
Scalable and Reliable Location Services
Through Decentralized Replication

Gong Zhang, Ling Liu, Sangeetha Seshadri, Bhuvan Bamba, andYuehua Wang
College of Computing, Georgia Institute of Technology

Abstract—One of the critical challenges for service oriented
computing systems is the capability to guarantee scalable and
reliable service provision. This paper presents Reliable GeoGrid,
a decentralized service computing architecture based on geo-
graphical location aware overlay network for supporting reliable
and scalable mobile information delivery services. The reliable
GeoGrid approach offers two distinct features. First, we develop
a distributed replication scheme, aiming at providing scalable and
reliable processing of location service requests in decentralized
pervasive computing environments. Our replica management
operates on a network of heterogeneous nodes and utilizes a
shortcut-based optimization to increase the resilience ofthe
system against node failures and network failures. Second,we
devise a dynamic load balancing technique that exploits the
service processing capabilities of replicas to scale the system in
anticipation of unexpected workload changes and node failures by
taking into account of node heterogeneity, network proximity, and
changing workload at each node. Our experimental evaluation
shows that the reliable GeoGrid architecture is highly scalable
under changing service workloads with moving hotspots and
highly reliable in the presence of both individual node failures
and massive node failures.

I. I NTRODUCTION

As the cost of the mobile devices and its accessories
continue to decrease, there is a growing demand for high
performance location based service architecture, aiming at
providing scalable and reliable location based information
delivery in large scale pervasive computing environments.In
contrast to centralized client-server architecture, decentralized
management and provision of location based services have
gained lot of attentions in the recent years due to its low cost
in ownership management and its inherent scalability and self-
configurability.

Most of the research and development in decentralized
service computing systems has been focused on unstructured
overlay network computing, exemplified by Skype and BitTor-
ren, and structured overlay network systems. Measurements
performed on deployed overlay networks show that node
characteristics such as availability, capacity and connectivity,
present highly skewed distribution [1] and such inherent
dynamics creates significant variations, even failures, onthe
services provided by the overlay systems. For example, a sud-
den node failure that causes the service interruption may lead
the system to exhibit dramatic changes in service latency or
return inconsistent results. Furthermore, increasing population
size of mobile users and diversity of location-based services
available to mobile users have displayed rapidly changing
user interests and behavior patterns as they move on the

road, which creates moving hot spots of service requests and
dynamically changing workloads. Thus an important technical
challenge for scaling location service network is to develop a
middleware architecture that is both scalable and reliable, on
top of a regulated overlay network with node dynamics and
node heterogeneity, for large scale location based information
delivery and dissemination. By scalable, we mean that the
location service network should provide effective load bal-
ancing scheme to handle the growing number of mobile users
and the unexpected growth and movements of hot spots in
service demand. By reliable, we mean that the location service
network should be resilient in the presence of sudden node
failures and network partition failures.

In this paper we present Reliable GeoGrid, a decentralized
and geographical location aware overlay network service ar-
chitecture for scalable and reliable delivery of location based
services (LBSs). The main contributions of this paper are two
folds. First, we describe a distributed replication schemewhich
enables the reliable location service request processing in an
environment of heterogeneous nodes with continuously chang-
ing workloads. Our replication framework provides failure
resilience to both individual node failures and massive node
failures, aiming at keeping the service consistently accessible
to users and eliminating the sudden interruption of the on-
going tasks. Second, we present a dynamic replica-based load
balancing technique, which utilizes a parameterized utility
function to control and scale the system in the presence of
varying workload changes by taking into account of sev-
eral workload relevant factors. Our experimental evaluation
demonstrates that Reliable GeoGrid architecture is highly
scalable under changing workloads and moving hotspots, and
highly reliable in the presence of both individual node failures
and massive node failures.

II. SYSTEM OVERVIEW

Reliable GeoGrid comprises of a network of computing
nodes such as personal computer or servers with heteroge-
neous capacities. The system consists of four core components:
topology management module, routing module, replication
module and load balancing module.

