Infosphere:

Smart Delivery of Fresh Information

Calton Pu

Professor and John P. Imlay, Jr. Chair in Software Georgia Institute of Technology

with

DARPA/ITO Expeditions

- ◆MIT's Oxygen project (Sci. Am. 99/08)
- ◆UC Berkeley's Endeavour (Wired 00/01)
- ◆CMU's Aura project
- Washington's Portolano project (with Xerox PARC)
- ◆Georgia Tech & OGI's *Infosphere* project

Moore's Law

- ◆Gordon Moore, computer pioneer
 - CPU speed doubles every 18 months
 - Memory density doubles every 18 months
 - Disk storage density doubles every 12 months
- ◆ Computers almost free

Network Is The Computer

- ◆ Next generation Internet
 - OC12 (622 Mb/s) connections
- Wireless networks
 - Megabit/second wireless connections
- Computer interconnects
 - Gigabit Ethernet, affordable clusters
- ◆ Networks almost free

Network Everywhere

- High speed backbone wide area networks
 - Next generation Internet around the world
- Metropolitan and local area networks
 - Wired example: Portland, Oregon
 - Wireless: cellular networks, satellites
- Home and personal networks
 - Bus-based smart homes, Bluetooth

Computers Everywhere

- Traditional computers
 - Mainframes, desktops, notebooks, etc
- Embedded systems
 - Cars, PDAs, cell phones, smart appliances
 - Micro-electronic mechanical (MEM) systems
- ♦ Smart environments
 - Sensors, automated controls, monitoring

Ubiquitous Computing

- Plenty of computers
 - Are Everywhere
 - Know Everything
 - Almost Free
- Scarce resource is human
 - User attention span
 - Programmer time

Information Growth

- Storage capacity growth
 - Disk capacity sold per year: Exabytes
- ◆ Information content growth
 - All of human published information: Exabytes
 - Computer-generated information: web robots
 - Sensor-generated information

Infosphere Focus Area

- Too many heterogeneous sources
- ◆ Too much data
 - Internet data
 - Digital Earth (100TB/day)
 - Smart Dust sensors (thousands p/ km2)

Digital Earth

Sensors

Traditional Computer Science

- Computational models
 - Theory: finite state machines, Turing machines
 - Programming languages: programs
 - Operating systems: processes
 - Computer architecture: instruction sets
- Distributed computations scale poorly
 - Example: agreement protocols

Information Flow Computing

- ◆ Internet applications are primarily information flow applications (DL, EC)
- ◆Networking success
 - Massive information delivery, QoS
- Historical examples (centralized systems)
 - Dataflow machines in computer architecture
 - Dataflow diagrams in software engineering
 - Unix pipes

Comp. Models & Info Flow

- Focus on algorithms
 - Distributed programs
 - Global algorithms
 - Scalability problems
- Info flow "on the side"
 - Implicit or separate description of I/O

- Localized algorithms
- Global info flow
 - Flow composition
 - Composable properties
- Focus on info flow
 - Explicit description of syntax, semantics, and QoS properties

Infosphere Meta-Approach

- ◆Focus on distributed information flow
 - In contrast to computation-centric computing
 - Infopipe as the central abstraction
 - Hypothesis: composable, predictable, scalable distributed software systems
- Missing link: the systems software
 - OS kernel, middleware, data management

Problem: too many sources, too much information

Infosphere

Infopipes: Backbone of Infosphere

Infopipe Abstraction

- Several reasonable delinition
- Component Infopipes
 - Ends: Typespec, property specifications
 - Middle: processing, buffering, active
- Composition of Infopipes
 - End-to-end property preservation
 - Multiplex ends and middles

Impact on OS Research

- Computation-centric
 - Process abstraction
 - Inter-process communications
 - Synchronization
 - Memory and I/O are "on the side"

- Information-driven
 - Infopipe abstraction
 - Infopipe connection and composition
 - Flow control
 - I/Os are natural flows

Impact on DB Research

- Traditional DB
- Focus: data reservoir
- Closed world
- Homogeneity and slow evolution
- ◆ Static control (DBA)
- Data warehouse

- Infosphere/Infopipe
- ♦ Focus: data flow
- Link to real world
- Heterogeneity and rapid changes
- Dynamic adaptation
- Fresh information

Fresh Information Applications

- ◆ Near Term
 - Georgia Tech Aware Home
 - I/O-Intensive embedded systems
- ◆Long term
 - Electronic commerce
 - Personal guidance
 - Environmental observation and forecasting

Georgia Tech Aware Home

- GRA, other funds
- Many sensors
 - 20 video cameras
 - microphones, vibes, ...
- Big backend
 - 2 Gigabit connections
 - 128-CPU cluster
- Real-time sensor information laboratory

