
Composable Active Network
Elements:

Lessons Learned

Ellen Zegura, Georgia Tech

Ken Calvert, U. of Kentucky

ANETS PI Meeting, 25 May 2000

www.cc.gatech.edu/projects/canes/

2

The Cast

• Bobby Bhattacharjee (GT, now UMd)

• Ken Calvert (UK)

• Youngsu Chae (GT)

• David Haynes (GT, now Motorola)

• Richard Liston (GT)

• Shashidhar Merugu (GT)

• Matt Sanders (GT)

• Billy Mullins (UK)

• Srinivasan Venkatramen (UK)

• Ellen Zegura (GT)

3

History

• Fall 1995: Ellen heard Dave Sincoskie give
talk about active networking

• Ellen said “This looks cool.”

• Ken said “But what is it good for?”

• CANEs began…. (w/Bobby Bhattacharjee)
– active applications (e.g., congestion control)

– platform offering middle ground between
flexibility and performance

4

CANEs Project Goals

• Focus on benefit of bringing together application
information and network information
– not…rapid deployment of new protocols

• Offer constrained programmability and modularity
via “primitive elements” + composition paradigm
– not…programming language based, with virtual

machine at every node

• Fast forwarding path for vanilla traffic
• Explore compositional formal reasoning

5

CANEs EE Model

incoming channels

customizing code

outgoing channels

predefined slots

Generic
Processing
Function

(e.g. active cong. ctl.)

6

CANEs User Interface
• User specifies underlying program and set of injected

programs per packet type, conveyed by signaling

• Underlying program
– skeleton/default packet processing (e.g.,generic fwding)

– contains slots that identify locations in code

– slot is raised when location is reached in control flow

• Injected programs
– code to customize skeleton (e.g., select routing table)

– one or more injected programs per slot

– programs in a slot execute concurrently when slot is raised

7

Bowman+CANEs
Extensible implementation of the node architecture

• EE: CANEs

• Node OS: Bowman
– a-flows

– channels

– state store

• Bowman extensions

• Miscellaneous other
components
– packet classifier

– topology construction

memory
pool

threads
sync

sched

device
i/o

P P P

Host OS

NodeOS

EEs CANEs

a-flows
state
store channels

Generic
Services

Routing
Protos

Active
Applications

Hardware

PLAN ANTS

Any-
Cast

Con-
Cast

AER MCCC

Virtual
Topo

8

Project Accomplishments I

• Platform:
– CANEs EE (released Nov 1999)

– Bowman NodeOS (released Nov 1999) [Infocom’00]

• Applications:
– 1st active application(?): Application-specific

congestion control [GT-96-02, HPN’97]

– Network-aware caching [Infocom’98]

– Programmable network query and synthesis to support
topology-sensitive applications [OpenArch’00]

– Reliable multicast (w/TASC and UMass)

9

Project Accomplishments II

• Active network simulator

• Documents:
– Node Architecture (Calvert)

– Composable Services (Zegura)

• Team 4 involvement

10

Active Congestion Control

Observations:
• Application knows how to adapt to congestion

– Which packets to drop, according to data and history

• Network nodes know when to adapt
– Which nodes are congested, and when

⇒ Bring these bits of knowledge together!
– Application provides “advice” regarding discard

– Node notifies end-system of congestion

11

Intelligent Discard for MPEG
• Principle: P, B frames depend on I frames
• Discard approaches:

– Discard application-layer units (e.g. Frames, GOPs)
– Static priorities (e.g., I frame higher than P, B)
– Drop P, B if corresponding I already dropped
– Evict P, B from queue to make room for I

• Experimental method: active IP option
• Evaluation metrics:

– Application-layer quality (e.G., SNR, I-frames received)
– Network impact (e.g., Received bytes discarded)

12

Experiment Configuration

Background traffic source

MPEG source
(avg rate 725 kbps)

Bottleneck link
(2 Mbps)

Active IP router

13

Result: I-frames Received

0.1

0.3

0.5

0.7

0.9

10
00

11
00

12
00

12
60

13
00

14
00

15
00

17
00

20
00

Background Traffic (Kbps)

F
ra

ct
io

n
of

 I
-f

ra
m

es
 R

cv
d

Drop Tail
Frame
Prio
OGL

One active router, bottleneck 2Mbps,
MPEG source averages 725 Kbps

14

Result: Data Discarded at Receiver

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1000 1100 1200 1260 1300 1400 1500 1700 2000

Background traffic (Kbps)

F
ra

ct
io

n
of

 b
yt

es
 r

ec
ei

ve
d

Drop Tail
Frame
Prio
OGL

15

Highlight: Reliable Multicast (I)

lookuproute: ip_lookup

generic forwarding

cache_put

cache_get

data pkt postproc

postprocess

CANEs

eight a-flows

16

Highlight: Reliable Mcast (II)

• Eight a-flows, one per packet type

• One underlying program, 21 total injected
programs including four user-defined

• Lots of timer-driven activity, led to change
in timer support

• Relatively easy interoperability with non-
active video endsystem application

17

Project Introspection

18

Things Done and Not Done

• Things we didn’t plan to do, but did:
– Build a NodeOS (or part of one)

– Define languages (topology specification, filter
specification, signaling)

– Participate heavily in demonstration team

• Things we planned to do, but didn’t:
– Implement other applications/services

– Create wide-area CANEs testbed/ABONE

19

Lessons Learned

• Programmatic
– Difficulty of parallel development of layers

– Value of (forced!) integration with other projects

– Value of full time staff (to echo JMS)

– Challenge of distributed collaboration (and kids!)

• Technical
– Language design is unavoidable

– Importance of timer-driven processing

– Importance of naming (topologies, reusable
configurations of underlying+injected programs)

20

Mistakes?

• Choosing C over Java

• Insufficient resources to go from prototype
to version usable by larger community (and
do other things)

21

CANEs: Status

• Porting CANEs to Utah-flavored NodeOS
– EE developers toolkit
– CANES+Bowman → CANEs´+EEtoolkit+energy

• Incorporating Seraphim for Fall demos

• Implementing ActiveCast services

22