Topology management.
All nodes are represented as points in a two dimensional

geographical coordinate space, which bears a one-to-one map-
ping to the physical coordinate system. At any time instant,
the network ofN nodes will dynamically partition the entire
GeoGrid coordinate space intoN disjoint rectangles such that

2009 IEEE International Conference on Web Services

978-0-7695-3709-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICWS.2009.57

632

each node manages its own rectangular region within the entire
coodinate space based on its geographical information and
handles all location service requests mapped to its region based
on the geographical information of the requests. Fig. 1 shows
a two dimensional geographical coordinate space partitioned
among17 GeoGrid nodes (for simplicity, we denote each node
and its mangaged region with the same number).

GeoGrid is constructed incrementally. It starts with one
node who owns the entire GeoGrid space. As a new node
p joins the system, it first obtains its geographical coordinate
by using services like GPS (Global Positioning System) and
then obtains a list of existing nodes in GeoGrid from a
bootstrapping server. Then nodep initiates a joining request
by contacting an entry node selected randomly from this list.
The joining request is routed to nodeq whose region covers
the coordinate of the new node. The region owned by q now is
split into two halves, one half owned byq and the other half
owned byp. In addition to neighbor list, Reliable GeoGrid
node also maintains a replica list to provide recovery capability
and a routing list for fast routing in the presence of large
network size. Mobile users obtain GeoGrid location service
by connecting to a GeoGrid node, either through wireless or
wired network connections.

In the first prototype design of Reliable GeoGrid, each
node is equipped with the capability for submitting location
service requests in the form ofLocation Query, routing and
processing location service requests, and delivery of results
to the mobile users. For example, a car driver may post
a service request “send me the traffic conditions within 5
miles every 10 minutes in the next 1 hour”. We assume
that location-dependent information sources, such as traffic
monitoring cameras, owners of gas stations, and restaurants,
and so forth, are external to the service network of Reliable
GeoGrid.

Routing Protocol.
Routing in a GeoGrid network works by following the

straight line path through the two dimensional coordinate
space from source to destination node. A routing request is
forwarded initially from its source initiator node to one of
its immediate neighbors, sayq, which is the closest to the
destination location (x, y). If (x, y) is covered by the region
owned by the chosen routing nodeq, then the nodeq will
be the owner node of this request. Otherwise,q starts the
forwarding process again until the request reaches the node
whose region covers (x, y). For example, in Fig. 1, a routing
request is initiated by node7 for a point covered by node3 is
forwarded through nodes12,2,4,6 in order and finally arrives
its owner node3.

The other two components of Reliable GeoGrid are replica-
tion module and load balancing module, which use replication
to provide reliability and scalability for location service. Due
to space constraints, the rest of the paper focuses on these two
components.

Each location service request is issued only once and once
it is installed into the system, it is read-only and need to be
persistent until it expires. The proposed distributed replication

scheme replicates all location requests across multiple selected
replica hosts in the network and all the replica hosts get the
same copy of the read-only location service request, though
each location service is only executed at one executor node at
any given time. In Reliable GeoGrid, every location service
request has an initiator node, an owner node and an executor
node. We call the node that receives the location service
requests from the mobile users residing in its regionthe
initiator node of the services. Each location service request
will be routed to the destination node whose region covers
its geographical coordinate or the coordinate of the centerof
the spatial area if the request is querying on a spatial region.
The destination node is calledowner nodeof the location
query, which chooses one of its replica nodes to execute the
nodes working asexecutor node. When the executor node of
a location query fails unexpectedly, one of the replica nodes
will be chosen as the new executor node.

III. REPLICATION AND REPLICA MANAGEMENT

The GeoGrid replication scheme follows two design princi-
ples. First, we want to control the replica management cost by
creating and maintaining a constant number of replicas for all
services. Second, the replica nodes should be selected from
both nearby nodes and remote nodes such that we can take
advantage of geographical proximity inherent in the Reliable
GeoGrid system to reduce the routing cost involved in recovery
and at the same time we can increase the failure resilience of
GeoGrid against network partition failures.

