215

Code Generation for WSLAs Using AXpect

Galen S. Swint and Calton Psenior Member, |EEE

Abstract— WSLAs can be viewed as describing the service
aspect of web services. By their nature, web serds are
distributed. Therefore, integrating support code irto a web
service application is potentially costly and errorprone. Viewed
from this AOP perspective, then, we present a metlb for
integrating WSLAs into code generation using the AXect
weaver, the AOP technology for Infopipes. This hekpto localize
the code physically and therefore increase the eveml
maintainability and enhance the reuse of the WSLA @de. We
then illustrate the weavers capability by using a VBLA
document to codify constraints and metrics for a seaming
image application that requires CPU resource monitang.

Index Terms— Software quality, Software tools, System

software.

. INTRODUCTION

A

proposing standards and specifications to codify

application's implementation. Aspect-Oriented Programming
(AOP) has recently emerged as a candidate development
paradigm for managing code that implements application
requirements that have the crosscutting characteristic. For
general purpose languages, and by extension the general space
of all applications, Aspectd and AspectC have shown that
AOP techniques can significantly improve the clarity, and
therefore maintainability, of application implementations.
However, adding AOP to existing languages has also proven
to be non-trivial. Aspect] is clearly successful, but it took
several years of significant group effort. In comparison,
progress on AspectC is slower. One of the major AOP
research questions is whether this difficulty (of adding AOP
is related to the expressive power of the target application
space or is simple inherent to AOP.

We investigate this question and probe the power of AOP
in implementing these service contracts by using IBM's Web

s the web services model gains popularity for developingervice Level Agreement (WSLA) specification as an

and deploying applications, many companies axample aspect
trdemonstrate the facility with which AOP techniques allow

language for service contracts and

constraints that necessarily must exist between parti®§b service management code can be implemented within an

involved in application. In fact, recent efforts of companie§Xisting

distributed information  flow  programming

such as IBM and HP trend towards specifying web servideamework.

contracts that capture expectations of performance and

thd he Infosphere project has already created a toolkit to

roles of the involved parties [1][2]. We can view thes8Upport the specification and generation code for information
specifications as domain specific declarative languag88W applications [3]. The basic Infopipes toolkit consistsa
especially for the web services domain. The web servitdgh-level specification language, Spi; an XML-format of this
specification problem, then, becomes one of mapping tihguage, XIP; and the Infopipe Stub Generator, or ISG,
service contract’s particular domain specific language (DSMWhich generates the communication code. When using our
to the application’s implementation space. At runtime, theffamework and AOP techniques, we findist significantly

the measurement, contract evaluation,
adaptive functionality must be interspersed
application's normal runtime pattern.

monitoring,
into

arsfsier to augment our existing specification language with
thAOP, although it is still non-trivial. Doing so, alls us to add

support for WSLAs and to generate code supporting web

Clearly, these standards specify an aspect of their associg#Evice agreements. Three primary factors contribute to this:
web services. That is, they capture a system characteristic thist, DSLs such as XIP typically capture recurring designs,

is orthogonal to the primary application functionality, &mait

so a weaver capable of using the underlying design pattern

functionality crosscuts, or touches on many parts of, tf@n reduce the number of extraneous joinpoints and thereby

Manuscript received February 9, 2004. This work wase as part of the
Infosphere and Embedded Infopipes projects, furideDARPA through the
Information Technology Expeditions, Ubiquitous Cartipg, Quorum, and
PCES programs. The research was also partialldediroy NSF's CISE
directorate, through the ANIR and CCR divisionsedl as the ITR program.
In addition, the research was partially funded el

G. S. Swint is a Ph.D. graduate student in theegellof Computing at the
Georgia Institute of Technology, Atlanta, GA 303Z280 USA (phone: 404-
385-2585, e-mail: swintgs@acm.org)

C. Pu is a Professor, holds the John P. Imlay Ghaboftware, and is the
Co-Director for the Center for Experimental ReskancComputer Systems in
the College of Computing at the Georgia Institutd @chnology, Atlanta, GA
30332-0280 USA (e-mail: calton@cc.gatech.edu).

reduce complexity in writing new aspects. Second, XIP is
defined over XML and it benefits from XML’s inherent
extensibility and maturing software tools such as parsers and
XSLT pattern processors, facilities which have proved to be
very useful for incorporating aspects. Third, the desigouof
generator as a processing pipeline aided us by easing the
insertion of code weaving logic as an additional processing
component.

