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History

• Fall 1995: Ellen heard Dave Sincoskie give
talk about active networking

• Ellen said “This looks cool.”

• Ken said “But what is it good for?”

• CANEs began…. (w/Bobby Bhattacharjee)
– active applications (e.g., congestion control)

– platform offering middle ground between
flexibility and performance
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CANEs Project Goals

• Focus on benefit of bringing together application
information and network information
– not…rapid deployment of new protocols

• Offer constrained programmability and modularity
via “primitive elements” + composition paradigm
– not…programming language based, with virtual

machine at every node

• Fast forwarding path for vanilla traffic
• Explore compositional formal reasoning
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CANEs EE Model
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CANEs User Interface
• User specifies underlying program and set of injected

programs per packet type, conveyed by signaling

• Underlying program
– skeleton/default packet processing (e.g.,generic fwding)

– contains slots that identify locations in code

– slot is raised when location is reached in control flow

• Injected programs
– code to customize skeleton (e.g., select routing table)

– one or more injected programs per slot

– programs in a slot execute concurrently when slot is raised
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Bowman+CANEs
Extensible implementation of the node architecture

• EE: CANEs

• Node OS: Bowman
– a-flows

– channels

– state store

• Bowman extensions

• Miscellaneous other
components
– packet classifier

– topology construction
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Project Accomplishments I

• Platform:
– CANEs EE (released Nov 1999)

– Bowman NodeOS (released Nov 1999) [Infocom’00]

• Applications:
– 1st active application(?): Application-specific

congestion control [GT-96-02, HPN’97]

– Network-aware caching [Infocom’98]

– Programmable network query and synthesis to support
topology-sensitive applications [OpenArch’00]

– Reliable multicast (w/TASC and UMass)
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Project Accomplishments II

• Active network simulator

• Documents:
– Node Architecture (Calvert)

– Composable Services (Zegura)

• Team 4 involvement
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Active Congestion Control

Observations:
•  Application knows how to adapt to congestion

– Which packets to drop, according to data and history

•  Network nodes know when to adapt
– Which nodes are congested, and when

⇒ Bring these bits of knowledge together!
–  Application provides “advice” regarding discard

– Node notifies end-system of congestion
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Intelligent Discard for MPEG
• Principle: P, B frames depend on I frames
• Discard approaches:

– Discard application-layer units (e.g. Frames, GOPs)
– Static priorities (e.g., I frame higher than P, B)
– Drop P, B if corresponding I already dropped
– Evict P, B from queue to make room for I

• Experimental method: active IP option
• Evaluation metrics:

– Application-layer quality (e.G., SNR, I-frames received)
– Network impact (e.g., Received bytes discarded)
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Experiment Configuration

Background traffic source
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Result: I-frames Received
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Result: Data Discarded at Receiver
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Highlight: Reliable Multicast (I)

lookuproute: ip_lookup

generic forwarding

cache_put

cache_get

data pkt postproc

postprocess

CANEs

eight a-flows



16

Highlight: Reliable Mcast (II)

• Eight a-flows, one per packet type

• One underlying program, 21 total injected
programs including four user-defined

• Lots of timer-driven activity, led to change
in timer support

• Relatively easy interoperability with non-
active video endsystem application
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Project Introspection
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Things Done and Not Done

• Things we didn’t plan to do, but did:
– Build a NodeOS (or part of one)

– Define languages (topology specification, filter
specification, signaling)

– Participate heavily in demonstration team

• Things we planned to do, but didn’t:
– Implement other applications/services

– Create wide-area CANEs testbed/ABONE
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Lessons Learned

• Programmatic
– Difficulty of parallel development of layers

– Value of (forced!) integration with other projects

– Value of full time staff (to echo JMS)

– Challenge of distributed collaboration (and kids!)

• Technical
– Language design is unavoidable

– Importance of timer-driven processing

– Importance of naming (topologies, reusable
configurations of underlying+injected programs)
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Mistakes?

• Choosing C over Java

• Insufficient resources to go from prototype
to version usable by larger community (and
do other things)
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CANEs: Status

• Porting CANEs to Utah-flavored NodeOS
– EE developers toolkit
– CANES+Bowman → CANEs´+EEtoolkit+energy

• Incorporating Seraphim for Fall demos

• Implementing ActiveCast services
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