a steady stream of temperature reports. As 
such devices and sensors become more common, more 
emphasis is being placed on immediate data analysis as 
well as managing and controlling systems of these 
information flows. Since the systems are filled with 
dynamic information, Quality-of-Service (QoS) ascends in 
importance because information value can rapidly decline 
over time [1]. Furthermore, to extract value from the 
“raw” data these streams contain, several research projects 
such as STREAMS [2], CACQ [3], Aurora [4], 
NiagaraCQ [5], and TelegraphCQ [6] have proposed 
Continual Query (CQ) systems that operate on data as it is 
produced rather than warehousing the data and performing 
queries off-line. 

In this paper, we demonstrate an information flow CQ 
system that implements end-to-end QoS through events. 
Some streaming database projects (e.g., Aurora and 
TelegraphCQ) have begun to consider QoS as it pertains to 
query execution, but do not address the systemic picture 
wherein QoS extends beyond the database query engine 
itself. We demonstrate system-level QoS achieved through 
code generation and weaving of a QoS event mechanism 
into an Infopipes-enabled system. Our demonstration is 
built around a streaming database benchmark and the 
Stanford Stream Data Manager (STREAM) [7] for 
executing the queries. The code generator lets us reuse 
communication stubs developed during the course of the 
Infosphere project [8]. Furthermore, the code generation 
and weaving techniques allows us to reuse the quality of 
service code and event processing engine in new 
applications with little to no alteration. (In fact, this work 
re-uses some quality of service components developed for 
media streaming demonstration scenario [9].) 

The demonstration system comprises three 
components: a data source, which generates new data; the 
STREAM CQ engine, which filters data based on a query 
script; and the end application, the consumer of the query 
results. We use a dataset and query subset from the 
“Linear Road” benchmark that simulates a stream of 
location tuples from highway traffic [10]. The benchmark 
core revolves around continual queries that dynamically 
set toll rates (e.g., high tolls to combat rush hour 
congestion). The benchmark comprises a data set, 
historical queries, and continual queries. So far, two 
continual query projects have used Linear Road in 
evaluations of their systems, but only running on a single 
machine. In this paper, Infopipes wrap the STREAM CQ 
engine, and we distribute remainder the application by 
wrapping data sources and sinks with Infopipes. 

This paper is organized as follows. First, we describe in 
section 2 Infopipes and the Infopipes Stub Generator 
(ISG) used to encapsulate and extend the Linear Road 
benchmark and the STREAM CQ server. Then in Section 
3 we briefly outline the benchmark and STREAM. Next, 
in Section 4 we describe how we the wrapped the 
STREAM system and used Infopipes to distribute, add 
QoS events, and implement adaptive, end-to-end quality of 
service to the system. Then, in Section 5 we provide a 

This work was partially supported by NSF/CISE IIS and CNS divisions 
through grants IDM-0242397 and ITR-0219902, DARPA ITO and IXO 
through contract F33615-00-C-3049 and cooperative agreement 
N66001-00-2-8901, and Hewlett-Packard. 



short evaluation. Finally, we introduce related work and 
conclude in Sections 6 and 7 respectively. 

2. Infopipes and the ISG 

One of the hallmarks of information flow systems like 
Linear Road is their communication-intense operation. In 
a complete Linear Road simulation, for example, each of 
several thousand vehicles sends location and velocity data 
to the query processing system, which later returns data on 
toll charges back to the vehicles. Therefore, a large 
amount of executing code is dedicated to creating, 
maintaining connections, waiting for new data, and then 
marshalling and unmarshalling data from communications 
software. For these applications, communication is a vital 
challenge that is not efficiently solved by handcrafting 
code in point-to-point segments. In this section we 
introduce Infopipes, an abstraction for applications like 
Linear Road, the Infopipes Stub Generator (ISG), and the 
AXpect weaver, a module of the ISG that we use to insert 
QoS code into Infopipe systems.  

Infopipes are the abstraction designed by the Infosphere 
project to address the needs of these information flow 
systems. Broadly speaking, an Infopipe is a set of inputs 
and outputs and a mapping or computation that links the 
two. Infopipes are also composable, that is, an Infopipe 
can be constructed by linking together smaller Infopipes in 
parallel or serial fashion. Each Infopipe has a typespec that 
includes a description of the inports and outports which 
exchange application-level packets of information. In 
compositions, of course, there is also a specification for 
what pipes should be connected. We devised a code 
generator, the Infopipes Stub Generator, which offers a 
reusable, high-level abstract interface for building and 
composing Infopipe systems [11].  

