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Abstract

A substantial fraction of all network tra�c today

comes from applications in which clients retrieve ob-

jects from servers. The caching of objects in locations

\close" to clients is an important technique for reduc-

ing both network tra�c and response time for such

applications. In this paper we consider the bene�ts

of associating caches with switching nodes through-

out the network, rather than in a few locations. We

also consider the use of various self-organizing or ac-

tive cache management strategies for organizing cache

content. We evaluate caching techniques using both

simulation and a general analytic model for network

caching. Our results indicate that in-network caching

can make e�ective use of cache space, and in many

cases self-organizing caching schemes yield better av-

erage round-trip latencies than traditional approaches,

using much smaller per-node caches.

1 Introduction
A substantial fraction of all network tra�c today

comes from applications in which clients retrieve ob-
jects from servers (e.g. the World-Wide Web). The
caching of objects in locations \close" to clients is an
important technique for reducing both network tra�c
and response time for such applications. Studies have
shown [1, 2] that caching can substantially improve
performance.

In this paper we consider the bene�ts of associating
caches with switching nodes throughout the network,
rather than in a few hand-chosen locations. We also
consider the use of various self-organizing or active

cache management strategies, in which nodes make
globally consistent decisions about whether or not to
cache an item in order to reduce overall latency.

We develop the self-organizing algorithms assum-
ing an \active" network platform [3, 10], in which the
routing nodes can manipulate packets and even exe-
cute code on behalf of users. The per-packet process-
ing required by the self-organizing caching algorithms
is a natural application for active networks. Through-
out this paper, we use both terms (\self-organizing"
and \active") to refer to cache management and orga-
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nization techniques that make use of active network
nodes. The techniques, however, are independent of
any particular active network platform.

Our studies involve both analysis and simulation,
and use object request distributions that are consis-
tent with studies of actual Web tra�c [4]. Our results
indicate that in-network caching can make e�ective
use of cache space. In particular, active caching yields
round-trip latencies that are about as good, and in
certain cases better than more traditional approaches,
while requiring much smaller caches per node.

The remainder of this paper is organized as fol-
lows. In Section 2 we provide background on wide-area
caching and outline our assumptions about the appli-
cation and network. We also describe related prior
work in caching. In Section 3 we describe caching
policies that take advantage of the ability to store and
process information as packets pass through the nodes
of the active network along with the more traditional
methods to which we compare them. In Section 4, we
describe our simulation study, including the param-
eters of our model, our simulation methodology and
results. In Section 6, we develop an analytic model for
network caching, and use it to validate the simulation
model. Section 7 concludes the paper.

2 The Problem and Related Work

We assume an application in which clients request
objects from servers located throughout the network.
Each object is assumed to have a globally unique iden-
ti�er (e.g. a hash function of a URL or message body),
and to �t in a single \message". Each transaction
is initiated by a request message sent from a client
toward a server, containing the ID of one requested
object. The request message travels through the net-
work until it reaches a node where the requested ob-
ject is stored, which may be a cache or the server itself.
A response message containing the object then trav-
els from the server (or cache) back to the originating
client, completing the transaction. For simplicity, we
assume messages are never lost. This simple model
ignores the problem of end-to-end transfer of objects
too large to �t in a single message. However, it is ad-
equate for our purposes, namely comparison of active
caching methods with traditional ones.

We assume that a fraction of objects are \popular",



and that nodes can determine whether any particular
object is popular; this could be implemented by having
each server mark response messages containing popu-
lar objects. We measure cache scheme performance by
the average number of hops traveled by request and
response messages to satisfy a client request. This
metric accounts for two bene�cial aspects of caching:
reduction in network tra�c, and reduction of the la-
tency perceived by the requesting user.