The first contribution of this paper is a concrete
implementation of an experiment, using our AXpect AOP
weaver to implement WSLA support for an application
created using the ISL/ISG framework. The weaver processing



215 2

component accepts AOP-augmented XIP from our co@®mmunication connection. This code implements
generation component and uses XSLT to retrieve data frdomctionality such as connection establishment and code to
the application's XIP specification and from its contraainarshall and transmit data and following that to receive and
WSLA. It then inserts WSLA support at the source level. unmarshall data. We exploited these commonalities and

The second contribution of this paper is an experimentdéveloped the Spi language and ISG code generator for
evaluation of the AXpect weaver through a non-triviabpecifying and generating communication frameworks to
information flow application. In our experiment, we usedupport these applications.

WSLA to apply resource constraints to the application and The Spi/ISG toolkit has two parts: the domain specific
created a cooperative image sender and receiver services lwaguage, known as Spi, and a code generator, the ISG. Spi
respect CPU usage requirements of the receiver end throwgiptures  application  design by describing each
sender adaptation. Our framework allowed us to implememansformational step as a "pipe" which has inputs, outputs,
the constraints and monitoring in an incremental fashion. &md some function that maps between them. Spi also allows a
far, AXpect has generated and woven about 30% of the firddveloper to specify datatypes used for communicating
code. between processes.

The organization of this paper is as follows: Section Il Once a Spi description is created, it is compiled into an
provides a motivating example and background materimtermediate representation — tkéP (XML for Infopipes)
relevant to Infopipes. Section Ill describes the implementatiatescription. Our compiler for Spi is based on the Ply
of the AXpect weaver for AOP support in Infopipes. Sectiotexer/parser package. The compilation of Spi is a
IV then illustrates the use and results of AOP and the AXpestraightforward transformation of the datatype, pipe, and
weaver in the context of our motivating example. Finallygonnection information to XML structures which is then
Sections V and VI, respectively, provide related work and tleigmented with some configuration information.

conclusion. XIP is itself another domain specific language though not
designed for human readability. Rather, XML syntax is most

IIl. MOTIVATION AND BACKGROUND suited as input to programs. XIP serves as input to the

o Infopipe Stub Generator (ISG), our software that generates the

A. Motivating Example communication stubs for handle connection establishment,

We will use a distributed image streaming application tdata marshalling, etc. Figure 1 provides a visual overview of
illustrate the functions performed by the Spi/ISG tootkid the ISG architecture including the AXpect weaver (which we
then demonstrate the use of a WSLA document plus thgl discuss in more detail in Section Ill). Overall, itssnilar
AXpect weaver to impose resource constraints and adsithe application code generator architecture described in [4].
adaptation to the image source service. For this applicatiofhe XIP specification is the input, and C source code
we have a sender, the source of our images, and a receigetompanied by makefiles are the output of the code
which contracts to accept and process the image data stregeneration process.

In the base implementation, the sender transmits images to th€ode generation proceeds through two phases. First, the
receiver at an unconstrained rate. We then use a WSDAP specification is passed to the actual code generation
document to add a CPU usage constraint so that the receiver
measures the resource usage of the sender and returns the
to the sender so the sender can adjust its sending rate.

Operational requirements of this simple sender/receive Template
application are common to many distributed information flow
applications. For its part, the receiver must create a socke
publish connection information, and wait for an incoming
connection. The sender follows a complementary series ¢
steps. It creates a socket, looks up the receiver's connecti
information, and then establishes the socket connection. In tt
steady state, the sender transmits data to the receiver throt

the connection. In the base implementation, however, it i
easy for an overeager sender to swamp the receiver with t
many images and thereby use up a disproportionate amount
receiver resources which may be needed for other tasks. V

discuss how a WSLA allows the sender and receiver t —
. . . . . . Write Files
manage this situation in the experimental section.

Apply Templates

B. IS, ISG and Infopipes C Code/

A great deal of code in information flow applications Makefiles

ertains solely to creating, using, and maintaining the
P y 9 9 9 Figurel. ISG with support for AXpect weavir



215 3

component, in our case a collection of XSLT-based templateeds specific code that touches several parts of the system,
These templates are XSLT statements embedded within asi@ce resource management requires end-to-end cooperation.
code skeleton which can retrieve relevant data from the XFbr example, performance is limited by the bottleneck
specification, as thexsl:value-of> element in Figure 2 component in the entire system and security is limited by the
does. The result of applying the XSLT to the XIP document wveakest component. In this case, we use CPU usage monitors
a new XIP document containing both the original specificatioand an additional feedback channel to allow the sender to
and also the generated C code. In the second phase, this respect resource constraints of the receiver by adapting its
XIP document is passed to the final stage of the stdending rate.

generator. Here, the XIP is cracked into individual files, A Aspect Specification

stripped of XML, and written into directories. o o
In our example application, the developer first creates theThe developer of an application must indicate to the weaver

