Exposing the network: Support for topology-sensitive applications®

Y. Chae S. Merugu E. Zegura S. Bhattacharjee
Networking and Telecommunications Group Department of Computer Science
College of Computing University of Maryland
Georgia Tech, Atlanta, GA College Park, MD
{yschae,merugu,ewz}@cc.gatech.edu bobby@cs.umd.edu
+1 404.894.1403 +1 301.405.1658
Abstract

One of the traditional goals of networking has been to hide details of network topology from
end users. As networks become larger and more heterogeneous, however, situations arise in
which the ability to identify particular topological properties enables capabilities and perfor-
mance that are difficult to achieve with a purely “black box” interface to network topology.
Examples of such situations include deployment of active networking functionality to strategic
points (e.g., upstream from a lossy link) or the construction of a secure overlay topology on a
network with selective support for IP security. On the other hand, an approach that “opens up”
the network without constraints seems neither necessary nor practical. We therefore propose a
method to query and synthesize network information that allows constrained programmability.
We demonstrate the method on a set of examples, and discuss our implementation within an
active networking environment.

Keywords: active networks, programming interfaces, active services

*Work supported by DARPA under contract number N66001-97-C-8512.

1 Introduction

One of the traditional goals of networking has been to hide details of network topology from end
users. For example, a sender can use IP to transmit packets to any destination, without regard
to (or information about) the topology between the source and destination, beyond connectivity®.
As networks become larger and more heterogeneous, however, situations arise in which the ability
to identify particular topological properties enables capabilities and performance that are difficult
to achieve with a purely “black box” interface to network topology.

For example, consider the following problems:

e Determine the capacity on the most-constrained link in the multicast tree rooted at a par-
ticular source host. This information could be used to affect the source encoding of the data
so that it is suitable for the least capable receiver.

e Place a repair server at the upstream end of any link in the multicast tree from source A to
multicast receiver group R, whose loss rate exceeds p packets per second. The purpose of the
repair server is to cache packets from the source and reply to negative acknowledgements in
a more timely manner and with less overhead than relying upon the source [1].

e Construct a virtual topology whose links and nodes (i.e., routers and hosts) are secure based
on support for [Psec [6] and an adequate distribution of shared keys.

Access to internal network topology information is critical to these problems; hiding topology
makes them difficult or impossible to solve. On the other hand, an approach that “opens up” the
network without constraints seems neither necessary nor practical. The examples above do not
require a fully programmable network interface, with the associated well-known concerns regarding
performance and security.

We propose a programmable gather-compute-scatter (GCS) mechanism to query and synthe-
size network information. The user controls the activity during each phase (gather, compute,
scatter) and can prescribe multiple iterations. However, the compute phase is restricted in access
and computation, balancing programmability with performance and security. The primary advan-
tages over traditional MIB queries are (1) dynamic control over where queries are performed, (2)
network-embedded synthesis of results, and (3) dynamic control over where results are sent. These
advantages translate into savings in bandwidth and time over a centralized and non-programmable
query system.

The paper is organized as follows. The next section states our assumptions about the net-
work and describes the GCS mechanism in some detail. In Section 3 we illustrate the use of the
mechanism through a set of examples. Section 4 describes our implementation within an active
networking environment and reports on a performance experiment. Related work is described in
Section 5, and we conclude in Section 6.

2 The Gather-Compute-Scatter Mechanism

2.1 Network model

We assume a network consisting of nodes (i.e., routers or hosts) and links (i.e., channels on which
nodes can send messages). Links may be physical transmission media, or they may be a higher

"Due to the best-effort nature of IP, of course, these transmitted packets may or may not actually be received.

layer entity. Both nodes and links have attributes providing static or dynamic information. For
example, an attribute might be the average queue length for a link or the support for a particular
protocol at a node. We assume that each node has a local interface that can be used to read the
attribute values for the node and any incident links. Each node and link has an attribute which is
a globally unique identifier. In addition to the attribute storage, we assume each node has a state
store that can be used by applications to hold temporary information.

