
Event-based QoS for a Distributed Continual Query System

Galen S. Swint, Gueyoung Jung, Calton Pu, Senior Member IEEE
CERCS, Georgia Institute of Technology

801 Atlantic Drive,
Atlanta, GA 30332-0280

swintgs@acm.org, {helcyon1, calton}@cc.gatech.edu

Abstract
Continual queries for information flows are attracting

increased interest. However, two important characteristics
of information flows are not adequately addressed by
current continual query packages: distribution and
Quality-of-Service (QoS). In this paper, we use Infopipes,
an abstraction for information flows, and the Infopipes
Stub Generator to create a distributed version of the
Linear Road benchmarking application around an existing
continual query server (CQ server). Then, we install a
QoS event generator/monitor pair that observes system
response latencies. Receipt of each query result generates
a feedback event reporting the latency (response time) for
that request. If latencies exceed a threshold as
parameterized by a WSLA, then the Infopipes controlling
the CQ server can attempt to restore latencies to an
acceptable level by generating an adaptation event for the
Infopipes managing the CQ server.

1. Introduction

Continual streams of information are becoming
increasingly common as more devices are attached to
networks [1]. For instance, a car with a GPS receiver will
emit a string of location data points, or an environment
monitor creates a steady stream of temperature reports. As
such devices and sensors become more common, more
emphasis is being placed on immediate data analysis as
well as managing and controlling systems of these
information flows. Since the systems are filled with
dynamic information, Quality-of-Service (QoS) ascends in
importance because information value can rapidly decline
over time [1]. Furthermore, to extract value from the
“raw” data these streams contain, several research projects
such as STREAMS [2], CACQ [3], Aurora [4],
NiagaraCQ [5], and TelegraphCQ [6] have proposed
Continual Query (CQ) systems that operate on data as it is
produced rather than warehousing the data and performing
queries off-line.

In this paper, we demonstrate an information flow CQ
system that implements end-to-end QoS through events.
Some streaming database projects (e.g., Aurora and
TelegraphCQ) have begun to consider QoS as it pertains to
query execution, but do not address the systemic picture
wherein QoS extends beyond the database query engine
itself. We demonstrate system-level QoS achieved through
code generation and weaving of a QoS event mechanism
into an Infopipes-enabled system. Our demonstration is
built around a streaming database benchmark and the
Stanford Stream Data Manager (STREAM) [7] for
executing the queries. The code generator lets us reuse
communication stubs developed during the course of the
Infosphere project [8]. Furthermore, the code generation
and weaving techniques allows us to reuse the quality of
service code and event processing engine in new
applications with little to no alteration. (In fact, this work
re-uses some quality of service components developed for
media streaming demonstration scenario [9].)

The demonstration system comprises three
components: a data source, which generates new data; the
STREAM CQ engine, which filters data based on a query
script; and the end application, the consumer of the query
results. We use a dataset and query subset from the
“Linear Road” benchmark that simulates a stream of
location tuples from highway traffic [10]. The benchmark
core revolves around continual queries that dynamically
set toll rates (e.g., high tolls to combat rush hour
congestion). The benchmark comprises a data set,
historical queries, and continual queries. So far, two
continual query projects have used Linear Road in
evaluations of their systems, but only running on a single
machine. In this paper, Infopipes wrap the STREAM CQ
engine, and we distribute remainder the application by
wrapping data sources and sinks with Infopipes.

This paper is organized as follows. First, we describe in
section 2 Infopipes and the Infopipes Stub Generator
(ISG) used to encapsulate and extend the Linear Road
benchmark and the STREAM CQ server. Then in Section
3 we briefly outline the benchmark and STREAM. Next,
in Section 4 we describe how we the wrapped the
STREAM system and used Infopipes to distribute, add
QoS events, and implement adaptive, end-to-end quality of
service to the system. Then, in Section 5 we provide a

This work was partially supported by NSF/CISE IIS and CNS divisions
through grants IDM-0242397 and ITR-0219902, DARPA ITO and IXO
through contract F33615-00-C-3049 and cooperative agreement
N66001-00-2-8901, and Hewlett-Packard.

short evaluation. Finally, we introduce related work and
conclude in Sections 6 and 7 respectively.