Spi description which defines two pipes — a sending pipe ay]\@at aspects are to be a_pplied and on which components to
a receiving pipe. These pipes are connected, and the serftfdfy them. We chose to implement aspect support at the XIP
transmits image data as typem which is a small header /€V€! and postponed the research question of aspect
followed by a byte array, to the receiver. This Sp§pe0|f|cat|qn in Spi. The deC|S|0n-§ter.ns from “.’VO main

specification is compiled into an equivalent XIP, which is the[Fasons. First, XII_D-IeveI a;sp%ct_specmcatmn IS r:qu;]red n any
passed to the ISG. The ISG selects the proper templates Sfge smnce Spi is translated into XIP. Second, there is no

then writes the files into the proper directories. The developgiandard WSLA specification language — competing standards
can then add the C source code implementing the c lude CDL from the QuO project [5], and proposals by HP

functionality of the sender and receiver. 2 and_ IBM [1]. ) .
Adding aspect statements to each pipe specification that

generates code is done by adding an XML element which
) ) ] ) ] carries the name of the aspect and any additional information
To the toolkit described in the previous section, we havfie aspect requires. For instance, if we wish to apply an aspect

added support for AOP. This topic we divide into three aregg wq receiver that generates rate controller functionality and
and discuss them in this section. We address, first, aspRGhferences a WSLA. then we write this:

specification, in which we designate the aspects to be wovegapply-aspect name="rateController.xsl"

with our base code; second, weaver support in the templatgge="yav.xml"/>

and third, a method to implement each aspect and specifyagpects may specifically rely on functionality located in

code, advice, and pointcuts. o . other aspects implying at least a partial ordering. Developers
Orj top of the basic streaming application described in the, genote this in the specification by nesting aspect

previous section, we added support for resource managemgitiication elements within one another, and the weaver will

using AOP to evaluate the AXpect weaver. Normally, eaclly the most deeply nested aspects first. In our sender-

resource constraint (e.g., CPU or network usage guarantegieiver example we want to apply a CPU usage monitor

which relies on the timing information generated in the tgmin

I1l. ASPECT SUPPORT IN THESG

int <xsl:value-of select="$thisPipeName"/>( ) {

<jpt:pipe point="user-declare">

; I USER DECLARES VARS HERE
</jpt:pipe>

<jpt:pipe point="user-function">

; I USER CODE GOES HERE
</jpt:pipe>

return O;

/I startup all our connections

int infopipe_<xsl:value-of
select="$thisPipeName"/>_startup()

{

<jpt:pipe point="startup">
/I start up outgoing ports
Il <xsl:for-each select="./ports/outport">
infopipe_<xsl:value-of
select="@name"/>_startup();
</xsl:for-each>

/I start up incoming ports

/I <xsl:for-each select="./ports/inport">

infopipe_<xsl:value-of
select="@name"/>_startup(); </xsl:for-each>

</jpt:pipe>

return O;
}
Figure 2. Excerpt from a template that generatesection startup calls and
skeleton for the pipe's function. Line breaks ieskELT tags do not get
copied to the output.

aspect. In XIP the requirement is expressed like this:

<apply-aspect name="cpumon.xs|">

<apply-aspect name="timing.xsl"/>

</apply-aspect>

The AXpect weaver does not require a developer to specify
dependencies between all the aspects in use. Alternatively, the
developer can simply list the statements as children of the
<pipe> element or of an<apply-aspect> . In these
cases, the aspects are applied in the order listed.

B. Aspect Support in the Templates

C, our target implementation language, does not have a
complete and robust aspect weaver for it, yet, as AspectC is
still in development. On the other hand, we also do not need
the full power of a general aspect weaver, either, because we
limit ourselves to a specific domain — information flow
applications. Instead, we adopted an approach analogous to
the explicit programming model of ELIDE [6]. In AXpect,
joinpoints are XML elements explicitly written into the
templates and they are selected via XPath pointcuts. Unlike
ELIDE, however, we can limit the number of joinpoints
explicitly expressed since we are in a specific domain and



215 4

have already identified some repeated patterns to express Jpt:pipe[@point="module’]’

through them. For instance, we know that each pipe at ruere $pipename and $inside are variables. We can

time proceeds through three main phases: startup, runninggtrict join point selection by adding XPath predicates, or

shutdown. Furthermore, we even know what specific substepagect multiple joinpoints with the ‘|' (OR) operator aslwel

are required for each of those phases, e.g. initialization andAspect] has three advice keyworllsfore , after , and

location advertising by a socket inport during startup. around , direct the weaver to run the aspect code before,
Knowing these steps, we can insert XML elements thafter, or in thearound case, either both before and after or

explicit denote the boundaries of execution for each step aindtead-of the joinpoint. When around is used for befoes/aft

sub-step. Referring back to Figure 2, we see XML elemerdemantics, the developer controls the execution of the code in

denoting the startup of a pipe <jft:pipe the joinpoint with theproceed keyword. Rather than
point="startup"> ) and delineate the group of calls todesignating advice with a keyword, advice with AXpect is
start up each inport or outport, and another elemeekpressed through the structure of the XSLT template. Once
(<jpt:pipe point="user-function"> ) denoting the the XPath statement selects the joinpoint, then the aspect

position where the user will insert the code to do the wbrk writer must explicitly copy the joinpoint and its code e t

the pipe. Note that we place the tags inside the functions @atput using the<xsl:copy> element. At this point, the

that code can be added inside the function. We have additioaspect writer can choose to add code before, after, around, and
tags outside the functions that denote the contents of a sourstead-of (by omitting the copy directive) the joinpoilmt.