A. Failure Patterns and Risk Analysis

A failure is defined asan abrupt disconnectionfrom the
Reliable GeoGrid service network without issuing explicit
notifications. In practice, such sudden behavior may be caused
by computer node crash, network connectivity problems, or
improper software termination. Reliable GeorGrid network
supports a fail-stop assumption and failures can be captured
by prolonged heart-beat messages. By fail-stop assumptionwe
mean that node will stop execution, and lose the contents of
volatile storage whenever a failure occurs and node never acts
an erroneous action against the system due to a failure [2].

Two types of failures are most common in overlay networks:
individual node failures and massive node failures. By indi-
vidual node failure, we mean that a single node experiences
failures independently under fail-stop assumption. Individual
node failure may render part of the service interrupted or cause
permanent loss of service or service state information or query
results, if there is no failure resilience protection employed at
the individual node level. By massive node failures we mean
that when the underlying IP network partitions, overlay net-
work may partition as well and under such network partitions,
the nodes in one partition component are separated from the
nodes in another partition component and all the messages
across the different network partition components fail to get
response and thus create significant delay or critical failures.
We argue that a higher level failure resilience mechanism,
which can mask the simultaneous failures of multiple nodes,

633

Fig. 1. Service Model Fig. 2. Random replication schemeFig. 3. Neighbor replication schemeFig. 4. Neighbor-shortcut replication
scheme

is critical for any long lived large scale systems to maintain
service availability.

B. Baseline Replication Methods

In order to understand the intrinsic factors impacting the
design of an effective replication scheme in terms of benefit
and cost, we analyze two basic replication methods− neighbor
replication scheme and random replication scheme, each of
which achieves some degree of failure resilience but suffers
from either weak failure resilience or high replica maintenance
overhead.
Random Replication Approach.
Random replication is a widely adopted replication method in
distributed systems [3], [4]. Given an owner node and a repli-
cation factorrf , a random replication scheme will randomly
selectrf nodes as its replica hosts using a hashing functionH .
Fig. 2 shows an example in which node14 randomly selects6
nodes as its replica hosts. Because randomly selected replicas
are often far away from the host node, random replication
exhibits some natural resilience against both individual node
failures and massive node failures. However, this approach
incurs high replica maintenance cost. First, the random replica
hosts may be far away from the owner node in terms of
both network proximity and geographical proximity, thus this
approach incurs much higher communication and synchroniza-
tion overheads. Second, if the replica owner crashes, higher
overheads in searching and migration are involved to restore
the service in the new owner node.
Neighbor Replication Approach.
This replication scheme places replicas in the direct neighbors
of the owner node or multi-hop neighbors if the number of
direct neighbors is not sufficient to accomplish the replication
requirements. The replication factorrf defines the number
of neighboring nodes that act as the replica hosts, which
represents the desired redundancy level of the service. Ifrf
is relatively small, the number of direct adjacent neighbor
nodes is sufficient to accomplish the replication requirement.
In the case thatrf is large, the number of direct neighboring
nodes is insufficient, we will select replica hosts from multi-
hop neighbors of the owner node. As shown in Fig. 3, the
replicas hosts of node14 consists of its direct neighbors: node
8, 13, 16, 17 and its neighbor’s neighbors: node4 and15. By

choosing replica hosts clustered around the owner node, this
scheme greatly reduces synchronization and search overheads
compared with the random replication scheme. However, it
suffers from the relatively weak resilience to massive node
failures. For example, when network partition occurs, if an
executor node and its neighboring replica hosts are within
the same network segment, then nodes outside this network
segment will have no way to reach the location services hosted
by this executor node or the service replicas located around
this executor node, leading to the unavailability of the services.

C. Neighbor and Shortcut Replication Scheme

The design objectives of Reliable GeoGrid replication
scheme is to provide durable location query maintenance,
offer uninterrupted location query processing and enhancethe
partition tolerance capability. Directed by these objectives, we
exploit a hybrid replica placement scheme by combining repli-
cation by “neighboring nodes”and replication by“shortcut
nodes”. The former emphasizes that the replica placement
should enable fast replica-based recovery and keep the replica
maintenance cost low in the presence of high churn rates and
node dynamics. The later promotes the use of shortcut nodes to
reach GeoGrid regions that are far away from the region of the
current node, which can greatly strengthen failure resilience
against severe network partition failures. Next we describe
our replica placement algorithm that chooses neighboring
nodes and shortcut nodes as the replica hoarding destination.
Finally, we present how Reliable GeoGrid replication scheme
dynamically maintainsrf invariant replicas in the presence of
node departure or node failures.
Overview of Shortcut.