2. Infopipes and the ISG

One of the hallmarks of information flow systems like
Linear Road is their communication-intense operation. In
a complete Linear Road simulation, for example, each of
several thousand vehicles sends location and velocity data
to the query processing system, which later returns data on
toll charges back to the vehicles. Therefore, a large
amount of executing code is dedicated to creating,
maintaining connections, waiting for new data, and then
marshalling and unmarshalling data from communications
software. For these applications, communication is a vital
challenge that is not efficiently solved by handcrafting
code in point-to-point segments. In this section we
introduce Infopipes, an abstraction for applications like
Linear Road, the Infopipes Stub Generator (ISG), and the
AXpect weaver, a module of the ISG that we use to insert
QoS code into Infopipe systems.

Infopipes are the abstraction designed by the Infosphere
project to address the needs of these information flow
systems. Broadly speaking, an Infopipe is a set of inputs
and outputs and a mapping or computation that links the
two. Infopipes are also composable, that is, an Infopipe
can be constructed by linking together smaller Infopipes in
parallel or serial fashion. Each Infopipe has a typespec that
includes a description of the inports and outports which
exchange application-level packets of information. In
compositions, of course, there is also a specification for
what pipes should be connected. We devised a code
generator, the Infopipes Stub Generator, which offers a
reusable, high-level abstract interface for building and
composing Infopipe systems [11].

A XIP (XML for Infopipes) specification describes
three major concepts in Infopipes systems: application
packet datatypes, simple Infopipes, and composed
Infopipes.

A developer uses a datatype element to describe
application-level packets of data that are the units of
exchange between Infopipes. The code generator maps
these into a native-format, like a struct or class .

Second, the user can specify a simple Infopipe. Each
simple Infopipe encapsulates a computational element unit
(e.g. a data source or a query server) and has one or more
inports and one or more outports, and each of these ports
is assigned a datatype as defined in some separate datatype
specification. For example, in creating an Infopipe to wrap
the data source of the Linear Road data, we create an
Infopipe with one outport that accepts data from a TCP
connection and feeds the STREAM server

Finally, these simple Infopipes compose into complex
Infopipes. Each complex Infopipe declaration states any
simple Infopipes it includes as well as their connections

expressed as inport-outport pairings. Each simple Infopipe
description can be used multiple times, as a simple
Infopipe participating in a composition for a complex pipe
can be given a local name. That is, we allow developers to
separate declaration of an Infopipe from its definition. .
Figure 1 is an excerpt from an Infopipe specification for a
simple Infopipe and a composed Infopipe.

Code generation from XIP is a multi-stage process
handled by the ISG. First, the ISG assembles an expanded
XIP document, XIP+, by retrieving missing sub-
specifications from a repository and resolving connection
information. The repository is inherent to the design of the
ISG and stores previously defined datatypes, Infopipes,
and compositions as XML fragments on disk. That way,
the repository encourages datatype and Infopipe reuse
between applications and even between differing Infopipes
within the same application. After creating a XIP+
document, the ISG uses XSLT templates to generate and
embed source code with the specification in the XIP+. At
the last stage, the XML in the XIP+ is stripped and the
resulting files are written to disk.

Were this all the information a developer provided, the
ISG could generate communication infrastructure for an
Infopipes system. That code consists of bootstrapping and
initialization routines for communication packages,
marshalling, and de-marshalling routines for data.
However, this basic functionality does not address quality
of service. Since QoS is an issue that varies greatly
between applications or even instances of a single
application, we use the flexible AXpect weaver module of
the ISG to address QoS implementation [9].