2.2 IGCS overview

We propose the Iterative Gather-Compute-Scatter (IGCS) distributed computation model to query
and synthesize network state. IGCS programs repeat a gather, compute, scatter cycle until a given
condition is satisfied. For many programs, the number of iterations is pre-determined and fixed,
though this is not required. During an iteration, a set of messages are collected during the gather
phase. Once a specific set of messages have been collected, the compute phase commences. The
inputs to the computation are the set of collected messages, the node and link attributes, and the
state store for this computation. The compute phase can produce a single message (of a fixed IGCS
message type) that is then “scattered”, i.e. transmitted to a set of destinations. IGCS programs
can retain state at a node while they are active. All state is lost after the last iteration of the IGCS

computation.
? S: Source <?

R: IGCS Router i
D : Destination
R
© & 6 ©
Source initiates a query The query is scattered on a Conputation tree

f f

y N
ST,

Results are gathered from ...gathered results are synthesized and scattered
downst ream nei ghbors ... to upstream nodes in the Conputation Tree

Figure 1: Snapshots of a distributed computation model to query network state

Figure 1 illustrates four snapshots of this mechanism inside the network. The scatter phase is
used to disseminate a query down a path (or a tree) and the gather phase is used to accumulate
results. The compute phase synthesizes information at each node. We can see how network
information (e.g., loss rate) can be gathered up a computation tree (e.g., corresponding to a
multicast distribution tree). The gathered information can be processed at each node (e.g., the
maximum of all the gathered loss rates is computed) and then forwarded up the computation tree
to satisfy a network query.

2.3 1IGCS specification

An IGCS node-level computation is specified by a set of three-tuples: {(G;, Ci, S;) | 0< @<
(n — 1)} where n denotes the total number of iterations. The sets G, and S; and the function
description C; define the processing during the gather, scatter, and compute phases of the it*
iteration, respectively.

The gather phase of the i*” iteration is specified by the set G, of the form {l,1s,..., Iy}, where
each [; identifies a specific link incident to the node where the computation is running. Any IGCS
message that arrives on one of these links and contains the identifier for this IGCS instantiation
will be delivered and stored until one message has been received on each link.

The compute phase of the ** iteration is specified by the function C;. Any function that can

be executed during a compute phase has the following signature:
OMSg —C ({ZMSg}v Enodev Elinlﬁ H)

where oM sg is a message, Il is the state store associated with this node-level computation, i M sg
is the set of messages gathered during the gather phase, 3J,,4. is the current node attributes, and
Ylink is the current link attributes. oM sg may be null, corresponding to a function that does not
produce an output message.

Thus, functions in the compute phase take as input the state of the node and links, set of
messages gathered in the current iteration, and a computation-specific state store. They may
produce a single message that is then forwarded in the scatter phase. State accumulated by
iterations of a computation is stored in its state store. The state is discarded after the last iteration.
As will be illustrated later, one common purpose of the compute phase (in addition to producing
an output message) is to generate the gather and scatter sets for subsequent iterations.

The scatter phase in the i** iteration is defined by the set S;. Each S; is a set of link descriptors
{l1,1y,...,1,}. During the i*" iteration, the message produced by the i** compute phase is forwarded
on all links specified by S;.

2.4 IGCS message format

The format of an IGCS message is shown in Table 1. Each message contains a set of (key, value)

compld || Computation Identifier
srcld || Source of IGCS Message
topld Topology Identifier
key value
key value

Table 1: Generic IGCS message format

pairs 2. The first three keys are mandatory in each message. The compld key contains a globally
unique identifier for the IGCS computation. The computation id is used to demultiplex incoming

?In practice, a mechanism to identify the length of each value is also required. For ease of exposition, we do not
address the issue of the length of each field. We initially assume that the underlying topology is able to reliably
transmit messages of arbitrary length.

messages to appropriate IGCS node-computations. The srcld key identifies the previous-hop
IGCS node that scattered this message. The topld key is the unique identifier of the topology
over which the IGCS computation is being executed. Along with the mandatory keys, there are
a set of optional (key, value) pairs that may be encoded in each message. There are two types of
optional keys: (1) keys that specify the phases and iterations of an IGCS computation (i.e., G;, C;,
S;), and (2) keys defined by computations to exchange data (e.g., attributes such as queue length).