Similar to a path shorter than usual one in real world,rout-
ing shortcuttrims the routing space and reduce the redundant
routing hops through maintaining more routing information
such as shortcuts to other other larger regions at each node
such that these routing entries can be used as the shortcuts
in forwarding routing requests. To build shortcut, in addition
to the rectangular regions owned by each GeoGrid node,
the entire geographical space is virtually partitioned into a
sequence of larger regions such that each region is half size
of the previous region in order and are not overlapping with
each other, calledshortcut region. Thus each node stores

634

Fig. 5. Shortcut list initialization Fig. 6. Maintain obsolete neighbor
link in joining the system

Fig. 7. Inherit shortcuts in splitting
region

Fig. 8. Maintain obsolete neighbor
links when other other nodes joining
the system

the addresses of its immediate neighboring nodes but also
addresses of one or more residents,shortcut nodesfor each
shortcut regions.

The shortcuts of a nodep is organized into a listLp <
s1, s2, . . ., sm >, denoted byShortcutList(p). m is the
number of shortcuts in the shortcut list ofp. Each shortcutsi

points to a node in a geographical partition of1/2i the size of
the geographical plane. There are no overlapping among the
partitions pointed to by the shortcuts ofp.

In Reliable GeoGrid, nodes may have their shortcut lists
in different size. The exact length of the shortcut listLp for
a nodep is determined by the relative size of the regionR
owned byp. When the regionR is 1/2m of the size of the
geographical plane, the length of the shortcut listLp is m. This
allows the shortcut list ofp to cover the entire geographical
plane by the shortcuts ofp according to the following equation:∑m

i=1
1/2i + 1/2m = 1. Based on this analysis, we can

estimate the average length of the shortcut list maintainedby
each node. The size of a region in a GeoGrid ofN regions is
1

N
of the geographical plane, assuming a uniform region size

distribution. Thus the length of the shortcut list maintained by
each node can be estimated byO(log

2
N). As an eample, in

Fig.4 node14 maintains a shortcut pointing to node1 which is
not its direct neighbor. If node14 is routing a request towards
node9, it can forward this request to node1 directly which
then forwards to node9. Such routing path effectively trims
the half search space, compared with the normal routing path
passing node8, 4, 6, 10 to reach node9.
Shortcut Construction and Maintenance.
The construction of shortcuts is a part of the topology con-
struction algorithm. When a new nodep joins and splits an
existing regionL into halves and inherits one half of the region
L from the original owner ofL, the shortcut list of this new
nodep is created in two steps. First, the new node inherits
the shortcut list of the owner node of regionL. Second, it
examines the inherited neighbor list, and identifies those nodes
whose regions are no longer its direct neighbors. The new node
p will add these nodes into its shortcut list and then remove
them from its neighbor list. For example, starting from a3

nodes system visualized in Fig.5, node1, 2, 3 initialize their
shortcut list as an empty list. As shown in Fig.6, as node4
joins and splits node2’s region and inherits the neighbor list
from node2, node1 is not new node4’s direct neighbor and
an obsolete neighboring relationship occurs, illustratedby the
dotted line in Fig.6. Instead of deleting the link pointing to
node1, node4 adds this link into its shortcut list. Next, in Fig.7
when node5 joins, it inherits the link pointing to node1 from
node4 when it splits node4’s region. Node6 inherits node5’s
shortcut list when it splits node5’s region and at the same time,
node 6 integrates the obsolete neighboring link pointing to
node2 as another shortcut. In Fig.8, as node9 joins and splits
node3’s region, node6 integrates the obsolete link to node3
to its shortcut list, and node6 finally acquires the shortcut list
which owns pointers to nodes residing inL1, L2, L3, L4, as
shown by Fig.8. The maintenance of shortcuts, upon node join,
departure, or failure, is similar to the maintenance of neighbor
list. Heart beat messages are used to detect node failures or
departures.
Replication Factor rf . Given a location query requestLQ,
let nodep be either the owner node or executor node ofLQ.
LQ will be replicated at the following set of nodes:

ReplicationList(p, lq) = [(p1), (p2), . . . , (prf)], where
rf∧

k=1

pk ⊂ {NeighborList(p)∪ ShortcutList(p)}

This set is called theReplication List of node p, denoted
by ReplicationList(p). As a location querylq is issued and
received by its owner node, it is replicated toReplicationList
of the owner nodep. The length of the replication list is
defined by thereplication factorrf , which is a tunable system
supplied parameter, set in the system initialization time and
continually tuned according to failure rate, throughput ofthe
system, and the latency of the messages. Settingrf to a large
value may cause the system to pay higher replica maintenance
cost for fault tolerance and such cost can be further aggravated
due to high churn rate of the overlay network or fast movement
of hotspots in terms of request patterns of mobiles. Another

635

important design consideration is to keep the ratio of neighbor
replica and shortcut replica to be relatively proportionaland
constant for each nodep, because shortcut nodes are usually
further away from nodep and it is important to keep sufficient
number of neighboring nodes as the replica hosts. In the
situation where therf value is large, and combining both the
neighbor list and the shortcut list of a nodep is insufficient to
fulfill the replication requirement, i.e., size(NeighborList(p))+
size(ShortcutList(p))< rf , we will extendNeighborList to
the multi-hop neighbor list which maintains thei-hop neighbor
list of a nodep for i = 1, . . . , k. As shown in Fig.4, with
rf = 6 and the minimum neighbor replica to be50%, node 14
selects its 3 direct neighbors: node 8,16,17, and its 3 shortcut
nodes: node 1,2, 4 to compose its replica list.

The dynamic replica management module maintains therf
replicas for each node in the network when node leaves or
joins the network by monitoring therf number of replica hosts
in the ReplicationList with the help of lower level Reliable
GeoGrid operations such as periodic heartbeat messages. Due
to the space constraint, we refer the readers to our technical
report [5] for further details.

IV. L OAD BALANCING THROUGH REPLICATION

An important challenge in scaling pervasive location ser-
vice is the system-level capability in handling continuously
changing hot spots in terms of service demands and access
patterns of mobile users. In Reliable GeoGrid, we designed a
dynamic utility-aware, replica-based load balancing scheme,
which takes into account load balance relevant factors to
exploit the service processing capabilities of replicas. For each
newly arrived LQ, a utility value is computed for each replica
host based on a weighted utility function and the node with
the largest utility value is selected as the query executor of the
LQ for load balance purpose. The selection of executor node
for a LQ takes into account three factors that have critical
impacts on load balance and system resource utilization. The
first factor is the load per node, namely how much load does
a replica host currently have. The second factor is the cache
affinity factor, which states whether the data items interested
by the location query is in the cache of the replica host. The
third factor is the network proximity of the replica host to the
remote data source that provides the data items of the given
query. By taking into account the runtime load level of node
p and its replica hosts, we can avoid the risk of offloading
the LQ from the nodep to another heavily loaded replica
node and create unwanted query drops, at the same time we
increase the probability of assigning the LQ to a node that has
more resources and yet less loaded. By taking into account the
cache affinity factor, the node with required cache items will
be ranked higher in its load balancing utility value, thus we
avoid repeated and blindly data fetching from the remote data
source and effectively reduce the query processing overheads
of the system. By considering the network proximity between
the replica host node and the remote data source being queried,
better system utilization is achieved.

More specifically, a system-initiated workload threshold
parameter is used to control when the load balancing scheme
should be turned on and how long the load adaptation should
be. By monitoring workload level in runtime, each node can
invoke the dynamic load balance scheme when it detects that
its workload exceeds the “alert” threshold. Upon the detection
of overload at a node, the load balance algorithm will be turned
on and the overloaded node computes utility value for each
replica host from itsrf replicas by applying the utilization
function which assigns different weights to the three factors.
The overloaded node selects the replica host with largest
utility value and passes (offloads) the location request to the
newly selected replica host for execution. This load balancing
process repeats until the specified number of epochs is reached
or there exisits no significant load imbalance across nodes
in the Reliable GeoGrid overlay network. Due to the space
constraint, we refer the readers to our technical report [5]for
further details.