The Harvest Cache [5] project, initiated at the Uni-
versity of Colorado, is probably the largest wide area
cache implementation in the Internet. Harvest caches
are usually arranged in a hierarchy, and Web clients
are manually con�gured to access a particular cache
in the hierarchy designated as the client's proxy. If
the client request can be satis�ed at the initial proxy
cache, it is served by the proxy. In case of a miss,
the parent and sibling caches in the hierarchy are con-
tacted using the Internet Cache Protocol (ICP [6] dis-
cussed below). If the requested object is not available
at the sibling caches or at the parent, then the client's
proxy cache generates another HTTP query with its
parent cache as the target using the HTTP proxy pro-
tocol or ICP. This process is recursively repeated until
the request is served or the object is retrieved from its
origin (by the root of the hierarchy). Once the item is
retrieved, it is cached at each node on its way down to
the leaf. This scheme is e�ective in reducing the wide-
area bandwidth requirements, and in accessing \hot-
spots" only once per hierarchy, as the \hot" item is
then cached within the hierarchy, and subsequent re-
quests to the same object can be satis�ed by a Harvest
cache hit.

The geographical push caching scheme [7] of Seltzer
and Gwertzman at Harvard uses a friends-of-friends
algorithm in which servers selectively push their con-
tent to friend caches that reside in client domains. A
similar push caching approach in which servers dissem-
inate popular pages has been proposed by Oritz and
German at the University of Waterloo [8]. In both
schemes, the server initiates the caching of an object
(that it deems popular) at a remote site.

The Internet Cache Protocol (ICP) [6] de�ned by
the Network Working Group of the IETF is a message
format used for communicating among Web caches.
Harvest and its successor (Squid) both use ICP to ex-
change information about objects stored at neighbor-
ing caches.

3 Network Caching Schemes
Traditional approaches to network caching place

large caches at speci�c points in the network. In con-
trast, we consider networks in which relatively small
caches are placed at every node. As a response mes-
sage moves through the network, each node decides
whether or not to store an object. E�ective use of
a large number of small caches is a non-trivial prob-
lem: unless they are e�ectively organized, only a small
number of unique items will be cached (as the caches

are much smaller), but these cached items will be
replicated at many locations throughout the network.
Thus, accesses to the few cached objects will exhibit
low latencies, but overall average latency will not de-
crease appreciably. However, if objects are cached too
sparsely, then the latency again does not decrease and
caching provides little bene�t.

In this section, we describe caching policies govern-
ing where an object is cached, along with mechanisms
that allow the policies to be implemented locally at
each node.

3.1 Self-Organizing Caches

Our self-organizing schemes are described here as if
every node of the network caches objects, but all that
is required is that caches be uniformly distributed.
Thus, these schemes obviate the need to decide where

to place caches|which can be a critical decision for
traditional caching mechanisms.

In what follows, the network is considered to be a
collection of domains, each of which is represented as
a graph of switching nodes connected by links. Do-
mains are of two types, transit, which (as their name
implies) carry transit tra�c, and stub, through which
only packets addressed to or from some node in the
domain are carried. The graph models used in our
simulations are constructed using the GT-ITM Inter-
net topology modeling package [9]. These graph mod-
els ensure that the paths along which packets travel
in the simulations have the characteristics that (i) the
path connecting two nodes in the same domain stays
entirely within that domain, and (ii) the shortest path
connecting node u in stub domain U to node v in
another stub domain V goes from U through one or
more transit domains to V , and does not pass through
any other stub domains. Note that \nodes" in these
models represent routers, and end systems are not
explicitly modeled. Thus references to \servers" or
\server nodes" should be interpreted as meaning nodes
to which one or more servers are connected.

Our goal is to have nodes make local decisions
about which objects they place in their (small) caches,
in such a way that resources are used e�ectively over-
all. In particular, we wish to avoid having the same
(few) objects cached at most of the nodes of the net-
work. We describe two related approaches.

Modulo Caching. To ensure that cached objects
are distributed through the network, we introduce
a distance measure called cache radius, measured in
transmission hops. The caching policy uses the radius
measure as follows: on the path from the server (or
cache) to the requesting client, an item is cached at
nodes that are the cache radius apart. Thus, an ob-
ject ends up being distributed in concentric \rings"
centered on the server where it resides; the rings are
separated by a number of hops equal to the cache ra-
dius. The radius is a parameter of the policy; it might
be set globally, on a per-object basis, or even locally in



di�erent parts of the network. (Our simulation results
assume a common global cache radius, equal to 3.)