A XIP (XML for Infopipes) specification describes 
three major concepts in Infopipes systems: application 
packet datatypes, simple Infopipes, and composed 
Infopipes.  

A developer uses a datatype element to describe 
application-level packets of data that are the units of 
exchange between Infopipes. The code generator maps 
these into a native-format, like a struct  or class . 

Second, the user can specify a simple Infopipe. Each 
simple Infopipe encapsulates a computational element unit 
(e.g. a data source or a query server) and has one or more 
inports and one or more outports, and each of these ports 
is assigned a datatype as defined in some separate datatype 
specification. For example, in creating an Infopipe to wrap 
the data source of the Linear Road data, we create an 
Infopipe with one outport that accepts data from a TCP 
connection and feeds the STREAM server  

Finally, these simple Infopipes compose into complex 
Infopipes. Each complex Infopipe declaration states any 
simple Infopipes it includes as well as their connections 

expressed as inport-outport pairings. Each simple Infopipe 
description can be used multiple times, as a simple 
Infopipe participating in a composition for a complex pipe 
can be given a local name. That is, we allow developers to 
separate declaration of an Infopipe from its definition. . 
Figure 1 is an excerpt from an Infopipe specification for a 
simple Infopipe and a composed Infopipe. 

Code generation from XIP is a multi-stage process 
handled by the ISG. First, the ISG assembles an expanded 
XIP document, XIP+, by retrieving missing sub-
specifications from a repository and resolving connection 
information. The repository is inherent to the design of the 
ISG and stores previously defined datatypes, Infopipes, 
and compositions as XML fragments on disk. That way, 
the repository encourages datatype and Infopipe reuse 
between applications and even between differing Infopipes 
within the same application. After creating a XIP+ 
document, the ISG uses XSLT templates to generate and 
embed source code with the specification in the XIP+. At 
the last stage, the XML in the XIP+ is stripped and the 
resulting files are written to disk. 

Were this all the information a developer provided, the 
ISG could generate communication infrastructure for an 
Infopipes system. That code consists of bootstrapping and 
initialization routines for communication packages, 
marshalling, and de-marshalling routines for data. 
However, this basic functionality does not address quality 
of service. Since QoS is an issue that varies greatly 
between applications or even instances of a single 
application, we use the flexible AXpect weaver module of 
the ISG to address QoS implementation [9]. 

The AXpect weaver allows developers that use the ISG 

<pipe class="StreamReceiver" lang="C"> 
  <apply-aspect name="sla_stream_loadshedder.xsl" 
                 doc="streams.xml"> 
    <apply-aspect name="stream_feedback_read.xsl" 
           namepipeloc="/hc283/stream_proj/fb0"/> 
    ... </apply-aspect> 
  <apply-aspect name="stream_receiver.xsl"/> 
  <ports> 
    <inport name="streamRcvPort"  
             type="InputStream"/> 
  </ports> 
</pipe> 
<pipe class="LinearRoadTest"> 
  <subpipes> 
    <subpipe name="streamSource"  
              class="StreamSource"/> 
    <subpipe name="streamReceiver"  
              class="StreamReceiver"/> 
    ... 
  <connections> 
    <connection comm="tcp"> 
      <from pipe="streamSource"  
             port="streamOutputPort"/> 
      <to pipe="streamReceiver"  
           port="streamRcvPort"/> 
    </connection> 
    ... 
</pipe> 

Figure 1. Excerpt from a XIP file illustratating a 
simple Infopipe and Infopipe composition.  



to extend the basic library of generated code by inserting, 
or weaving, new code that is not germane to 
communications. The weaver has three key components: 
descriptive tags in generated code, a set of XSLT 
templates with source code that recognizes the tags, and 
statements in XIP. We placed XML tags in the content of 
the XSLT generator itself to demarcate major units of 
generated code. During generation, the ISG writes 
integrates these tags with the output along with the source 
code resulting in “marked up” source that is encoded with 
Infopipes semantics. For instance, the ISG generates tags 
for the C code that performs marshalling as 
<jpt:outport point=“marshal”>  and it tags a C 
header file for an Infopipe with <jpt:header 
point=“pipe”> . A QoS developer uses these to insert 
QoS relevant code by writing XSLT templates that match 
on the correct semantic tags and inject code before, after, 
or around the marked section. Finally, in the XIP 
document the developer adds a few directives for the 
AXpect module to run the proper XSLT templates (these 
are the apply-aspect  elements in Figure 1). This new 
code becomes part of the generated system, and appears 
each time the stub generator runs for that specification. 
The aspects can be re-used across multiple Infopipes or 
multiple Infopipes applications. 