V. EXPERIMENTAL RESULTS

This section reports our experimental results for Reliable
GeoGrid service network by simulating a geographical region
of 64 miles × 64 miles. The population of end users in
this region ranges from1 × 103 to 1.6 × 104. For each
population, we simulated 100 randomly generated Reliable
GeoGrid networks. Each end user connects into the Reliable
GeoGrid system through a dedicated proxy node. The capac-
ities of those proxies follow a skewed distribution using a
measurement study documented in [1]. We report two sets
of experiments that evaluate the effectiveness of Reliable
GeoGrid approach to scaling location service networks. We
first study the fault tolerance of our replication scheme against
individual node failures and massive node failures. Then we
evaluate the effectiveness of our utility-aware, replica-based
load balancing scheme.

A. Failure Resilience

There are two common types of node failures: individual
node failure, and massive node failure. In the case of individual
node failure, without replication, the LQs hosted by the failed
nodep will be lost, though the geographical region, for which
the failed node is responsible, will be taken over by one of
the neighbor nodes upon detecting the departure of nodep.
However, with our replication scheme, such individual node
failure will ensure no interruption of the system operationat
all since all LQs hosted by the failed node will be recovered by
one of itsrf replica nodes, assuming that not allrf replicas
failed together. Otherwise, a critical failure will occur.

Fig. 9 and Fig. 10 plot the total number of critical failures
captured during this experiment under different settings of
mean service time (st), restoration time (rt) and replication
factors (rf). We observe that the neighbor and shortcut
replication scheme can help the system to significantly reduce
the occurrence of critical failures. With larger replication
factor, smaller restoration time and longer service time, we
can achieve better reliability and incur less number of critical

636

20 40 60 80 100
0

50

100

150

200

250

300

Service time (minutes)

N
um

be
r

of
 d

ea
dl

y
fa

ilu
re

s Restoration Time=20 secs
Restoration Time=40 secs
Restoration Time=60 secs
Restoration Time=80 secs

Fig. 9. Critical failures,rf = 1,
system size=4000 nodes

20 40 60 80 100
0

20

40

60

80

Service time (minutes)

N
um

be
r

of
 d

ea
dl

y
fa

ilu
re

s Restoration Time=20 secs
Restoration Time=40 secs
Restoration Time=60 secs
Restoration Time=80 secs

Fig. 10. Critical failures,rf = 3,
system size=4000 nodes

4 9 16 25 36 49 64
0

0.2

0.4

0.6

0.8

1

Number of Partitions

S
er

vi
ce

 L
os

s
R

at
e

Neighbor Replication
Random Replication
Neighbor Shortcut Replication

Fig. 11. Service Loss Rate in
massive node failures (rf=2, system
size=10000 nodes)

1 2 3 4 5
0

50

100

150

200

Replication Factor

N
um

be
r

of
 c

rit
ic

al
 fa

ilu
re

s

Reliability VS Replica Maintenance Overheads

Restoration Time=20 secs
Restoration Time=40 secs
Restoration Time=60 secs

0.5

1

1.5

2

2.5
x 10

6

R
ep

lic
a

M
ai

nt
en

an
ce

 O
ve

rh
ea

ds

Fig. 12. Reliability VS Replica main-
tenance overheads (system size=4000
nodes, service time=20 mins)

4 9 16 25 36 49 64
0

0.2

0.4

0.6

0.8

1

Number of Partitions

S
er

vi
ce

 L
os

s
R

at
e

Neighbor Replication
Random Replication
Neighbor Shortcut Replication

Fig. 13. Service Loss Rate in Net-
work Partition Failures (rf=4,System
Size=10000 nodes)

1 2 3 4 5
0

1

2

3

4

5

6
x 10

6

Replication factor

R
ep

lic
a

m
ai

nt
en

an
ce

 o
ve

rh
ea

ds

Neighbor scheme
Neighbor + shortcut scheme
Random scheme

Fig. 14. Repliation overhead compar-
ison on replication schemes (System
Size=4000 nodes)