3 Examples of IGCS Computations

To demonstrate how the IGCS computation model works, we describe a few examples. We begin
by considering a query example, where the goal is to identify the least available bandwidth on the
path from a source to a destination. We then show how a trivial modification allows the IGCS
computation to be extended to identify the least available bandwidth on the multicast tree from
a source. We then turn to two examples that involve identifying topologies. The first identifies
a spanning tree on an underlying topology; the second identifies secure links, making use of the
ability to identify a spanning tree.

The examples assume the existence of a function NextHop(topology,node) that returns the
appropriate link on a given topology to a given destination node. We assume the function returns
Null at the destination. The examples also use a function GetNodeID that returns the node identifier
attribute.

3.1 Path information retrieval

(a) First iteration (b) Second iteration

Figure 2: Least bandwidth finding on path 0-1-4-6

As a first example, consider the problem of finding the least available bandwidth along the path
from Node 0 to Node 6 in Figure 2. The problem can be solved with an IGCS computation with
two iterations. During the first iteration, the IGCS computation is dispersed along the path 0-1-4-6
as shown in Figure 2(a). Figure 2(b) shows message flow in the second iteration, in which the least
available bandwidth information is calculated and returned to the source.

The IGCS message for the computation is shown in Figure 3(a). In addition to the required keys,
this message also specifies the number of iterations, the initial gather set, the compute functions
for the two iterations, and the source and destination nodes for the path. Though the IGCS
computation executes for two iterations, the message does not specify Sy, G1, and S;. Instead,
they are determined during the compute phase of the first iteration.

The first compute phase, shown in Figure 3(b), accomplishes two tasks. First, it distributes the
IGCS computation on the path by updating the original message sM sg to reflect the proper sreld
and then specifying a scatter to the next node in the path to dstNode. Second, the compute phase
determines the gather and scatter sets for the next iteration. The second iteration will proceed
from the destination back to the source along the reverse path, thus the gather set for the second
iteration is exactly the scatter set for the first iteration. The scatter set for the second iteration is
the link on which the initial message arrived. (We determine this using the Nexthop function and
assuming symmetric paths.) Note that at the destination, G; will be Null, thus the gather phase
of iteration 1 will (trivially) complete as soon as iteration 0 is done.

During the second compute phase, the information gathered from downstream links is synthe-
sized in the function cal-min-bw, shown in Figure 3(c). The local link attributes are used in this
function, along with the gathered results stored in M sg, to find the least available bandwidth so
far along the path from the current node to the destination. This result is stored as a (bw,least-
value) pair in message oM sg and sent to the previous hop on the path in the second scatter phase.

‘ Key ‘ Value ‘
compld | Unique 1D
sreld Node 0 fwd-sig:
topld T oM sg +— sMsg
numlter 2 oMsg.srcld <+ GetNodeId()
Go Null So < NextHop(sMsg.topld,sMsg.dstN ode)
Co fwd-sig G « So
o cal-min-bw S1 < NextHop(sMsg.topld,sMsg.srcld)
srcNode Node 0
dstNode Node 6
(a) IGCS Message (b) Code for Cy
cal-min-bw :
oM sg — sMsg
oM sg.srcld + GetNodeId()
oM sg.bw < min(¢Msg;.bw, linky.bw,VEk, 7)

(c) Code for Cy

Figure 3: IGCS computation for retrieving path property

Extensions

The same IGCS computation can be used to calculate the minimum available bandwidth along
a multicast tree. Consider that nodes 0, 3, 5 and 6 are currently participating in a multicast
group with address grAddr. Assume that Node 0 is a source interested in finding the minimum
bandwidth along the multicast tree. We can easily solve the problem by instantiating the same
IGCS computation with grAddr as dstN ode.