file or header file so that an aspect developer can affeeigure 3, we can see that the timing aspect inserts code around
application structures larger than a single function. In fact, ane middle function of a pipe. With this approach, each piece
aspect can also add entirely new files to the suite of generatdédinserted code has access to the same variables and stack
files and generate calls to functions in the new files. context as the original code.

XSLT was designed for manipulating and creating XML An aspect may also need to refer to data in the XIP
documents. Therefore, the presence of XML tags in thepecification. Since the specification is presented along with
generation templates is not unusual and requires no exth@ code for weaving, the aspect code can refer to the
“workarounds” when coding templates nor does thspecification in a same manner that templates retrieve the data
supplemental XML reduce or break the functionality in théy using<xsl:value-of> element.
base templates. For the most part, code included in a templat®vhen developing an aspect, a writer may wish to include
or aspect needs very little modification. Typically, C codginpoints in the aspect code to augment the joinpoints
only requires ampersands and less-than symbol conversion.available in the base templates and thereby expand the

We placed the joinpoint tags in a separate namespace. Tjbiapoint space. Doing so provides hooks for aspects which
segregates the joinpoint designators from tags that may hawey be applied later, and allows the later aspect code to take
other purposes, such as denoting file information for thke coadvantage of the earlier aspects' functionality. This denotation
generator or XSLT elements. is accomplished in the same fashion as adding joinpoints to
the original templates -- by adding XML elements to the

C. Implementing an Aspect ; . .
h i q aspect template in the same fashion as for the code generation
An aspect for the AXpect weaver is an XSLT Ocumenfemplates. In Figure 3, it is easy to see the added joinpoint

The collection of pointcuts, advice, and code that constitutg t:time-process> which denotes the block of code
an aspect are expressed wusing a collection H‘Tpt

. he aspect related to timing the execution of the function of
<xsl:template> statements in a stylesheet and use t

) i pipe. Note that we kept the variable declarations outside the

template’smatch  attribute to execute the pointcuts through S template
XPath statements. For instance, the XPath query to select alj;a'tchze,/ﬁ|!ed_Temp|ate[@n_ame_:g;pipename]
instances of the joinpoint "middle-module” would look like [@inside=$inside]//jpt:pipe-middie">
this: “//jpt:pipe[@point="module’] struct timeval base:

Most of the time, we apply an aspect to only one pipe in astruct timeval end;
collection of all the pipes geperated to creatg a systgm. To<jpt:time_process>
select the code for only that pipe from the entire collection in // take timing here
the XML document we can condition our XPath statement to 9¢ttimeofday(&amp;base,NULL);
narrow the selection of joinpoints in the desired fashion. <xsi:copy>
Since this is such a common requirement, we extract the(;ﬁ!&pp'{femp'ates select="@*|node()"/>
identify the pipe from th&apply-aspect> statement then copy
hand pass it to the template through variables. Then, if yougettimteofday(&am_p:en?j,lt\lULL); - .
wanted only the middle-module template for the Y% O—ferch‘?zn_d.(t‘f,”_u‘s\;—cs_ega{seﬁ‘iuvs—esc‘;f )
receiver  pipe, you qualify your selection statement with fprintf(stdout,"Time to process: %ld\n”,
XPath attribute selectors: _ <,J-pmime_processlisec—to—process)'
“IffilledTemplate[@name=$pipename] </xsl:template>

[@inside=$inside]/ Figure 3. An excerpt frotiming.xsl  , the timing aspect implementation.



215 5

joinpoint element. This is to comply with the C requirement In the base implementation of the streaming image
that variables be declared at the top of a code blockpplication, a sender transmits images to the receiver as
Following this convention helps ensure that the aspect codeickly as possible given network conditions and the senders
does not introduce syntax errors. own computational load. However, in some environments it is
Finally, for WSLAs, we must retrieve the constraintslesirable for the receiver to dictate a limit on the rate at which
encoded in the WSLA and incorporate them into the generaténd sender transmits data. For instance, the receiver may wish
code. We do this by utilizing XSLT'sdbcument ” function to perform compute-intensive transformations on the data, or
which allows for a developer to operate from any XML datthe receiver may be collecting images from multiple sources
source. In our test we have found it simplest to simpljné (possible even from multiple network segments) at the same
a variable that represents the root of the XML document, atiche. In such cases, it is useful for a rate limiter to be
then this can be re-used throughout the aspect. programmed into the sender which responds to receiver issued
D. The AXpect Weaver WSLA information messages about CPU use.