The mechanism used to implement this policy lo-
cally at each node is a simple modulus. The response
message contains a hop count that is initially set to the
object identi�er modulo the radius; the count is incre-
mented by each node through which the packet passes.
When the incremented count modulo the cache radius
equals 0, the object is cached at that node.

Our results show that the performance of this mod-

ulo caching mechanism is extremely robust across a
wide range of access patterns and client{server distri-
butions.

Lookaround. Network caches store relatively large
objects compared to the amount of space required to
store the location of an item within the network. For
example, an object in a network cache can be several
thousand bytes, while its location could be an IP ad-
dress (4 bytes). This fact can be exploited by having a
self-organizing cache dedicate some of its cache space
to store locations of (nearby) items.

Caching nodes keep a periodically-updated list of
items cached at neighbors. Logically, each node's
cache is divided into \levels": level zero contains ob-
jects cached locally. Level one contains the locations of
objects cached at nodes one hop away, level two con-
tains locations of objects cached at nodes two hops
away, etc. When a request message is processed, the
levels are searched in sequence beginning with 0; if a
hit is detected in a nearby cache, the request is sim-
ply re-routed to that node (source and destination ad-
dresses are not changed). If the information about the
neighbor's cache turns out to be incorrect, the neigh-
bor simply forwards the datagram toward the destina-
tion. Thus, the mechanism is fail-safe and backward
compatible: a mix of active and non-active nodes may
exist in the network, and the active cache functions
may fail at any time and fall back on the regular for-
warding functions. (In our simulations, we constrain
the lookaround to nodes in the same domain.)

The number of levels of adjacent caching main-
tained and checked in this lookaround algorithm be-
comes a parameter of the policy. With this ap-
proach, even very small caches can look like \vir-
tual" large caches. We refer to this extension of the
modulo caching scheme as Modulo Caching with

Lookaround.

3.2 Traditional Mechanisms

Our simulations compare the above self-organizing
caching schemes to \traditional" caching schemes, in
which each cache attempts to store each (popular) ob-
ject passing through it, without any global coordina-
tion beyond the placement of the cache within the
network. We consider the following placement strate-
gies:

Cache at Transit Nodes (\Transit-Only").

Transit nodes have to be traversed for every non-
local stub domain access; a large fraction of paths in
the network have to go through transit routers. This
ubiquity of transit nodes in network paths make them
prime candidates for caches.

Cache at Stub Nodes Connected to Transit

Nodes (\SCT"). Stub nodes connected to tran-
sit nodes have to be traversed in order to access the
transit network. Thus, these stub nodes form good
locations for network caches. The Harvest [5] scheme
recommends that caches be placed at such locations.

Cache at Every Node (\No AN"). We also con-
sider an approach in which caches are located in every
node (like the self-organizing schemes), but without
any coordinating mechanisms enabled. This case cor-
responds to a \null" active function in an active net-
work. We refer to it as \No AN".

3.3 Discussion

Many traditional caching schemes do not explicitly
minimize latency, but rather minimize bandwidth con-
sumption on transit links. The classic example is the
Harvest cache, in which several di�erent queries may
be initiated within caches in a domain before either
the request is satis�ed, or the query is sent to the
original server. In many cases, this results in higher
latency, but no bandwidth consumption in the transit
network. In contrast, our schemes are designed to re-
duce latency|the bandwidth savings are secondary to
reducing pure latency. Both traditional and the self-
organizing schemes can be implemented in a network.
For example, within a stub network, caches could be
set up in a hierarchy to save bandwidth, while in the
wide area, the self-organizing schemes could be used
to reduce latency.

4 Simulation Methodology
We compare the performance of traditional and

self-organizing techniques for wide-area caching using
a locally developed discrete event network simulator
called AN-Sim. AN-Sim simulates an active network
as described in [10], and allows for realistic models
of the network topology. This section discusses the
various parameters of our simulations.

Network Topologies. We simulated many net-
works that di�er in number of nodes, diameter, aver-
age node degree, ratio of transit nodes to stub nodes,
etc. Table 1 summarizes the properties of the topolo-
gies for which we present results. All of these graphs
have 1500 nodes, of which 60 are transit nodes. In
Table 1, SN, SD, TN and TD stand for \stub node",
\stub domain", \transit node" and \transit domain",
respectively. Thus the Base graphs average four stub
domains per transit node, and six stub nodes per stub
domain.