The current IGCS computation can be easily modified to solve the multicast repair server
problem discussed in the introduction. This is achieved by providing a new function for Cf.

Instead of gathering minimum bandwidth information, the new function checks whether any of
the down-stream links on the multicast tree experience packet loss larger than a certain threshold
value. If the loss rate at a node exceeds the threshold, it is added to a list of possible repair
locations in the IGCS message. When the computation is done, the multicast source node has the
list of candidates and can determine the location(s) of the repair server(s) based its policy.

Comparison with a centralized algorithm

We compare the above IGCS computation with a centralized algorithm in Section 4.3. Briefly, the
centralized algorithm requires more time, since it must query each node about the next hop, and
results in greater message traffic. We quantify these effects when we compare implementations of
both schemes.

3.2 Building a spanning tree

— — —®=First |CGCS nessage

—— Qther nessages

(a) First iteration (b) Second iteration

Figure 4: Building a spanning tree

As the second example, we consider the problem of building a spanning tree topology over a
network. A spanning tree is useful for a variety of queries that require network-wide information.
We will show in the next example how the spanning tree is used while building a secure sub-topology
over a base topology.

We solve the problem with a two-iteration IGCS computation that is based on constrained
flooding. During the first iteration, the IGCS computation is flooded over the entire network
as in Figure 4(a). Only the first signaling message received at a node initiates a new node-level
computation. At each node, the signaling message is flooded onto all the links except the one where
the first message received. The link where the first message was received defines a parent-child
relationship and forms a spanning tree on the network. During the second iteration, in Figure 4(b),
the local spanning tree information is combined with the information received from child nodes
and then forwarded along the spanning tree towards the source.

The initial IGCS message for the computation is shown in Figure 5(a). It includes a tree key
that is used to return the spanning tree during the second iteration. The computation for the
first iteration is shown in Figure 5(b). During the first iteration, we flood the IGCS message by
setting Sy to be all the links except the link from which the IGCS message has been received. Note
that because each node executes the first iteration exactly once, the flooding will automatically
terminate without looping. As in the previous example, G is set to all the links of Sy, and S

is the previous hop for the initial message. The second iteration gathers the sub-tree information
from the child node and builds up a new sub-tree that includes the local node. The computation
for C is shown in Figure 5(c).

Comparison with a centralized algorithm

A centralized algorithm sends out query messages to all the nodes in the network. The reply
messages contain the local adjacency information for the replying nodes. The algorithm then
combines all the local topology information and builds a spanning tree using a spanning tree
finding algorithm such as Dijkstra’s. Assume that the network has N nodes and M links. The total
number of messages exchanged in the centralized algorithm is 2(N —1). For the IGCS computation,
two messages are exchanged along each link in the spanning tree. Other links carry one message.
Those two approaches result in the same number of messages if the underlying network is a tree
topology. As M increases, the IGCS computation results in more message exchanges. However,
the maximum number of message exchanged per link is two. Further, the initiating node exchanges
only 2d messages for d outgoing links. In the centralized algorithm, however, the initiating node
exchanges all 2(/NV — 1) messages.

‘ Key ‘ Value ‘
compld Unique ID fwd-flooding :
srcld Node 0 i
ronld T oM sg — sMsg
(')pft 5 oM sg.srcld + GetNodeId()
nwg er Null St < NextHop(sMsg.topld, sMsg.srcld)
0 e So — {link; € Syipi , YV i} — Sy
Co fwd-flooding a e 5
o build-sub-tree ! 0
tree Null
(a) IGCS Message (b) Code for Cy
build-sub-tree :
oM sg — sMsg
oMsg.srcld + GetNodeId()
TreeSet — U {iMsg;.tree}, Vj
oM sg.tree — U (T'reeSet, 5)

(c) Code for Cy

Figure 5: IGCS computation for building a spanning tree

3.3 Identifying a secure topology

The final example is to identify a new topology, which consists of only secure links, from a base
topology. In Figure 6(a), the topology 7" = (V, E) contains both secure and insecure links. The
problem is to build a new topology Tsee = (Viee, Fsee) that consists of only secure links as in
Figure 6(b).