Aware Home Projects

- ♦ Ubiquitous sensing
 - Recognize people based on their footsteps
 - Multiple camera/multiple person tracking
 - Sensor fault-tolerant scene modeling
- Potential applications
 - Long term elderly care
 - Emergency rescue missions

Classic Embedded Systems

- ◆Embedded = Closed
 - Small, independent, self-contained
 - Custom hardware and custom software
 - Small footprint, predictable performance, reliability
- Closed = Limited Evolution
 - Limited hardware and software life expectancy
 - Each generation is a new product

I/O-Intensive Embedded Systems

- Computers and communications
 - Sensor-actuators, PDAs, remote control
 - Network is the embedded system
- Network embedded software requirements
 - Traditional: small footprint, reliability, predictable performance
 - New: composability, adaptability, extensibility, end-to-end performance

3-Tier Client/Server Today

N-Tier Systems Tomorrow

E-Commerce Applications

- ◆N-Tier electronic commerce systems
 - Predictable end-to-end latency
- ◆Logistics, real-time decision support
 - Predictable, reliable, real-time information flow
 - Recovery from faults, accidents
 - Adaptation to environmental changes

Personal Guidance Today

- Tele Aid (Mercedes)
 and OnStar (Cadillac)
 - Cell phone link
 - GPS navigation
 - Human operator
- ◆ Palm VII
 - Radio link (cities)
 - Simple web browser

Personal Guidance Tomorrow

- ◆ Traffic-aware road navigation
 - Car receives news, suggests alternative routes
- ◆Cell phones with GPS, WAP
 - Heidelberg tour guide, Digital Kyoto

Environ. Observation & Forecast

- Columbia River
 - 2nd in No. America
- Observe (nowcast)
 - 12 data stations in Columbia River Mouth
- Calculate (forecast)
 - Observation-driven model of unpredictable environments

Calton.Pu@c

Tomorrow's Precise Forecasts

- ◆Many sensors everywhere
 - Video cameras, MEMs, satellites, ...
- Weather-adaptive applications
 - Safe river and shallow water navigation
 - Disaster prevention in precision farming
 - Airline crew and airplane optimization
- ◆Monitoring of environment
 - Amazon illegal timber traffic detection

Infosphere: Current State

- ◆ Infopipe basic research
 - Infopipe concepts and specification (ISL)
 - Infopipe "stub generators" (ISL compiler)
- ◆ Infopipe technology development
 - Personalized filtering (Continual Queries)
 - Middleware Infopipes (Event Channels)
 - Kernel QoS Support (Quasar/Microfeedback)

Infopipe Concepts

Infopipe Specification

- Syntax of info flow
 - Java class, C record
- ◆ Semantics of info flow
 - Currently XML (placeholder)
- ◆ QoS requirements of info flow
 - Performance (bandwidth, latency, jitter)
 - Security (level of encryption)

Infopipe "Stub Generators"

◆ Translate the Infopipe specification into executable code and OS run-time support

InfoFilters

- Personalized filtering
 - Interesting, important, urgent (IIU)
- Continual Queries
 - Monitoring of IIU updates on the Internet
 - Event-based filtering of new information
 - Pro-active delivery of IIU information

Recent InfoFilter Results

- WebCQ: web update monitoring
 - Built on OpenCQ
 - Currently a service
- XWRAP Elite
 Wrapper generator
 - Semi-automated generation of wrapper code

http://www.cc.gatech.edu/~lingliu

Middleware Infopipes

- Event channels as InfoEvents
 - Publish/subscribe
 - Push/pull
- Quality of Service
 - Performance, security, availability, ...
 - Freshness, timeliness

Recent InfoEvent Results

- *♦ <u>DataExchange</u>* software release
 - BPIO: Low-overhead data interchange format
 - ECho: Event Channel code generator
 - JECho: Java Event Channels
 - Heterogeneous distributed platforms
- **◆** Event channels as InfoEvents
 - QoS being added: real-time, security, etc ...

Real-Rate Infopipes

- Support applications w/ real-world events
 - Sensor-actuator control and sensor information
 - Routers and active network nodes
 - Multimedia (bandwidth, latency, jitter)
- Rate-matching and quality degradation
 - Real-rate OS kernel research
 - Microfeedback-based adaptive mechanisms
 - Utility-based QoS degradation policies

Recent Real-Rate OS Results

Current Collaborations

- Georgia Tech and OGI
- Specialization of systems software
 - France: INRIA, IRISA, Univ. Bordeaux
 - Japan: Univ. Tokyo, Univ. Tsukuba
- ◆Info flow software, Internet data mgmt
 - Germany: GMD/IPSI
 - Japan: Sony Corp.

Infosphere Summary

- ♦ The ubiquitous computing vision
 - Many computers everywhere, out of the way
 - Too many sources, too much data
- ♦ Systems software missing link
 - Information flow perspective
 - Composing Infopipes w/ predictable properties
 - Smart delivery of fresh information