The AXpect weaver allows developers that use the ISG

<pipe class="StreamReceiver" lang="C">
 <apply-aspect name="sla_stream_loadshedder.xsl"
 doc="streams.xml">
 <apply-aspect name="stream_feedback_read.xsl"
 namepipeloc="/hc283/stream_proj/fb0"/>
 ... </apply-aspect>
 <apply-aspect name="stream_receiver.xsl"/>
 <ports>
 <inport name="streamRcvPort"
 type="InputStream"/>
 </ports>
</pipe>
<pipe class="LinearRoadTest">
 <subpipes>
 <subpipe name="streamSource"
 class="StreamSource"/>
 <subpipe name="streamReceiver"
 class="StreamReceiver"/>
 ...
 <connections>
 <connection comm="tcp">
 <from pipe="streamSource"
 port="streamOutputPort"/>
 <to pipe="streamReceiver"
 port="streamRcvPort"/>
 </connection>
 ...
</pipe>

Figure 1. Excerpt from a XIP file illustratating a
simple Infopipe and Infopipe composition.

to extend the basic library of generated code by inserting,
or weaving, new code that is not germane to
communications. The weaver has three key components:
descriptive tags in generated code, a set of XSLT
templates with source code that recognizes the tags, and
statements in XIP. We placed XML tags in the content of
the XSLT generator itself to demarcate major units of
generated code. During generation, the ISG writes
integrates these tags with the output along with the source
code resulting in “marked up” source that is encoded with
Infopipes semantics. For instance, the ISG generates tags
for the C code that performs marshalling as
<jpt:outport point=“marshal”> and it tags a C
header file for an Infopipe with <jpt:header
point=“pipe”> . A QoS developer uses these to insert
QoS relevant code by writing XSLT templates that match
on the correct semantic tags and inject code before, after,
or around the marked section. Finally, in the XIP
document the developer adds a few directives for the
AXpect module to run the proper XSLT templates (these
are the apply-aspect elements in Figure 1). This new
code becomes part of the generated system, and appears
each time the stub generator runs for that specification.
The aspects can be re-used across multiple Infopipes or
multiple Infopipes applications.

One major advantage to the AXpect weaver is that
since it is invoked before the Infopipe generator writes
code to disk, it has a holistic view of the source for a
system. This feature is especially important for problems
like QoS because it lets a developer insert new
functionality simultaneously even though the end code
will end up geographically dispersed in distributed system.

Of course, while it is possible for the XSLT aspects to
“hardcode” all information needed by the aspect, it is
useful for them to be able to draw information or operating
parameters from outside documents. Since AXpect aspects
are written in XSLT, the weaver can retrieve information
from XML documents outside the code generator. A
WSLA (Web Service Level Agreement) specification is an
XML document that allows us to externalize
measurements, events, and triggers for web services [12].
Adopting a WSLA format, we can write more generic
aspects that refer to the WSLA for QoS parameters.

3. Linear Road and STREAM

The Linear Road benchmark has been developed by
researchers to test new stream query systems [10]. It is
based on a dynamic toll scenario under consideration by
highway agencies in several states to help combat
congestion and encourage drivers, through higher tolls, to
travel at off-peak times. In the benchmark, there are a
series of multi-lane highways, and each highway is
divided into segments. Cars on the highway provide
regular position and velocity updates which are tracked by

the query system. Then as a car approaches a highway
segment, it is notified of its toll calculated based on
observed traffic volume. In the real world, a driver can
opts to accept the toll and continue on the highway or exit.
If the driver accepts the toll, then the toll system debits an
account. Ultimately, the benchmark’s measure is how
many “highways” a query system can support before
responses a returned too slowly – i.e., response latency is
violated.

It is easy to see that QoS is a natural and important
requirement for Linear Road: the toll calculator must
execute efficiently and quickly to inform drivers in time
for them to make safe decisions about whether to continue
on the toll road or, if the toll is too high, then exit at the
next segment. Consequently, latency becomes an
important end-to-end property that must be monitored
closely – each position report must be answered within a
few seconds with updated toll information. Once latencies
become too long, drivers may attempt unsafe exits, or the
toll authority may be forced into a default toll policy at the
expense of lost revenue opportunities.

The complete Linear Road package has a set of Data
Generator processes that create a stream of location data to
simulate car locations on the toll road. Along with location
data, the Linear Road also creates a set of queries over the
data it produces, including Position Reports, Account
Balances and Daily Expenditures, and Travel Time
Estimation. For a full benchmark, the system must execute
static queries and continual queries simultaneously. The
generated data is fed through Data Drivers to the query
system. By default, Linear Road produces location data
that correspond to a location report for every 30 seconds
of “real” time that passes in the simulation.