) ~ For the base scenario, there are a total of fourteen files
The AXpect weaver is the component of the ISG that b””%%nerated each for the sender and receiver:

together the preceding three topics by interpreting aSpQCtsender.{c,h} or receiver.{c,h} . the datatype

specification statements in the XIP, loading the implemented declarations the middle function of the pipe, its startup,
aspects from disk, and applying them to the template- ;.4 its shutdown code

generated code. The modular structure of the ISG allowed “Sopmoutfc,h}  or ppmindc,h}  : header files for the
to insert the AXpect engine as a processing stage executedcommuynication functions and source filésplementing

after applying the XSLT code generation templates, as shown marshalling, communication, and connection
in Figure 1. After generation, the produced pre-code is re- gstablishment
bundled with the description as an XML document and passedruntime.{c,h} : header and library functions for

along to the AXpect weaver. The weaver itself is a C++ sypport of connection establishment. There is one of each
component that uses the Xerces-C XML parser and Xalan-C of these files for the sender and receiver.

XSLT processor to resolve, load, and weave the aspects. « gMakefile for each sender and receiver.

Generally, the process for weaving aspects is When the application runs, it first calls the startup code for
straightforward, as the complications of finding joinpsint the pipe. This in turn calls the startup code of each connection
executing pointcuts, and weaving are in the XSLT engine. for opening and connections. Once startup is complete, the

Weaving proceeds recursively through the following stegsipe enters its main running phase, which consists acquiring

on each pipe: data and submitting it to the communication layer in a
1. Retrieves the firstapply-aspect> element from the continuous loop. The communication layer then manages the
specification. network transmission. Communication is asynchronous
2. If the aspect contains more<apply-aspect> between the sender and receiver.
statements, then the AXpect applies those aspects first, and _
re-enters the process of weaving at this step. B. Implementation
3. The weaver retrieves the aspect code from disk (aspect©ur base scenario simply allows the sender to transmit data
are kept in a well-known directory). unchecked to the receiver using the base code generated by

4. Apply the aspect to the code by passing the aspect XSthe templates. To add rate-limiting functionality, thenttte
stylesheet, the generated code with joinpoints, and syst@@kse implementation requires the following changes to a base
XML specification to the Xalan-C XSLT processor. Thesender-receiver implementation:
result is a new XIP document that again contains the pqq support for resource metrics to the receiver

specification, woven code, and joinpoints that Were oeyajyated each time the receiver processes an application

5 r_lt_ert]amed or even adISEd by the aspecf(.f s th {)acket. Requires code added to the receiver when it
' € weaving result serves as Input for any aspects ag ;- oq and when it processes each packet.

follow the current aspect. This includes aspects which _ :

depend on the CLE)rrent aspect's functi%nality or Add a reverse channel for WSLA information messages
functionally independent aspects that are simply applied from the_ receiver to the sender_. This requires (_1|scovery and
later. connection code on the client and receiver plus a

6. Once all aspects have been applied, then the entire xMLMechanism to multiplex and demultiplex control messages.
result document is passed to the last stage of the generatofdd rate CPU metric code to the receiver which marshals
to be written to disk. Any residual XML joinpoints ihet and sends informational messages to the sender about the

woven code remain until the last stage removes them asobserved metric under a chosen reporting policy (e.g.

the code the generator writes the source files to disk. windowed vs. un-windowed). It builds on the functionalit
of the cpu monitor aspect and the control channel. So, those
IV. USING AXPECT aspects must be present first.

» Add rate control code to the sender. This code must retrieve

A. Scenario messages from the control channel, demultiplex them, and



215 6

behave appropriately. It again depends on the control cofde the rate control; therefore, the startup code must also
being applied first. The sender "throttles back" by sleepirigitialize rate information variables. In this case, this entails
after image transmission if the receiver reports greater thaetting the sender's sleep flag and guard variable to 0 (the
20% CPU usage. guard variable allows us to turn off the throttle contfahe
Figure 4 illustrates the application and aspects. Note thatdander is allowed to send at its maximum rate). In addition t
addition to crosscutting the base design of the applicatiahjs startup complexity, the rate control aspect insertstlrgo
several aspects crosscut other aspects. control channel's demultiplexing function code that routes
Implementing the aspects proceeded in several steps. Finstoming control information to the
since we had not previously used aspects with our templdtateCmdReceived() " function, which takes proper
code, we added a total of 18 joinpoints to the base templaigtion. Furthermore, to actually implement the rate throttling,
code. For the most part, these additions corresponded to etigh rate control aspect inserts a guard statement and
major syntactic or logical unit of code. For instance, we matsleep() call after the Infopipe completes its data
the header and implementation sections for thgansmission. Each of these changes involves installing
communication code and function of the pipe, the body of thariables at various scopes (global, module, and local) and in
pipe startup code, the body of the pipes middle functia, timultiple header files. Finally, since we add new files to the
code that reads the socket, and finally, we also add a joinpaapiplication, we also insert the aforementiorddkefile
(<jpt:make-rule> ) to theMakefile for the sender and rule and add the corresponding object files and flags to the
receiver. link list.
For adapation in the application, we created six aspect files
On the sender side we used two aspectstrol_sender - Results _
which implemented the sender-side control channel, andAfter applying each aspect, we saved the produced XIP