One major advantage to the AXpect weaver is that 
since it is invoked before the Infopipe generator writes 
code to disk, it has a holistic view of the source for a 
system. This feature is especially important for problems 
like QoS because it lets a developer insert new 
functionality simultaneously even though the end code 
will end up geographically dispersed in distributed system. 

Of course, while it is possible for the XSLT aspects to 
“hardcode” all information needed by the aspect, it is 
useful for them to be able to draw information or operating 
parameters from outside documents. Since AXpect aspects 
are written in XSLT, the weaver can retrieve information 
from XML documents outside the code generator. A 
WSLA (Web Service Level Agreement) specification is an 
XML document that allows us to externalize 
measurements, events, and triggers for web services [12]. 
Adopting a WSLA format, we can write more generic 
aspects that refer to the WSLA for QoS parameters. 

3. Linear Road and STREAM 

The Linear Road benchmark has been developed by 
researchers to test new stream query systems [10]. It is 
based on a dynamic toll scenario under consideration by 
highway agencies in several states to help combat 
congestion and encourage drivers, through higher tolls, to 
travel at off-peak times. In the benchmark, there are a 
series of multi-lane highways, and each highway is 
divided into segments. Cars on the highway provide 
regular position and velocity updates which are tracked by 

the query system. Then as a car approaches a highway 
segment, it is notified of its toll calculated based on 
observed traffic volume. In the real world, a driver can 
opts to accept the toll and continue on the highway or exit. 
If the driver accepts the toll, then the toll system debits an 
account. Ultimately, the benchmark’s measure is how 
many “highways” a query system can support before 
responses a returned too slowly – i.e., response latency is 
violated. 

It is easy to see that QoS is a natural and important 
requirement for Linear Road: the toll calculator must 
execute efficiently and quickly to inform drivers in time 
for them to make safe decisions about whether to continue 
on the toll road or, if the toll is too high, then exit at the 
next segment. Consequently, latency becomes an 
important end-to-end property that must be monitored 
closely – each position report must be answered within a 
few seconds with updated toll information. Once latencies 
become too long, drivers may attempt unsafe exits, or the 
toll authority may be forced into a default toll policy at the 
expense of lost revenue opportunities. 

The complete Linear Road package has a set of Data 
Generator processes that create a stream of location data to 
simulate car locations on the toll road. Along with location 
data, the Linear Road also creates a set of queries over the 
data it produces, including Position Reports, Account 
Balances and Daily Expenditures, and Travel Time 
Estimation. For a full benchmark, the system must execute 
static queries and continual queries simultaneously. The 
generated data is fed through Data Drivers to the query 
system. By default, Linear Road produces location data 
that correspond to a location report for every 30 seconds 
of “real” time that passes in the simulation.  

To execute the Linear Road queries, we use STREAM 
[7]. Running it requires a continual query (CQ) script (see 
Figure 2) and a second file of system configuration 
parameters. The CQ script contains three types of 
information. First, it contains a description of the input 
tuples as an association of field names and types. Second, 
it contains a file path location from which STREAM can 
read tuples. Lastly, the script contains continual queries 
described in the Continual Query Language (CQL) [13]. 

table : register stream CommonInputStr  
         (Vid integer, Speed integer,  
          XWay integer, Lane integer,  
          Dir integer, Seg integer); 
source : /hc283/stream_proj/source/db0 
 
vquery : select Vid, XWay*1000+Dir*100+Seg,  
           Speed from CommonInputStr; 
vtable : register stream SegSpdStr  
           (Vid integer, Seg integer,  
            Speed integer); 
... 
query : select Vid, Seg, Lav,  
          Toll from OutStr; 
dest : /hc283/stream_proj/out/lrtest0 

Figure 2.  Excerpt of a STREAM script.  



CQL manipulates streams (a time-stamped and time-
ordered sequence of tuples) and relations (time-varying 
sets of tuples) through various operators [4]. 