A two-iteration IGCS computation will solve this problem, if we assume a spanning tree ST
has already been computed. The previous example shows how this can be done. The first iteration

- = = Secure link - = = Secure link
— insecure link

(a) Base topology T (b) Induced secure topology Ts..

Figure 6: Property-based topology identification

disperses the IGCS computation on the spanning tree ST. The second iteration retrieves local
secure link information and also gathers the secure link information from the child nodes. The set
of secure links are scattered to the parent node in the spanning tree. When the computation is
done, the root node has the complete set of secure links and can instantiate the secure topology.

Figure 7 shows the IGCS message and the computations for Cy and ;. Note that we assume
that the GetChildLink and the GetParentLink functions are given. The GetChildLink function
identifies the links to the children of the local node on the given spanning tree ST. GetParentLink
identifies the link to the parent.

For comparison with a centralized algorithm, the topology identification problem is similar
to the spanning tree problem. The IGCS computation would have an additional advantage if a
distributed topology instantiation scheme were in place, since this would allow IGCS to avoid
collecting the topology information in a central location. Distributed topology instantiation is an
area for future work.

4 1IGCS System Implementation

We have implemented IGCS within the CANEs execution environment on top of the Bowman
NodeOS [7]. This section provides an overview of the implementation and the results of a perfor-
mance experiment.

4.1 CANEs and Bowman

CANEs is an execution environment that provides a composable active networking environment.
Composition in CANEs is achieved in two steps. First, the user selects an underlying program.
The underlying program exports one or more processing slots that identify the specific points where
injected programs are bound and executed. Users can select or provide a set of injected programs
that can be used to customize the underlying program. All IGCS computations share the same
underlying program (described below) that contains only one slot for the compute phase.
Bowman is a NodeOS for active networks. Bowman provides three key resource abstractions:
channels that are communication end-points, a-flows that are the primary abstractions for com-
putation, and state-store that provides a mechanism for a-flows to store and retrieve state. The

‘ Key ‘ Value

compld Unique ID
srcld Node 0 fwd-sig-st :
topld T oM sg — sMsg
numlter 2 oM sg.srcld ¢+ GetNodeId()
Gy Null So < GetChildLink(sM sg.spl'ree, GetNodeId())
Co fwd-sig-st G « So
Ch build-sub-topo S1 < GetParentLink(sMsg.spl'ree, GetNodeId())
srcNode Node 0
splree ST
(a) IGCS Message (b) Code for Cjy
build-sub-topo :
oM sg — sMsg
oMsg.srcld + GetNodeId()
LinkSet — { link; | link;.secure = True , Vi }
oM sg.link «— LinkSet |
{ linky, | linky, € 1Msgl;.link, Vj, k }

(c) Code for Cy

Figure 7: IGCS computation for building secure topology

a-flows are used to implement the IGCS node-level computations; channels provide a communi-
cation mechanism through which the IGCS node-level computations can exchange messages. The
Bowman also provides an efficient packet classification mechanism used to specify the gather and
scatter sets.

4.2 IGCS system architecture

The IGCS system has three major components: the IGCS daemon, the IGCS underlying program
and the IGCS compute slot program.

IGCS daemon : The IGCS daemon is a node-resident program, which is responsible for processing
IGCS signaling messages. Upon receiving a signaling message, it parses the message and initiates
a node-level computation with a proper set of code modules for the IGCS underlying program and
compute slot programs.