sla_sender , the implementation of the sender's response f9cument and then stripped the XML, comment lines, and
receiver rate requests. On the receiver side we used fiyBitespace-only lines. This yielded a monolithic document

aspectstiming , which provided base timing measurementgﬂat_ contained the source _for the entire distribut(_ad sys_tem
equivalent to a concatenation of the generated files minus

for CPU usage computationgontrol_receiver , an i q We th J th ber of

implementation of the receiver-side control changelimon, whitespace an . comments. We then measured the number o

which monitored CPU usage, asth_receiver which non-comment lines of code (NCLOC) added by each aspect.
' ny ’ F8r a sample of woven code, see the Appendix which contains

sent rate messages to the sender. Each aspect corresponded to AR .

one XSLT file. an excerpt from the receiver’s pipe middle.

When creating the control channel, we placed the bulk %Table 1 presents the lines of code added by each aspect.

: LS e column "Where" denotes whether the aspect applied to
the functionality in files separate from code generated for the : .
) . code generated for the sender or the receiver, and the "Lines
base implementation. It added startup coderaalle rules to

the sender and receiver output files. Altering Kekefile Added" metric is the number of non-comment lines added.

allowed automatic compilation of the extra files for the pipeGeneraIIy, the aspects add C code, but in the case of the
and adjusted the compile and link flags by adding require pects pertaining to the control channel,

. N . ntrol_receiver and control_sender new rules

libraries like—Ipflags  for supporting the separate thread o » . -
or make were woven in as well.

the control channel.

. . . : . . Table 2 and Table 3 detail exactly which files were affected
For an illustration of how disruptive even relatively siepl

additions can be to the application, we will explore thby the aspect being woven. For the fitestrol andsia

. ; . ﬁles, we place the X in parentheses since these files were
modifications on the sender side more closely. First oftudl, :
. . created by the respective aspect. We can see that the number
sender must establish a control. Since we do not want oyr . .
. ) : - files altered by each aspect varied greatly. In a
control channel to interfere with the main communication o

o . complementary fashion, we also note that each file may be
the application, we place the service for the control channel i .
) : affected by a variable number of aspects, too. Another
a separate thread. This means that at pipe startup, we mes

create a separate thread, create a socket within that thread,% T rvation we may make adding a given functionality may

connect to the receiver's control socket. Next, we add suppgrt negessanly affect each side of the application
symmetrically.

Rate Control

=

/
(/7

Figure4. The image stream application with rate contrgllaspec




215 7

TABLE 1 in the requirements phase [7]. Schongeal in [8] proposed

NCLOC ADDED : XML as a generic markup for describing the abstract syntax
Comroléﬁg‘; \Qlehnedfr Lines Added 777 trees of general purpose languages and the concept of creating
sla_sender sender 73 AOP operators for weaving. We agree with their observation
timing _ receiver 50 that XML aids AOP experimentation; however, they did not
‘é;ﬂmﬁrece“’er ;ggzx:: 1%2 explore the use of XML and XSLT use with domain specific
sla_receiver receiver 55 languages and code generation.
Total from aspects 434 ELIDE is an AOP extension of Java that allows developers
gzzg 'erg%?;rs‘taﬁon l‘ﬂg to add explicit, named pointcuts at any point in their Eogr

— [6]. It differs from our approach in two respects: filsLIDE

is a Java-specific language extension whereas AXpect works
on C and uses generic, pre-existing XML and XSLT tools.
Second, ELIDE is general purpose mechanism whereas
AXpect is targeted to our domain-specific stub generator and
distributed, streaming applications.