2000 4000 8000 16000
10

−2

10
−1

10
0

Number of nodesS
ta

nd
ar

d
de

vi
at

io
n

of
 w

or
kl

oa
d

in
de

x

No load balance
With load balance

Fig. 15. Standard deviation of work-
load index (no hot spot) on rf=4

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

Replication factor

La
te

nc
y

S
tr

ec
h

F
ac

to
r

2000 nodes
4000 nodes
8000 nodes

Fig. 16. Impact of replication factor
(rf) on load balance

failures. As defined earlier, critical failure occurs when all
replica hosts of a LQ fail within the restoration time interval
∆tr. In Fig. 10 a moderate replication factor3 will reduce
the number of critical failures to almost zero for system with
service time more than40 mins. This shows that the proposed
replication scheme can significantly reduce the number of
critical failures and achieves reasonable reliability through
placing moderate number of replicas.

Everytime the system migrates a replica from one node to
another node data movement overheads occur, we denote it
as individual replica migration overheads, which is defined
as dataSize ∗ communicationLatency. Thus the system
replica maintenance overheads is defined as the sum of all
the individual replica migration overheads. Fig.12 shows the
comparison between achieved reliability and replication main-
tenance overheads. As shown by the dotted line with hollow
circle marker, dashed line with solid circle marker and solid
line with square marker, higher reliability is achieved as rf
increases. The dotted line with triangle marker shows how the
replication maintenance overheads increases as the replication
factor increments. For a system with4000 nodes with service
time around20 mins (high node dynamics), replication with
rf=4 introduces relatively low overheads while achieving good
reliability.

Fig. 11 and Fig. 13 compare the failure resilience of the
three replication schemes discussed earlier in the presence
of network partition failures. We examine the cases with the
number of network partitions ranging from4 to 64 for a 10000
nodes network with5000 random LQs. We use theservice loss
rate to measure the failure resilience in such scenario, which

is defined as the percentage of unsuccessful LQs. Overall,
we observe that as the number of overlay network partitions
increases, the service loss rate increases in all three replication
schemes, and the loss rate of random replication approach
and the lost rate of the neighbor-shortcut replication approach
start to converge. For an overlay network with 36 network
partitions or higher, the random replication approach performs
only slightly better than the neighbor-shortcut replication
approach in terms of service lost rate. We also observe that
the higher the replication factorrf is, the more effective
our replication scheme performs in terms of the service loss
rate reduction. Fig.14 compares the replication maintenance
overheads among these three replication schemes. The result
confirms that random replication incurs the most maintenance
overheads and neighbor replication scheme introduces the least
amount of maintenance traffic while neighbor and shortcut
replication scheme is in the middle. Combining the failure
resilience towards both individual node failure and network
partition failure and the moderate maintenance overheads,we
can conclude that neighbor and shortcut replication scheme
takes the advantages of the two replication schemes while
avoiding their weakness and can achieve reasonable good
reliability through placing moderate number of replicas.

B. Evaluation of Load Balance Scheme

To evaluate the effectiveness of the proposed load balance
scheme in dealing with continuously changing workload in
pervasive computing environment, we built a discrete event
simulator that models the allocation of the location query
events to nodes. The workload is a mixture of regular location

637

query service requests and moving hot spot query requests.
Fig. 15 examines load balance scheme performed on regular

uniform workload distribution (without hot spot) and we set
rf as 4 and epoch length as20 seconds with a total of
50000 regular location query requests. We observe that as
the system size increases, the standard deviation values ofthe
workload index decreases and the load balance scheme reduces
the standard deviation of the workload index to almost10
percent of the case without load balance. For a system without
load balance scheme equipped, the occurence of hot spot
may introduce longer service latency because of the longer
waiting queues. To study how well the load balance scheme
helps to reduce the query latency when using load balance
scheme, we define “latency stretch factor” as the ratio between
the average latency in the case without load balance scheme
activated and the average latency when the replica based load
balance scheme is activated. In other words, higher latency
stretch factor indicates higher query latency caused by the
hot spot. Fig.16 shows the experimental results in different
system size. We can observe that a replication factor4 for
8000 nodes system and replication factor5 for 4000 nodes
system can eliminate the extra query latency caused by hot
spot and reduces the query latency to the same scale as the
case without hot spot, indicating by query latency stretch
factor equivalent to 1. This shows that the replica based load
balance scheme greatly helps the system to reduce the query
latency and improve the system performance even when hot
spot occurs.