STREAM assumes the input tuples arrive in time-stamp 
order. Furthermore, STREAM is undergoing rapid 
development, and for this experiment a version was not 
available that implemented persistent storage. Therefore, 
we distill the benchmark to the essential continual query: 
calculating variable toll amounts on a volume basis. In this 
query, latency is incurred in internal buffers that STREAM 
automatically creates as part of the query plan. For this 
paper, we feed STREAM tuples in a serialized fashion 
from a generated simulation trace and then measure the 
latency as they are collected (see Figure 3). 

As we mentioned earlier, STREAM also does not 
support distributed computation nor does it support QoS 
both of which are inherent to the Linear Road scenario. In 
the next section, we describe how we used Infopipes to 
add these features. 

4. Distributed Linear Road 

In this section, we describe how we used generated 
Infopipes and Quality of Service to create a distributed, 
adaptive version of Linear Road. 

Our first task was to distribute Linear Road by 
wrapping each of the three application units (data source, 
STREAM server, and data sink) in an Infopipe. Currently, 
as did a prior Linear Road benchmark, we use a single 
data stream of highway information rather than creating a 
system of thousands of cars, each generating its own data. 
Instead, we feed the aggregated highway data through an 
Infopipe to a remote machine running the STREAM 
system, which then feeds the data out after query 
execution to an application sink, again via Infopipe. We 
wrap STREAM server with one input-only and one 
output-only Infopipe, streamReceiver (receiving from the 
car data source) and streamSender (sending back toll 
information to the cars), respectively. STREAM itself is 
hardcoded to read and write data only from files specified 
in the CQL. We worked around by embedding Unix pipe-

creation code in the wrapping Infopipes. By having 
Infopipes write and read on the Unix pipes, STREAM 
could be fed information from network sources. 

An event-based model for controlling QoS is a natural 
fit since, generally, QoS is only relevant when some 
system event triggers quality evaluation. We program the 
QoS co-system as aspects to the Infopipes application, and 
use the AXpect weaver to integrate this code into the 
generation and deployment phase of the application. This 
achieves two goals. First, it allows logical, high-level 
separation of the QoS system. This type of abstraction 
enhances understandability. I.e., the developer can first 
create and debug a non-QoS system that has no QoS code 
to complicate the testing or performance profiling of the 
raw application. Second, abstracting the QoS system into a 
separate specification as standalone code offers the 
opportunity of re-use in later information flow systems. 
Furthermore, this method of packaging allows us to create 
a distributed QoS service which, in operation, is run 
distributed as three smaller pieces. In fact, a great deal of 
the QoS code we are applying to this problem was 
originally generated for an image streaming application. 

If we run Linear Road with no QoS support, then it 
quickly violates the latency policy – the response with the 
toll amount is not returned quickly enough after a car 
sends its location. However, the latency is introduced 
primarily by the query engine and its buffers while the 
CPU remains relatively free. To detect this, we install a 
module on the data sinks that returns latency 
measurements. This behavior is defined within the WSLA. 
The receipt of a toll tuple at the DataSink that is late 
triggers a WSLA “Notification” event to be returned via 
the feedback channel.  

If observed latency goes out of range, the monitor 
triggers an adaptation into a low-latency mode of 
operation. It does this by spawning a second copy of the 
query system, i.e., it spawns another STREAM instance. 
Based on highway numbers in the tuples, it splits the 
incoming tuple stream in two, and farms tuples from half 
the highways to the second server. This lowers latency 

 
Figure 3. In the Linear Road benchmark, cars 
transmit location data to the STREAM CQ server. 
We add QoS feedback events from the cars to 
the Infopipes wrapping the STREAM servers. 

 
Figure 4. The ISG generator produces the 
Infopipes and QoS code that enables the 
distribution capabilities for the benchmark (left).  



because STREAM can use the second processor installed 
on the computer. Two servers means each query engine is 
handling fewer tuples; they can serve all tuples more 
quickly to reduce latency. 

The AXpect weaver installs the QoS implementation 
on the base code – we insert QoS code automatically 
during code generation rather than after-the-fact manually. 
We wrote several small aspects, as it is easier to develop, 
deploy, and debug the QoS behavior by working with 
relatively small pieces of source code.  The aspects were 
developed as follows:  
1) The first aspect we develop measures latency of data 

streaming through the network. Since Linear Road 
tuples are generated with time stamps, the aspect need 
only observe the time stamps at the destination end of 
the application and calculate elapsed time.  