Of course, Aspect] and AspectC also implement aspect

Aspect weavers [4] [14], but their weavers and pointcut declarations
control_sender X X are closely tied to the implementation structure of the
sla_sender X X X)) application; therefore, changes to the original source code

TABLE 3 may break the aspects. AXpect relies instead on explicitly
RECEIVER-SIDE FILES AFFECTED

SENDER-SIDE FILES AFFECTED

Affected File
Makefile
sender.h
sender.c

PpmOut.h
PpmOut.c
control.h
control.c
sla.c
sla.h

X
«[2
=

denoted functionality and should be somewhat more robust in
o c o that regard.
g 5 | B El2l= |2 |o | Finally, Grayet al in [16] propose that AOP techniques be
2|2 T |8 |E|& g § |2 used in specific domains at the level of the domain abstraction
% 2 |e|g |22 )0 0 as well as at the implementation level. They propose the
Aspect Embedded Constraint Language (ECL) for creating new
timing X X domain-specific weavers that process domain models and not
control_receiver X X X X)) X implementation source code. This is in contrast to AXpect,
cpumon X B B . .
sla_receiver % " X X 00 0 which is an implementation level weaver.

VI. CONCLUSION

_ . We have demonstrated the ease with which WSLA support

From a DSL standpoint, Spi/XIP may be compared 10, e added to an existing domain specific framework using
Spidle and Streamit. However, Spidle is oriented towardgop ang explicit programming techniques to an existing.
synchronous, single-process applications [9], and StreaqyLjng the Axpect weaver, we build an example application
aims for streaming DSP applications and processors with it ‘;ses resource constraints from a WSLA document to

based architectures [10], [11]. cooperatively manage resource usage through adaptation.
Other AOP projects have taken advantage of DSL patternsg,, AOP framework entails aspect specification using

various ways. For instance, Bossa applies AOP concepts\is| a 1o parameterize an aspect, and then use XSLT and

scheduling in the kernel [12]. It defines a limited number ofpah to write pointcuts and advice that operate on joinpoints
pointcuts in the kernel code and then uses an event basedﬁ& licitly denoted in our code generation templates.

model to implement the aspects. However, Bossa does Rofihermore, our code weaving occurs in C source code, a

actually add AOP t.o a DSL. Instead, Bossa take§ .the vievy tkl‘gﬁguage which does not yet enjoy robust AOP supporhéor t
the DSL actually implements an aspect describing a S'”gi%neral application space.

aspect, scheduling, of the Linux kernel. Also, the developersg, icit joinpoints are feasible because our templates are in

of the ACE+TAO orb used aspect oriented and DSkg) T and because we operate in the specific domain of
te-chnlques to expose the real—tlmg functionalities of thel_r QTHformation flow applications. Since our aspects are also
with contract objects and associated Contract DescriptidByeq using XSLT, we can efficiently layer aspects to build
Language (CDL) [5]. CDL is limited to monitor and controly, fnctionality and further modularize aspect development.
functions only. However, they then used a second DSL, &1y XSLT allows us to retrieve data from the XML-based

Aspect Structure Language (ASL), for applying aspects thifg) A specification document at "no extra cost” through its
mediate interactions between distributed objects [13]. ASEupport for multiple XML source documents.

however, recognizes only a few types of pointcuts that are

specific to CORBA development, and application developers APPENDIX

can not extend the joinpoint space. Below is sample code from the receiver side pipe function.
In AOP, XML has been used to capture and manage aspergshighlight the aspect code, we have replaced the application

V. RELATED WORK



215

code with ellipses. It shows the additional include statements,

timing code, and call to evaluate the SLA metrics:

sl)
timing aspect (timing.xsl)

Cpu usage metric aspect (cpumon
SLA evaluation aspect (sla_receiver.xsl)

#include "receiver.h"
#include "ppmin.h"

#include <sys/time.h>
#include <stdio.h>
extern long usec_to_port_startup;
extern long usec_to_port_shutdown;
extern long usec_to_recv;
long usec_to_pipe_startup;
long usec_to_pipe_shutdown;
long usec_to_process;
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
loat CPUUsage;
static long lastUTimeUse = 0O;
static long lastSTimeUse = 0;
static struct rusage usingNow;
#include "sla.h"
int receiver() {
; I USER DECLARES VARS HERE

struct timeval base;

struct timeval end;
gettimeofday(&base,NULL);

; I USER CODE GOES HERE

gettimeofday(&end,NULL);
usec_to_process = (end.tv_sec -
base.tv_sec ) * 1e6 + (end.tv_usec -
base.tv_usec);
fprintf(stdout,"Time to process: %ld\n",
usec_to_process);
getrusage( RUSAGE_SELF, &usingNow );
CPUUsage = ((float) usingNow.ru_utime.tv_usec +
usingNow.ru_stime.tv_usec - lastUTimeUse +
((float) usingNow.ru_utime.tv_sec +
usingNow.ru_stime.tv_sec —
lastSTimeUse) * 1.0e6)
/ (usec_to_recv + usec_to_process);
lastUTimeUse = usingNow.ru_utime.tv_usec +
usingNow.ru_stime.tv_usec;
lastSTimeUse = usingNow.ru_utime.tv_sec +
ingNow.ru_stime.tv_sec;
fprintf(stdout, "Use pct %0.2f.\n",
CPUUsage * 100);

processSLA();
return O;