To execute the Linear Road queries, we use STREAM
[7]. Running it requires a continual query (CQ) script (see
Figure 2) and a second file of system configuration
parameters. The CQ script contains three types of
information. First, it contains a description of the input
tuples as an association of field names and types. Second,
it contains a file path location from which STREAM can
read tuples. Lastly, the script contains continual queries
described in the Continual Query Language (CQL) [13].

table : register stream CommonInputStr
 (Vid integer, Speed integer,
 XWay integer, Lane integer,
 Dir integer, Seg integer);
source : /hc283/stream_proj/source/db0

vquery : select Vid, XWay*1000+Dir*100+Seg,
 Speed from CommonInputStr;
vtable : register stream SegSpdStr
 (Vid integer, Seg integer,
 Speed integer);
...
query : select Vid, Seg, Lav,
 Toll from OutStr;
dest : /hc283/stream_proj/out/lrtest0

Figure 2. Excerpt of a STREAM script.

CQL manipulates streams (a time-stamped and time-
ordered sequence of tuples) and relations (time-varying
sets of tuples) through various operators [4].

STREAM assumes the input tuples arrive in time-stamp
order. Furthermore, STREAM is undergoing rapid
development, and for this experiment a version was not
available that implemented persistent storage. Therefore,
we distill the benchmark to the essential continual query:
calculating variable toll amounts on a volume basis. In this
query, latency is incurred in internal buffers that STREAM
automatically creates as part of the query plan. For this
paper, we feed STREAM tuples in a serialized fashion
from a generated simulation trace and then measure the
latency as they are collected (see Figure 3).

As we mentioned earlier, STREAM also does not
support distributed computation nor does it support QoS
both of which are inherent to the Linear Road scenario. In
the next section, we describe how we used Infopipes to
add these features.

4. Distributed Linear Road

In this section, we describe how we used generated
Infopipes and Quality of Service to create a distributed,
adaptive version of Linear Road.

Our first task was to distribute Linear Road by
wrapping each of the three application units (data source,
STREAM server, and data sink) in an Infopipe. Currently,
as did a prior Linear Road benchmark, we use a single
data stream of highway information rather than creating a
system of thousands of cars, each generating its own data.
Instead, we feed the aggregated highway data through an
Infopipe to a remote machine running the STREAM
system, which then feeds the data out after query
execution to an application sink, again via Infopipe. We
wrap STREAM server with one input-only and one
output-only Infopipe, streamReceiver (receiving from the
car data source) and streamSender (sending back toll
information to the cars), respectively. STREAM itself is
hardcoded to read and write data only from files specified
in the CQL. We worked around by embedding Unix pipe-

creation code in the wrapping Infopipes. By having
Infopipes write and read on the Unix pipes, STREAM
could be fed information from network sources.

An event-based model for controlling QoS is a natural
fit since, generally, QoS is only relevant when some
system event triggers quality evaluation. We program the
QoS co-system as aspects to the Infopipes application, and
use the AXpect weaver to integrate this code into the
generation and deployment phase of the application. This
achieves two goals. First, it allows logical, high-level
separation of the QoS system. This type of abstraction
enhances understandability. I.e., the developer can first
create and debug a non-QoS system that has no QoS code
to complicate the testing or performance profiling of the
raw application. Second, abstracting the QoS system into a
separate specification as standalone code offers the
opportunity of re-use in later information flow systems.
Furthermore, this method of packaging allows us to create
a distributed QoS service which, in operation, is run
distributed as three smaller pieces. In fact, a great deal of
the QoS code we are applying to this problem was
originally generated for an image streaming application.

If we run Linear Road with no QoS support, then it
quickly violates the latency policy – the response with the
toll amount is not returned quickly enough after a car
sends its location. However, the latency is introduced
primarily by the query engine and its buffers while the
CPU remains relatively free. To detect this, we install a
module on the data sinks that returns latency
measurements. This behavior is defined within the WSLA.
The receipt of a toll tuple at the DataSink that is late
triggers a WSLA “Notification” event to be returned via
the feedback channel.