VI. RELATED WORK

There have been an intensive research effort on serving lo-
cation based services and applications in mobile environments
through an overlay network or a network of caches [6], [7].
However, most of these research works focus on improving the
scalability and proximity awareness of location based services
by utilizing its decentralized, self-managing features. Only few
research has been focusing on improving the failure resilience
of overlay network related location based service.

Existing research on replication scheme for overlay network
can be classified into two categories: random replication
and cluster replication. Random replication scheme is widely
used in distributed files systems, autonomous replication [8].
Cluster replication places the replicas around the owner node.
The most representative examples are the neighbor replication
in Chord [9].

Most of existing load balance schemes [10] and [11] fo-
cus on random workload reassignment among nodes which
incurs high overheads while reduces the burden of some
heavily loaded nodes. Although these solutions can reduce the
workload from heavily loaded nodes, it requires to maintain
a few centralized directory nodes and each node needs to
keep the identification information of all the directory nodes.
Furthermore, the selection of the load shedding node fails to
consider the communication bandwidth and promixity distance
factor which may also lead to high communication overheads.

VII. CONCLUSION

We have presented Reliable GeoGrid, a location-based ser-
vice overlay network for scaling location based services and
enhancing reliability of pervasive computing applications. This
paper makes three original contributions. First, we developed
a methodical approach to building a reliable and scalable
location service network with neighbor-shortcut based repli-
cations. Second, we develop a dynamic replica-based load
balancing scheme with an utility-aware model, which takes
into account of node heterogeneity, network proximity, and
changing workload at each node to scale the system in the
presence of unexpected workload changes and node failures.
Third but not the least, our prototype and experimental study
demonstrate that the Reliable GeoGrid framework is highly
scalable in terms of changing hotspots and highly reliable
in the presence of both node failures and network partition
failures.

ACKNOWLEDGMENT

This work is partially supported by grants from NSF Cy-
berTrust program, NSF CNS program, IBM faculty award,
IBM Sur grant, and a grant from Intel.

REFERENCES

[1] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of Peer-
to-Peer file sharing systems,” inProceedings of MMCN, San Jose, CA,
August 2002.

[2] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An
approach to designing fault-tolerant computing systems,”Computer
Systems, vol. 1, no. 3, pp. 222–238, 1983.

[3] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” inICS ’02: Proceedings of the
16th international conference on Supercomputing. New York, NY,
USA: ACM, 2002, pp. 84–95.

[4] A. Ghodsi, L. O. Alima, and S. Haridi, “Symmetric replication for
structured peer-to-peer systems,” inDBISP2P, 2005, pp. 74–85.

[5] G. Zhang and L. Liu, “Reliable geogrid: Scaling locationservice network
through decentralized replication,” Georgia Institute ofTechnology,
Research Report, 2008.

[6] D. Spence, J. Crowcroft, S. Hand, and T. Harris, “Location based
placement of whole distributed systems,” inCoNEXT ’05: Proceedings
of the 2005 ACM conference on Emerging network experiment and
technology. New York, NY, USA: ACM, 2005, pp. 124–134.

[7] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,
C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, and B. Tierney, “Giggle: a framework for constructing
scalable replica location services,” inSupercomputing ’02: Proceedings
of the 2002 ACM/IEEE conference on Supercomputing. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2002, pp. 1–17.

[8] F. M. Cuenca-Acuna, R. P. Martin, and T. D. Nguyen, “Autonomous
Replication for High Availability in Unstructured P2P Systems,” in
The 22nd IEEE Symposium on Reliable Distributed Systems (SRDS-22).
IEEE Press, Oct. 2003.

[9] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica,
and H. Balakrishnan, “Building peer-to-peer systems with Chord, a
distributed lookup service,” 2001, pp. 81–86.

[10] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
balancing in structured p2p systems,” 2003.

[11] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load balancing in dynamic structured P2P systems,” inProc. IEEE
INFOCOM, Hong Kong, 2004.

638