Avg. Avg. Avg.
Graph Deg. SD/TN SN/SD

Base 3.71 4 6
More Stub Domains 3.14 6 4
Less Stub Domains 4.11 2 12
Higher Degree 4.53 4 6
Lower Degree 3.06 4 6

Table 1: Simulated Topologies

Servers and Objects. Each stub node is assumed
to connect to one server, thus each graph has 1440
servers. A subset of the servers, chosen uniformly at
random, are designated to be popular servers. The
number of popular servers is nominally 300. (One ex-
periment explores the e�et of varying the number of
popular servers.) There are 4 billion (232) unique ob-
jects in each simulation, the vast majority of which are
not accessed. Each object is associated with a partic-
ular server, thus each server's content is unique. A
subset of objects at each popular server is designated
to be popular. (Unpopular servers have only unpop-
ular items.) The number of popular objects is �xed
at 48 per popular server (for a nominal total number
of popular objects of 14400.) To decide upon a query,
�rst a client is chosen. The client picks a server, then
picks an object at the server. The access patterns
governing the choice of client, server and object at a
server are described below.

Access Patterns Every stub node is assumed to
connect to one client. We simulate several di�erent
access patterns. In the uniform access pattern, a client
is chosen at random. Then, a server is chosen using a
Zipf distribution: the popular servers are chosen with
a probability 1 � �. All other client requests go to
an unpopular server, chosen at random. If a popular
server is selected, then a popular object at that server
is selected 95% of the time. The remaining 5% of the
accesses to a popular server select from the unpopular
objects. If an unpopular server is selected, then a
random object is selected. (Recall that all objects at
an unpopular server are unpopular.)

We also model a correlated access pattern, in which
accesses are not independent, but rather may involve
the same client and server pairs. In the correlated
access pattern, there are two types of accesses: ini-
tial accesses and dependent accesses. An initial ac-
cess is generated using the uniform access pattern de-
scribed above. Initial accesses are separated in sim-
ulation time using an initial access interarrival time
distribution. With a �xed correlation probability, an
initial access is the \anchor" for a train of future de-
pendent accesses that are interspersed in time with
the initial access generation process. A train has an
average length of 16 accesses; the time of each future

dependent access is determined by an o�set distribu-
tion from the time of the anchor access. A dependent
access has the same client and server as the anchor
access. With a �xed probability, the item selected in
a dependent access is the same as the previous item
in the train. Otherwise, the item is selected according
to the uniform access pattern described above.

In the third access pattern simulated, a set of
servers is associated with each node. A fraction of
all accesses from the node is then directed towards
servers in this (per node) set. This models the case
in which server popularity is not uniform throughout
the network.

These access patterns are consistent with what is
known about access to objects in the World Wide
Web. Among the \invariants" found by Arlitt and
Williamson in their study of server logs [4] was that
the number of distinct objects requested is between
.3% and 2.1% of the total number of requests. They
also found that the vast majority of all requests are
for objects that would �t inside a single IP datagram
and that at least 75% of all requests to each server
they studied are nonlocal.

Cache Sizes In our simulations, the size of the
cache at each caching node is proportional to the node
degree. This is equivalent to having a �xed amount of
caching per edge (interface) incident upon the node.
For each caching simulation, the total number of cache
slots in the network is held constant. Thus, in cases
where the total number of caching nodes is small (as
in Transit-Only caching, or caching only in stub nodes
connected to transit nodes), the caches are relatively
large (compared to cache size when each node has a
cache).

Limitations of Experiments. Our experimental
setup has some known limitations. The simulator does
not enforce link rates, and thus lost datagrams due to
full bu�ers are not represented in the results. The
lookaround algorithm does not generate actual packet
tra�c in the simulation. Also, the space required for
storing the list of cached items at neighbors is not ac-
counted for. We do not believe that any of these is
particularly serious.

Performance Metrics We use the following met-
rics to evaluate the performance of network caches.