If observed latency goes out of range, the monitor
triggers an adaptation into a low-latency mode of
operation. It does this by spawning a second copy of the
query system, i.e., it spawns another STREAM instance.
Based on highway numbers in the tuples, it splits the
incoming tuple stream in two, and farms tuples from half
the highways to the second server. This lowers latency

Figure 3. In the Linear Road benchmark, cars
transmit location data to the STREAM CQ server.
We add QoS feedback events from the cars to
the Infopipes wrapping the STREAM servers.

Figure 4. The ISG generator produces the
Infopipes and QoS code that enables the
distribution capabilities for the benchmark (left).

because STREAM can use the second processor installed
on the computer. Two servers means each query engine is
handling fewer tuples; they can serve all tuples more
quickly to reduce latency.

The AXpect weaver installs the QoS implementation
on the base code – we insert QoS code automatically
during code generation rather than after-the-fact manually.
We wrote several small aspects, as it is easier to develop,
deploy, and debug the QoS behavior by working with
relatively small pieces of source code. The aspects were
developed as follows:
1) The first aspect we develop measures latency of data

streaming through the network. Since Linear Road
tuples are generated with time stamps, the aspect need
only observe the time stamps at the destination end of
the application and calculate elapsed time.

2) Next, we introduce a feedback channel that returns
timestamp data from the data sinks to the QoS
monitor. A feedback event is generated every time that
a data sink receives a data from the query server. For
future flexibility, we relay the feedback information
through both Infopipes connected to the query system.
The feedback channel and event handler was reused, in
fact, from an earlier project.

3) Next, on top of the control channel, we apply an aspect
that reads the QoS specification from the WSLA and
converts it into source code.

4) Inside the SLA code, we insert code that implements
replication of the query server. In doing this, the aspect
must create two things. First, a new Unix pipe must be
created with a mkfifo call. Second, it emits new CQ
script file that has been parameterized with the new
FIFO name of the Unix pipe as the tuple source. For
writing output tuples, the new query server can
multiplex over the same FIFO as the original query
server.

5) At this point, we write an aspect that distributes the
tuples between the two query server copies. It does this
by examining highway numbers and distributing half
the highways to the replicated service, and half to the
original service.

6) Next, avoidance for transient pricing errors. Since the
new query server has no traffic information, it must be
fed information for some time before tolls generated
by the system are consistent with the original tolls. The
aspect imposes a 60-second delay after starting to new
STREAM server before accepting results from it.

5. Evaluation

We ran our evaluation of the distributed application on
three PIII-800 dual processor machines. There was one
machine for each of the system components (DataSource,
QueryServers, and DataSink), and when we used two
STREAM servers, they both resided on the same physical

machine. We then evaluated the QoS-enabled system
against a non-QoS-enabled system using the Linear Road
benchmark for 1 to 32 highways.

First, we evaluated the system as a distributed system
with no quality of service. We can see in the graph that in
this case the latency grows slowly at first, but that at about
13 or 14 highways, latency rises dramatically indicating
we have exceeded the optimal operating region for
STREAM (see Figure 5). A second metric we use is
“good” throughput. This is a measure throughput, but
instead of counting all tuples processed, we only count
those that arrive at the DataSink on time. Again, we see
that throughput rises, but later falls as tuples become
“late.” In terms of good throughput, increasing amounts of
input actually causes good throughput to fall (Figure 6).

After adding the QoS event monitor and adaptive code,
the lower curve in the graph, we see how Linear Road is

0

0.5

1

1.5

2

2.5

3

1 5 9 13 17 21 25 29

Num of Highways

La
te

nc
y

(s
ec

)

non-QoS

QoS

Figure 5. Average Latency, non-QoS and QoS.
QoS-enabling keeps our latency under 1.5
seconds whereas with no QoS latency reaches
2.5 seconds.

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Num of Highways

O
n-

tim
e

T
hr

ou
gh

pu
t (

K
B

/s
)

Input, QoS

Input, no QoS

Output, QoS

Output, no QoS

Figure 6. Throughput for input and “good”
throughput for output. Higher input throughput
under QoS results from more efficient servicing
of buffers. Higher output throughput is from
more tuples being “on time”.

able to provide low latency information to the requesting
cars. “Good” system throughput, that is throughput of
tuples that are on-time, is dramatically improved, as the
latency graph would indicate. Note, too, that for the input
side throughput improves slightly because neither the
system nor STREAM’s internal buffers become
overwhelmed.