The IGCS daemon is implemented as an extension of the Bowman NodeOS. Upon receiving
the signaling messages, the daemon configures a new IGCS computation and initiates the new
node-level computation using a Bowman a-flow. Figure 8 shows a typical snapshot of the IGCS
system. The IGCS daemon on node A receives a signaling message from the user and initiates a
new node-level computation. During the first iteration, the node-level computation computes a set
of nodes on which the current computation should be initiated (nodes B and C in this example)
and sends the signaling message to the nodes. Upon receiving the signaling message, the daemons
on nodes B and C perform the same operations and spread out the computation.

During the processing, the underlying and compute slot programs are loaded onto the local
node via Bowman code loading mechanism. The compute slot programs are bound into the proper
compute phases. The data part of the signaling message is stored into the local state-store so that

10

Node B

‘ Bowman a—flow

I GCs Node
Daenmon Conput ation i

signal i ng
nessage Node A

Ognput ati on j

Figure 8: IGCS system architecture

the information can be retrieved by the IGCS computation.

IGCS underlying program : The underlying program provides the computation framework
for one or more iterations of the Gather-Compute-Scatter cycle. The underlying program gathers
a set of messages through the channels specified in the current gather phase. Then, it executes
the compute slot program of the current iteration. In the scatter phase, it sends out the messages
through the channels specified in the current scatter phase.

Figure 11 in the Appendix shows the main body of the IGCS underlying program. At each
iteration, the underlying program gathers messages by subscribing to the data packets with its own
computation id on the gather channels. After gathering all the messages, it stores them into the
local state-store for further processing during the compute phase. Next, the underlying program
raises the compute slot program which is bound to the current iteration of the compute phase. The
“raised” injected program does the computation-specific processing of the current iteration using
the gathered messages and local information. It also generates outgoing messages and specifies a
set of channels for the scatter phase. The messages are sent out over the scatter channels during
the scatter phase.

IGCS Compute slot program : The IGCS compute slot program defines each IGCS computa-
tion. The compute slot programs are bound into the proper compute phases and executed during
the specified iteration. The slot programs can be specified statically in the signaling message or
dynamically modified at run-time.

Since all the IGCS computations share the same underlying program, each IGCS computation is
specialized through the injected programs that are bound to the compute slots. The IGCS system
provides an API through which the slot programs can communicate with the IGCS underlying
program and other slot programs bound to the different iterations.

Figure 12 in the Appendix shows a slot program for the IGCS in-band signaling. As in the

11

example, the IGCS API provides a set of functions to retrieve/configure gather/scatter phases
and other shared objects. The number of iterations for the IGCS computation and slot programs
bound to the compute phases can also be modified “on-the-fly” within compute slot programs.
The capability of run-time modification allows dynamic configuration of the IGCS computations.

4.3 Performance analysis

— Query —— Computation flow

-— —+~ Result-synthesis flow

1 2 3
\,/u_/’u_/U\——’

(a) Centralized algorithm (b) IGCS algorithm

Figure 9: Finding the minimum available bandwidth

In this section, we present a set of IGCS performance results. We have implemented two solutions
for finding the minimum available bandwidth: a centralized algorithm and the IGCS algorithm
described in Section 3. In short, the IGCS algorithm spreads the computation along the path and
each node-level computation computes the result and returns it towards the source node as shown in
Figure 9(b). For the centralized algorithm, we assume that the sender does not know all the nodes
along the path. Initially, the sender only knows its next-hop node towards the destination. The
sender sends a query message to this node. The node replies with its local bandwidth information
and next-hop node towards the destination. The sender then sends a query message to the next-
hop node and the node replies with its local information. The query-reply action continues until
the sender sends the last query message to the destination, as in Figure 9(a).

It is straightforward to show that the running time of the centralized algorithm grows as the
square of the length of the path, while the running time of the IGCS algorithm is linear in the
length of the path. Both algorithms grow linearly with the path delay, though the coeflicient is
larger for the centralized algorithm.