� Round trip length (RTL). We measure the
number of hops traversed by the packets involved
in a transaction. This is perhaps the simplest
and most \true" measure of network cache per-
formance.

� Fraction of queries that generate cache hits

After an initial startup period, the cache per-
formance stabilizes. We measure the fraction of
queries that are serviced by cache hits. Note that



queries served by caches not only reduce access la-
tencies and conserve bandwidth, but also reduce
server load.

5 Simulation Results
We have simulated cache performance for the

topologies speci�ed in Table 1 across a wide range of
cache sizes, server distributions, and access parame-
ters. We �rst summarize the general results, and then
describe how the results are a�ected by variations in
the certain simulation parameters.

5.1 Summary

For non-correlated accesses, the Transit-Only
caching scheme performs best (in terms of average
RTL). One explanation for this is that for the base
graph, there are 4.92 stub nodes, and 3.32 transit
nodes on the average client-server path. In this graph,
there are 60 transit nodes, and 1440 stub nodes. Thus
a much larger fraction of all transit nodes (and thus
cache slots) are encountered on each access in the
Transit-Only scheme than in the other schemes. Also,
for Transit-Only caching, in the base graph, the av-
erage cache is 25 times larger than the average cache
under active caching. Thus, the large caches lead to
large gains due to multiplexing at the transit nodes|
especially if the accesses are not correlated.

The active schemes are always within 10% of the
Transit-Only RTL, even for uncorrelated accesses.
However, Transit-Only is not able to adapt to cor-
related accesses from particular stubs. Thus the ac-
tive mechanisms generally outperform all other meth-
ods (including Transit-Only caching) for correlated ac-
cesses.

In the following subsections we present details of a
small cross section of our experiments. Except where
otherwise noted, our results are for the base graph
topology, and the LRU cache replacement policy.

5.2 Variation in Cache Size
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Figure 1: Latency with Low Access Correlation

We varied the nominal cache size from 4 to 48 cache
slots per interface. The Modulo and No-AN meth-
ods use nominal cache size, as these methods cache

at all nodes. The corresponding numbers for Transit-
Only caching are 33 to 397 slots per interface, and for
Stubs-connected-to-Transit (SCT) caching, 15 to 188
slots/interface. All of the caching mechanisms, except
SCT, show a smooth decrease in number of hops tra-
versed per round trip as the cache size is increased.

In Figure 1, the probability of repeating an accesses
within a set of correlated accesses is 0.1. The Mod-
ulo cache radius is �xed at three. The Lookaround
schemes perform better than all but the Transit-Only
caching scheme, and the performance of the two-level
Lookaround schemeis within 10% of the Transit-Only
scheme in all cases. It should be noted that the
number of cache slots per interface for the two-level
Lookaround scheme is an order of magnitude smaller
than for the Transit-Only scheme. Also, the average
degree of the transit nodes is much greater than the
average degree of the graph. Thus the transit node
caches are 25 times larger than the Modulo caches.
Comparatively, the SCT caches average 4.25 times
larger than the Modulo caches.

As accesses become more correlated, as shown in
Figure 2 (repeat probability 0.5), the Modulo with
Lookaround scheme outperform all others. Also sig-
ni�cant in Figures 1 and 2 is the behavior of the caches
in the SCT scheme. Their performance improvements
are negligible beyond 12 cache slots per interface, and
as such this method does not scale well with increase
in cache size.
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Figure 2: Latency with High Access Correlation

For the same parameters as in Figure 2, Figure 3
shows the fraction of queries that generate cache hits.
Once again, all the methods except SCT show im-
provement with increase in cache size. The SCT
method actually results in a proportionately large
fraction of hits|but the large number of hops in the
round trip suggests that more hits occur in the stub
node to which the server is connected, and not the
client. This is not unexpected|the gateway stub node
connected to the transit domain for a busy server will
experience a lot of tra�c due to the busy server, and
as such, will cache a large part of that data as well.
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5.3 Variation in Server Distribution