2) Next, we introduce a feedback channel that returns 
timestamp data from the data sinks to the QoS 
monitor. A feedback event is generated every time that 
a data sink receives a data from the query server. For 
future flexibility, we relay the feedback information 
through both Infopipes connected to the query system. 
The feedback channel and event handler was reused, in 
fact, from an earlier project. 

3) Next, on top of the control channel, we apply an aspect 
that reads the QoS specification from the WSLA and 
converts it into source code. 

4) Inside the SLA code, we insert code that implements 
replication of the query server. In doing this, the aspect 
must create two things. First, a new Unix pipe must be 
created with a mkfifo  call. Second, it emits new CQ 
script file that has been parameterized with the new 
FIFO name of the Unix pipe as the tuple source. For 
writing output tuples, the new query server can 
multiplex over the same FIFO as the original query 
server. 

5) At this point, we write an aspect that distributes the 
tuples between the two query server copies. It does this 
by examining highway numbers and distributing half 
the highways to the replicated service, and half to the 
original service. 

6) Next, avoidance for transient pricing errors. Since the 
new query server has no traffic information, it must be 
fed information for some time before tolls generated 
by the system are consistent with the original tolls. The 
aspect imposes a 60-second delay after starting to new 
STREAM server before accepting results from it. 

5. Evaluation 

We ran our evaluation of the distributed application on 
three PIII-800 dual processor machines. There was one 
machine for each of the system components (DataSource, 
QueryServers, and DataSink), and when we used two 
STREAM servers, they both resided on the same physical 

machine. We then evaluated the QoS-enabled system 
against a non-QoS-enabled system using the Linear Road 
benchmark for 1 to 32 highways. 

First, we evaluated the system as a distributed system 
with no quality of service. We can see in the graph that in 
this case the latency grows slowly at first, but that at about 
13 or 14 highways, latency rises dramatically indicating 
we have exceeded the optimal operating region for 
STREAM (see Figure 5). A second metric we use is 
“good” throughput. This is a measure throughput, but 
instead of counting all tuples processed, we only count 
those that arrive at the DataSink on time. Again, we see 
that throughput rises, but later falls as tuples become 
“late.” In terms of good throughput, increasing amounts of 
input actually causes good throughput to fall (Figure 6). 

After adding the QoS event monitor and adaptive code, 
the lower curve in the graph, we see how Linear Road is 
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Figure 5. Average Latency, non-QoS and QoS. 
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able to provide low latency information to the requesting 
cars. “Good” system throughput, that is throughput of 
tuples that are on-time, is dramatically improved, as the 
latency graph would indicate. Note, too, that for the input 
side throughput improves slightly because neither the 
system nor STREAM’s internal buffers become 
overwhelmed. 

6. Related Work 

As we mentioned, there are several continual query 
projects that are addressing QoS for their systems. 
However, none have yet demonstrated Quality of Service 
as it applies to the system beyond the query engine. 
Aurora [4] supports quality of service within the database 
engine itself, but it has not addressed quality of service as 
it applies to the broad system. 

STREAM, upon which we built this example, is a 
lightweight query engine compared to Aurora since it does 
not add the Quality of Service adaptation nor does it 
require a heavy-duty ACID database to support it and 
provide persistent storage [2],[7]. 

The Berkeley TelegraphCQ project, like the Aurora 
project, has also addressed Quality of Service and even 
distribution or the query server itself [6], [14]. Still, it does 
not address the notion of Quality of Service outside the 
query engine as Infopipes allows us to do. 

7. Conclusion 

By wrapping the query system and application 
components in Infopipes, we were able to easily create a 
quality of service aware application. Using the Infopipes 
Stub Generator allowed us to create a distributed 
application with reusable communication stubs. By writing 
aspects for the AXpect weaver, we were able to introduce 
quality of service which not only reused QoS efforts code 
from earlier projects, but allowed us to concurrently 
generate the QoS code and communication stubs rather 
than insert the new QoS manually. Addressing QoS as a 
problem apart from application flow allowed us to use 
event-based servicing of latency violations rather than a 
continual information flow. 

Future research will focus on more sophisticated QoS 
behavior, such as re-distributing information flows over 
multiple machines, more complete implementations of 
WSLA-reading code, or tunable queries. 
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