The IGCS computation performs in-band signaling in the first iteration to initiate a node-
level computation at each node. The initiation of a node-level computation includes creation of
a thread and code loading for underlying and injected codes. The codes are loaded from a code
server that has also been implemented in Bowman. The first cold-start computation experiences a
delay incurred by the code loading. However, once the code modules are loaded and stored in the
code cache at each node, the subsequent computations that utilize the code modules do only cache
lookup, reducing the time for the computation initiation significantly. The cold-start overhead for
the modules is about 35 msec, while the warm-start overhead is only about 5 msec.

Figure 10(a) shows the running time of each algorithm with different path lengths for a link
delay of 5 msec. For the IGCS algorithm, we show both cold-start and warm-start results. The
running time of the centralized algorithm is comparable to the IGCS results for a path length of
two. The running time of the centralized algorithm, however, grows much faster than IGCS as the
path length increases. At a path length of four, the centralized algorithm requires nearly twice
as much time as IGCS; the gap increases quickly with more hops. The IGCS cold-start grows

12

5500 12000

T T T T
IGCS cold-start <— IGCS cold-start <—
IGCS warm-start —+-- | IGCS warm-start -+--

5000 - Centralized -] Centralized -~

4500 |- 10000 T
4000 |

8000 | L p
3500 - -

3000 - P
6000 - L]
2500 - ’

Running Time (msec)
Running Time (msec)

2000 |
4000 | s 4

1500

1000 2000 F

500 |

8 9 10 1 2 3 7 8 9 10

5 6 5 6
Path Length (hops) Link Delay (msec)

(a) Effect of path length (b) Effect of link delay

Figure 10: Running time with varying link delay and path length

slightly faster than IGCS warm-start since, for the cold-start, the code loading time at each node
is accumulated as the length of the path grows.

Figure 10(b) shows the running time of each algorithm with different link delays. The length
of the path is fixed at 10 hops. As shown in the previous equations, the running time is a linear
function of the link delay for both algorithms. The centralized algorithm, however, has a higher
constant multiplier of [(I + 1), compared to 2 for the IGCS algorithm. Although the IGCS cold-
start and the IGCS warm-start show the same rate of growth, the cold-start has slightly more
overhead due to its code loading time. Figure 10(b) confirms the measured difference in overhead
for warm-start and cold-start.

The IGCS computation shows better scalability in terms of link delay and path length, com-
pared to the centralized algorithm. Its running time is a linear function of link delay and path
length with a small coefficient value. Although there is an overhead of code loading in the IGCS
computation, it is negligible for any path of length larger than three hops.

5 Related Work

Due to space constraints, we only briefly describe related work. Relevant related work can be
found in both the distributed systems community and in the virtual network community. Within
distributed systems IGCS is similar in style to heartbeat algorithms and probe/echo algorithms [2].
Heartbeat algorithms repeat a similar cycle of distributing information and then computing until
converging upon an answer. Probe/echo algorithms have a query and reply structure that is similar
to IGCS.

In the virtual network community, the NetSript project at Columbia University is considering
the deployment of virtual networks [9] and the use of active networking for network management.
Two other virtual networking efforts of note are the X-Bone and the Supranet projects. The X-
Bone [8] is a generalized overlay management system. A vision for the X-bone is that it could be
used to automatically create virtual topologies that have certain (graph-theoretic) properties, e.g.
map a eight node cycle to a certain physical topology such that the overall latency is minimized.
Supranet [3] provides a toolkit that can be used to create a topology, generate a routing table and
define a security requirement over the topology.

13

6 Conclusions

Increasingly, situations arise in which it is desirable to query network state, identify network
locations and instantiate virtual topologies. The black box interface to network topology that is
currently provided by IP makes this difficult or impossible. Active networking, on the other hand,
provides a programmable interface to networking resources, and thus the possibility of exposing
some of the internals of the black box. We have used active networking to provide a programmable
mechanism to identify topological entities and protocols to instantiate those entities into a virtual
topology.