We have used a Zipf distribution to model server
popularity (i.e. a fraction 1 � � of the accesses are to
the fraction � of the nodes). However, it is not clear
exactly what fraction of the nodes should be consid-
ered to be servers. In this experiment (Figure 4), we
vary the fraction of all nodes that are servers from
0.01 to 0.5. Even when a large fraction of nodes are
servers, the cache performances are not signi�cantly
a�ected. Thus, wide-area caching seems robust in
face of widely varying server locations and distribu-
tions. It is interesting to note that round trip latencies
for Transit-Only cache schemes do not improve much
when the server distributions are extremely skewed,
e.g. when less than 10% of the nodes are servers. The
other schemes improve as the number of popular ob-
jects (which is a multiple of the number of servers)
decrease, but in case of Transit-Only caches, even if
all the objects are cached everywhere, the query has
to reach the transit nodes before it is serviced.
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5.4 Variation in Topology

In Figure 5 we consider the e�ectiveness of the var-
ious cache policies as the underlying topologies are
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Figure 5: Topology E�ect under Moderate Access
Correlation

varied. The round trip latency is inversely propor-
tional to the graph degree, and directly proportional
to the average size of the stub domains. The two level
lookaround algorithm has similar performance to the
Transit-Only cache method for the base graph for this
moderately correlated access pattern. As topologies
are varied, the performances are comparable|with
the active methods performing better as the number
of stub domains increase. Although it is not presented
graphically here, our experiments showed that as re-
peat probabilities increase, the AN mechanisms per-
form better than all other mechanisms in all topolo-
gies.

5.5 Spatial Access Patterns

In these experiments, we consider a di�erent access
pattern. Associated with each stub node is a set of
preferred servers. A fraction of queries generated by
the node is always directed to the preferred set. Fig-
ure 6 shows the round trip latencies as the number
of servers in the preferred set is varied from 2 to 12.
The probability of accessing a server in the preferred
set is 0.25, and the probability of a repeat access was
0.3. The two level Lookaround and the Transit-Only
cache schemes perform the best, with the Lookaround
schemes being better if the number of preferred servers
is small. In fact, the round trip latency for Transit-
Only caching is nearly constant for any number of
servers in the preferred groups since the accesses are
nearly uniform at the transit domains. The perfor-
mance of the Lookaround schemes deteriorate slowly
as the number of servers increase because the locality
in accesses are lost.

We also considered spatial access patterns in cases
when the preferred set is common to the entire stub
domain. As expected, the round trip latencies in-
crease with increase in the number of preferred servers.
Also, caching at stub nodes connected to transit node
scheme works quite well: it is within 1 hop per round
trip of optimal in all cases.
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6 Analysis of Cache Performance

In this section, we present a simple analytic model
for the expected one-way latency in accessing an item
in a network that has intra-network caching. The ba-
sic model makes the following assumptions: (1) the
set of items is partitioned into \popular" items and
\unpopular" items, and (2) only popular items are
cached, (3) every cache is full, and (4) the cached
items encountered from one client access to the next
are random and independent. This independence as-
sumption keeps the model tractable, though it clearly
departs from reality.

6.1 Network Caching PerformanceModel

Consider an access from a client to an item. If the
item is unpopular, the one-way latency is simply the
average client-server path length. If the item is popu-
lar, it may be encountered at a cache in the network.
Let L denote the average one-way latency, measured
in hop count, when a client accesses an item. Let q
denote the probability that the item is popular. Let d
denote the average length of a client-server path and
c denote the average length of a path from a client
to a popular item (possibly encountered at a cache).
Then:

L = (1� q)d+ qc

Let Ns denote the average path length from a stub
node to the transit node for a stub domain. Let Nt

denote the average path length across transit domains.
Then d = 2Ns+Nt, since a client-server path traverses
two stub domains (client and server domains) and a
path through the transit domains.

We focus the rest of the discussion on deriving an
expression for c. Let Hi denote the event \a hit oc-
curred at distance i from the client"; let Mi denote
the event \a miss occurred at every distance up to
and including i from the client". Then

c =
dX

i=1

iP rfHi \Mi�1g

=
dX

i=1

iP rfHi jMi�1gPrfMi�1g

The probabilities in this expression are a�ected by de-
tails of the locations of the caches, the cache policy
and the client access pattern. We develop variations
on the basic model to handle di�erent instances of
these details.