ACKNOWLEDGMENTS

(1

[2

(3]

(4]

(5]

(6]

(71

(8]

9]

[10]

[11]

[12]

[13]
[14]

[15]

This work is partially funded by DARPA/IXO as a project;g
in the PCES program, by DoE as a project in the SciDAC'’s
Scientific Data Management Center, by NSF/CISE as a
project in the CCR division’s Distributed Systems program

IIS division’s Data and Application Security program, angl th

ITR program. Also, we would like to thank Charles Consel

of INRIA/ENSEIRB (Bordeaux, France),

REFERENCES

M. Debusmann, and A. Keller, “SLA-driven Manawgent of Distributed
Systems using the Common Information ModellFIP/IEEE
International Symposium on Integrated Management. 2003.

A. Sahai, S. Graupner, V. Machiraju, and A. Wdnorsel, “Specifying
and Monitoring Guarantees in Commercial Grids tglosLA,” Third
International Symposium on Cluster Computing and the Grid. 2003.

G. Swint, C. Pu, and K. Moriyama, “Infopipes:oepts and ISG
Implementation,”The 2nd IEEE Workshop on Software Technologies
for Embedded and Ubiquitous Computing Systems, Vienna, Austria,
2004.

S. Sarkar, “Model Driven Programming Using XSLAn Approach to
Rapid Development of Domain-Specific Program Getoesd
www.XML-JOURNAL.com. August 2002.

J. P. Loyall, D.E. Bakken, R.E. Schantz, J.Ank¥, D.A. Karr, R.
Vanegas, and K.R. Anderson, “QoS Aspect Languagebs Bheir
Runtime Integration,Proceedings of the 4th Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR98).
Pittsburgh, Pennsylvania, May 28-30, 1998.

A. Bryant, A. Catton, K. de Volder, G. C. Murph “Explicit
programming,” 1st International Conference on Aspect-Oriented
Software Development, Enschede, The Netherlands, April 22-26, 2002.
A. Rashid, A. Moreira, and J. Aradjo. “Modulsaition and Composition
of Aspectual RequirementsI'st International Conference on Aspect-
Oriented Software Development, Enschede, The Netherlands, April 22-
26, 2002.

S. Schonger, E. Pulermiller, and S. Sarstedispect-Oriented
Programming and Component Weaving: Using XML Regméations of
Abstract Syntax TreesProceedings of the 2nd German Gl Workshop
on Aspect-Oriented Software Development (In: Technical Report No.
IAI-TR-2002-1), University of Bonn, February 20qs). 59 — 64.

C. Consel, H. Hamdi, L. Réveillére, L. Singagay, H. Yu, and C. Pu.
“Spidle: A DSL Approach to Specifying Streaming Aipptions,” in
Proceedings of the Second International Conference on Generative
Programming and Component Engineering. LNCS 2830, September 22-
25, 2003, pp. 1-17.

W. Thies, M. Karczmarek, M. Gordon, D.Z. Mazé, Wong, H.
Hoffman, M. Brown, and S. Amarasinghe. “A Common d{iime
Language for Grid-Based Architecture?h\CM SIGARCH Computer
Architecture News. New York, June, 2002, pp. 13-14.

W. Thies, M. Karczmarek, and S. Amarasingt&tréamit: A Language
for Streaming Applications,” ifProceedings of the 2002 International
Conference on Compiler Construction, LNCS, Grenoble, France, April,
2002.

L.P. Barreto, R. Douence, G. Muller, and Md8dlt, “Programming OS
Schedulers with Domain-Specific Languages and AspedNew
Approaches for OS Kernel Engineerindriternational Workshop on
Aspects, Components, and Patterns for Infrastructure Software at
AOSD, April 2002.

BBN Technologies. QuO Toolkit Reference Guig@01.

Y. Coady, G. Kiczales, M. Feeley, and G. Smol$Using AspectC to
Improve the Modularity of Path-Specific Customipatiin Operating
System Code,” ifProceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international
symposium on Foundations of Software Engineering, Vienna, Austria,
2001, pp. 88-98.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kenst J. Palm, and W.G.
Griswold. "An Overview of AspectJ," ifroceedings of the European
Conference on Object-Oriented Programming (ECOOP), Budapest,
Hungary, June 18-22, 2001, pp. 327-353.

J. Gray, T. Bapty, S. Neema, D.C. Schmidt, @okhale, and B.
Natarajan, “An Approach for Supporting Aspect-Otezh Domain
Modeling,” in Proceedings of the Second International Conference on
Generative Programming and Component Engineering, LNCS 2830,
September 22-25, 2003, pp. 151-168.