We have not addressed several key issues related to the querying of network state and the
instantiation of multiple virtual topologies. Specifically, this paper does not consider resource
management across virtual topologies (nor within a virtual topology). Some form of admission
control for virtual topologies may be necessary, depending upon the resource guarantees that are
desired. We have also neglected the various issues of security, including access control for node and
link state and authorization to create virtual topologies. Resource management and security are
both issues of importance for active networks (with or without virtual topologies), and we expect
that solutions developed by the active networks community will be applicable to virtual networks.

References

[1] Active Error Recovery (AER) : A reliable multicast implementation utilizing Active Network services.
http://www.tascnets.com/panama/AER/.

[2] Gregory R. Andrews. Paradigm for Process Interaction in Distributed Programs. ACM Computing
Surveys, 23(1):49-90, March 1991.

[3] L. Delgrossi and D. Ferrari. A Virtual Network Service for Integrated-Services Internetworks. In 7th
International Workshop on Network and Operating System Support for Digital Audio and Video, St.
Louis (Missouri), May 1997.

[4] Kenneth L. Calvert (Editor). Architectural Framework for Active Networks. DARPA AN Working
Group Draft, 1998.

[5] Georgia Tech Odyssey Code Group. Odyssey User’s Guide. 1999.
[6] IETF IP Security Working Group. IP Security Protocol. Work in Progress.

[7] E. Zegura S. Merugu, S. Bhattacharjee and K. Calvert. Bowman: A Node OS for Active Networks.
Submatted to Infocom 2000, 1999.

[8] Joe Touch and Steve Hotz. The X-BONE. In Third Global Internet Mini-Conference in conjunction
with Globecom 98, Sydney, Australia, Nov. 8-12 1998.

[9] Y. Yemini and S. da Silva. Towards Programmable Networks. In IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, 1’ Aquila, Italy, Oct. 1996.

14

Appendix: IGCS Underlying and Injected Programs
u_int i;
igcs_io_t *tmp_io;
igcs_msg_table_t *cur_in;

for (i = 0; i < igcs_get_iteration(); ++i) {

/* Gather Phase */

igcs_get_gather(i, tmp_io); /* get channels for gather phase */

if (tmp_io->num_ch != 0) {
iges_install_gather_filter(tmp_io); /# Install gather filter */
cur_in = igcs_gather_msg(tmp_io); /* get incoming messages */
c_Ep(inMsg) = cur_in; /* assign input messages */
igcs_uninstall_gather_filter(tmp_io);/* Uninstall gather filter */

}

/* Compute Phase */
igcs_raise_slot(Compute) ; /* execute the compute slot */

/* Scatter Phase */
igcs_get_scatter(i, tmp_io); /* get channels for scatter phase */
iges_scatter_msg(c_Ep(outMsg) ,tmp_io); /* scatter messages */

Figure 11: 1GCS Underlying Program

igcs_msg_t * tmp_msg;
igcs_io_t tmp_io;
int i;

memcpy (tmp_msg, /* get signaling message */
(igecs_msg_t *)igcs_get_sigmsg(), tmp_sig->len);

i = igcs_next_hop(tmp_msg->src_id);/* set scatter phase of */
tmp_io.num_ch = 1; /* the second iteration */
tmp_io.ch[0] = i;

igcs_set_scatter (1, &tmp_io);

igcs_get_all_vn_channel(&tmp_io); /* set scatter phase of */
_igecs_get_diff_channel(&tmp_io, i); /* the first iteration */
igcs_set_scatter (0, &tmp_io);

igcs_set_gather(1, &tmp_io); /* set gather phase of 1st iter */

tmp_msg->src_id = net_utils_local_ip_number();
tmp_msg->type = IGCS_SIG;
c_Ip(outMsg) = tmp_msg; /* set output message */

Figure 12: IGCS Injected Program Example