Let us assume the best possible conditions regard-
ing duplication in items stored in caches along the
path. Namely, we assume that the items stored in
di�erent caches are di�erent . Though this is di�cult
to achieve in a distributed environment, it provides a
lower bound on average round-trip length. We also
assume that each cache is equally likely to store any
popular item.

Since all items are di�erent, the probability of a
hit when accessing a popular item and examining S

cache locations (potentially distributed over multiple
nodes) is S=P . If we know that a miss has occurred at
locations at every distance up to and including i � 1,
then we know that the item we are looking for is in a
reduced set of popular items, namely reduced by the
number of cache locations we have already checked.
Let Ti�1 denote the total number of items checked at
distances up to and including i � 1. Then1 Ti�1 =Pi�1

j=1 Sj and:

c =
dX

i=1

iP rfHi jMi�1gPrfMi�1g

= d

�
1�

Td�1

P

�
+

d�1X
i=1

i
Si

P � Ti�1

�
1�

Ti�1

P

�

= d

�
1�

Td�1

P

�
+
X
i

i
Si

P

The �rst term is the boundary condition for the re-
quest reaching the server.

6.2 Optimal cache partitioning

As discussed in Section 3, it may be bene�cial to
use some of the network cache's memory to store lo-
cations of nearby objects. In this section, we analyze
the optimal partition of the network caches into object
and location caches.

Assume that each object is the same size, and let
the maximum number of objects in each cache be S.
Let the ratio of the size of an object and the size of
a location be �, i.e. � locations can be stored in the
cache instead of one object. Let the average one-way
length of server{client paths be d. We assume paths
are symmetric, and as such, the average client{server
round trip latency is 2d. Starting from a given cache,
as the level of lookaround is increased, the number of

1We assume that Ti < P for all i. If this assumption does

not hold, then at some point in the path, all popular items will

have been encountered, and the hit probability will go to 1.0.



S { Max. number of objects in cache
� { Number of object locations that can be

{ stored instead of one object
� { Average degree of the graph
d { Average one-way length of server{client path

� { Frac. of cache used for storing objects

Table 2: De�nitions and Notation

caches searched increases. For most graphs, this in-
crease is exponential. As a simpli�cation, we assume
that the number of caches searched at a lookaround
level of x is exponential in � � 1, where � is the aver-
age degree of the topology graph2. Let � denote the
fraction of the cache memory is used for caching ob-
jects; the rest is used for caching location information.

We now derive the value of fraction � such that the
round trip latency is minimized. The precise fraction
that minimizes the latency depends on the size of the
network, the size of the caches, and the number of lo-
cations that can be stored instead of each object. Us-
ing the basic caching model developed before, the ex-
pected latency is c =

P
i iP rfHi jMi�1gPrfMi�1g.

Using our model of memory usage, the expected
latency can be calculated as follows. For the local ob-
jects (in the object cache), the latency after traveling
i hops is i. If at node i, there is a hit in the location
cache, then a detour has to be made. We can approx-
imate the one-way length of the detour as follows.

We know that if � fraction of the memory is used
for caching objects, then memory for (1� �)S objects
is used for storing locations. This is equal to (1 �
�)S� locations. As each cache stores �S objects, the
(1 � �)S� locations correspond to complete location

information from (1��)�

�
nodes. Under the assumption

that the number of nodes increases exponentially as

the level of lookaround increases, (1��)�

�
nodes imply

a maximum detour of length log��1
(1��)�

�
. Let f be

the expected value of the length of this detour, and

let F = log��1
(1��)�

�
be the maximum length of the

detour. At each level x of lookaround, (��1)x�S items
are cached. Thus, the expected one way detour length
is:

f =
FX

x=1

x
(� � 1)x�S

(1� �)S�

If we assume that the lookaround memory is ar-
ranged such that the content of nearest caches are
searched �rst (i.e. caches at level 1 are searched before
caches at level 2, and so on), then we can derive a sim-
pler expression for the expected value of the detour.