6. Related Work

As we mentioned, there are several continual query
projects that are addressing QoS for their systems.
However, none have yet demonstrated Quality of Service
as it applies to the system beyond the query engine.
Aurora [4] supports quality of service within the database
engine itself, but it has not addressed quality of service as
it applies to the broad system.

STREAM, upon which we built this example, is a
lightweight query engine compared to Aurora since it does
not add the Quality of Service adaptation nor does it
require a heavy-duty ACID database to support it and
provide persistent storage [2],[7].

The Berkeley TelegraphCQ project, like the Aurora
project, has also addressed Quality of Service and even
distribution or the query server itself [6], [14]. Still, it does
not address the notion of Quality of Service outside the
query engine as Infopipes allows us to do.

7. Conclusion

By wrapping the query system and application
components in Infopipes, we were able to easily create a
quality of service aware application. Using the Infopipes
Stub Generator allowed us to create a distributed
application with reusable communication stubs. By writing
aspects for the AXpect weaver, we were able to introduce
quality of service which not only reused QoS efforts code
from earlier projects, but allowed us to concurrently
generate the QoS code and communication stubs rather
than insert the new QoS manually. Addressing QoS as a
problem apart from application flow allowed us to use
event-based servicing of latency violations rather than a
continual information flow.

Future research will focus on more sophisticated QoS
behavior, such as re-distributing information flows over
multiple machines, more complete implementations of
WSLA-reading code, or tunable queries.

8. References

[1] C. Pu, K. Schwan, and J. Walpole, “Infosphere Project:
System Support for Information Flow Applications”, in ACM
SIGMOD Record, Volume 30, Number 1, pp 25-34, (March
2001).

[2] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.
Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma,.

“Query Processing, Resource Management, and Approximation
in a Data Stream Management System”, In Proc. of the 2003
Conf. on Innovative Data Systems Research (CIDR), January
2003.

[3] S. Madden, M. Shah, J. M. Hellerstein, and Vijayshankar
Raman, “Continuously Adaptive Continuous Queries over
Streams”, SIGMOD 2002.

[4] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik,
“Monitoring Streams – A New Class of Data Management
Applications”, VLDB 2002.

[5] J. Chen, D. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A
Scalable Continuous Query System for Internet Databases”,
SIGMOD 2000.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R.
Madden, V. Raman, F. Reiss, and M. A. Shah, “TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World”. CIDR
2003.

[7] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K.
Ito, R. Motwani, U. Srivastava, and J. Widom, “STREAM: The
Stanford Data Stream Management System”, To appear in a
book on data stream management edited by Garofalakis, Gehrke,
and Rastogi, 2004.

[8] P. Black, Jie Huang, Rainer Koster, Jonathan Walpole,
Calton Pu, “Infopipes: an Abstraction for Multimedia Streaming”,
in ACM Multimedia Systems Journal, 8(5): pp 406-419, 2002.

[9] G. Swint, Pu, C, “Code Generation for WSLAs Using
AXpect." Proceedings of 2004 IEEE International Conference on
Web Services (ICWS 2004). San Diego, 2004.

[10] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker and R. Tibbetts, “Linear Road: A
Stream Data Management Benchmark”, Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB),
August, 2004.

[11] G. Swint, C. Pu, and K. Moriyama. "Infopipes: Concepts
and ISG Implementation." Proceedings of Second IEEE
Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems (WSTFEUS'04). May 11 - 12, 2004. Vienna,
Austria.

[12] A. Dan, D. Davis, R. Kearney, R. King, A. Keller, D.
Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef,
Web Services on demand: WSLA-driven Automated
Management, IBM Systems Journal, Special Issue on Utility
Computing, Volume 43, Number 1, pages 136-158, IBM
Corporation, March, 2004.

[13] A. Arasu, S. Babu and J. Widom, “The CQL Continuous
Query Language: Semantic Foundations and Query Execution”,
Technical Report, Oct. 2003.

[14] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A.
Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. R.
Madden, V. Raman, F. Reiss, and M. A. Shah, “TelegraphCQ:
An Architectural Status Report”. IEEE Data Engineering
Bulletin, Vol 26(1), March 2003.