2The exponent is � � 1 because after the �rst level of

lookaround, at least one node has already been searched at the

previous lookaround depth

Under this case, on average, half of the cache will be
checked before a hit (if any) occurs in the lookaround
cache. Thus, the expected length of a detour in this
case is:

f = log��1
(1� �)S�

2�S
= log��1

(1� �)�

2�

As previously de�ned, let P be the total number of
popular items, and let Ti�1 be the total number of
items checked till distance i � 1 from the source of
the request. In our case, as the maximum number of
objects in a cache assumed to be equal, Si = S (for
all i), and Td�1 = (d� 1)S.

Thus, the expected value of the one way latency is:

c =
dX
i

iP rfHi jMi�1gPrfMi�1g

= d

�
1� (d� 1)

S

P

�
+

dX
i

i
Si

P

= d

�
1� (d� 1)

�S + (1� �)S�

P

�
+

�
�S

P
+

(1� �)S�

P

�
d(d+ 1)

2
+
(1� �)S�

P
f

Minimizing this expression with respect to � gives
the optimal amount of cache to be used for storing
location information such that the expected latency
is minimized. In Figure 7, we compare the result of
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Figure 7: Comparison of analytic and simulation re-
sults | Lookaround Caches

the analysis of lookaround caching with a simulation
with similar parameters. The base graph (see Table 1)
was used in the simulation, with � equal to 50. The
lookaround was �xed to 2 levels, and the radius of
caching at 3. The two analytic curves were generated
by setting the one-way client{server path length to 6
and 7, respectively. This corresponds to the average
length of client{server round trip lengths being 12 and
14, respectively. Thus, in general, we would expect
the curve generated by simulation to be bounded (on



either side) by the two curves generated by the anal-
ysis. For small cache sizes (S < 500), this is the case.
The re�nements to the basic model generate an ex-
tremely accurate measure of the cache latency. When
the cache sizes are larger, the analysis overestimates
the number of unique items that are cached.

In Figure 8, we use the expression for ex-
pected round trip latency to evaluate the bene�ts of
lookaround caching. The x-axis shows the size of each
cache, the y-axis denotes the amount of the cache
memory devoted to caching local objects. The round
trip latency is shown on the z-axis. We assume that
nearer caches are checked earlier to evaluate the length
of the detour. In this plot, we set the number of pop-
ular objects in the network to 80,000, and again, � is
set to 50. The average client{server round trip path
length was set to 14.

The plot clearly shows the bene�t of lookaround
caching | the valley in the plot is directly due to the
bene�ts of lookaround caching. In the plot, the ex-
pected round trip latency decreases as the amount of
memory devoted to the lookaround cache is increased
(:99 < � < 0:5). However, after a point, as more mem-
ory is dedicated to the lookaround cache, the number
of objects cached in the network decreases. The round
trip latency increases sharply (0 < � < 0:3) as there
are not enough objects cached in the network and each
lookaround hit causes a large detour. It is interest-
ing to note that at very small values of �, the round
trip latency can increase to greater than the average
latency without caching|this is again expected, as
there are not enough objects cached, and each detour
is greater than the remaining path length to the server.
Of course, a trivial optimization that forbids detours
greater than the remaining path length can easily be
incorporated.

Partitioning of Cache between Local Objects and Location
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Figure 8: Optimal partitioning of cache space for local
objects and location information

7 Concluding Remarks

We have developed and evaluated mechanisms
for caching objects within the network. Our ac-

tive caching mechanisms allow transparent, self-
organizing, location of objects where they can be of
bene�t to reduce access latency. These methods con-
trast with traditional wide-area network caching that
relies on �xed and limited locations for caches.

We have used both simulation and an analytic
model to evaluate performance. The simulation uses
access patterns that are consistent with studies of Web
access; the analytic models are simpli�ed for tractabil-
ity, though still provide reasonable estimates of access
latency. The models could be extended using informa-
tion about uniqueness of items and/or more complex
mathematicalmodeling to remove simplifyingassump-
tions.

Our results show that active caching is bene�cial
across a range of network topologies and access pat-
terns, and is especially e�ective when access patterns
exhibit signi�cant locality characteristics.
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