
Reasoning About Active Network Protocols 5 October 1998 1

Reasoning about Active Network Protocols

Ken Calvert Samrat Bhattacharjee Ellen Zegura

Department of Computer Science Networking and Telecommunications Group

University of Kentucky College of Computing, Georgia Tech.

Lexington, Kentucky Atlanta, Georgia

http://www.cc.gatech.edu/projects/canes

Sponsor: DARPA

Reasoning About Active Network Protocols 5 October 1998 2

Active Networking

Active networks provide a programmable user-network interface.

Users can:

� transmit packets

� inject code describing how [their] packets should be handled.

Benefits:

� Speed deployment of new services and algorithms.

� Improve service by exploiting the combination of application- and

network-supplied information, e.g.: congestion onset; data dependencies.

Reasoning About Active Network Protocols 5 October 1998 3

Approaches to Programmability

Granularity

� per packet, in-band

� per flow, in-/out-of-band

� per node

What kind of abstract machine interprets the injected code?

� static (e.g. IP, ATM)

� pre-customized = code selects from menu (e.g. library)

� Turing machine

By Whom?

� end users vs. service providers vs. developers

Reasoning About Active Network Protocols 5 October 1998 4

The Problem

Conflicting Objectives:

� State global network properties that hold independent of injected code.

� Allow injected code to specify arbitrary behaviors.

Node behavior � fixed part + variable part

fixed part defines (e2e) behavior: network properties easier to show

limited flexibility

variable part defines (e2e) behavior: full flexibility

can’t prove much a priori

Reasoning About Active Network Protocols 5 October 1998 5

CANEs Approach
� Define generic packet processing behavior(s) of nodes.

� Define specific points (slots) where behavior can be modified.

� Provide canned behaviors to go in slots, allow injection of user-defined slot

programs.

Reasoning About Active Network Protocols 5 October 1998 6

Example: Forwarding Behavior

Parse packet, obtain src, dest, fwding table id, auth token
hSlot 0:[null]i fmarker to src, cache payload,

send ack to prev. hopg

i := Lookup (src, dest, fwding table)

if i = ? then hSlot 1:[null]i ferror message to srcg

hSlot 2:[null]i fsnd i to src,

authenticate ig

if i is congested then hSlot 3:[discard]ifqueue manipulationg

hSlot 4:[null]i f(local) smoothing, schedulingg

enqueue packet for i.

Define services by injecting/selecting code in slots.

Reasoning About Active Network Protocols 5 October 1998 7

Language Independent Active Network Environment

Active node behavior defined by underlying program , plus injected program(s)

bound to slots .

� A formal model using UNITY notation and logic

� Underlying programs interact with injected programs via shared variables.

� Slots are raised to enable the injected code.

� Each slot has resource bounds, restrictions and obligations of injected code.

(Syntactically checkable.)

Why UNITY?

� Single composition operator [] allows a simple model of injection and

resource-bounding mechanisms.

� Well-understood logical machinery.

Reasoning About Active Network Protocols 5 October 1998 8

Underlying Program

Program fNodeg Program at each active node v

initially

N0 v:state; discCnt; errCnt = idle; 0; 0 f Initialization g

assign

N1 h h [] x : v:inC [x] 2 v:inC :

v:state; v:inC [x]; v:Msg; v:LH := newPkt; tail(v:inC [x]); head(v:inC [x]); xi

k hk i :: v:rt:i:usage := 0i

i if v:idle ^ (v:inC [x] 6= ?)
f If channel is non-empty, read message and initialize usage counters g

N2 [] v:state := slot:0:raise if v:newPkt f Raise message arrival event g

N3 [] v:state; v:NH := rtFound; v:RtTable(v:Msg:d) if v:slot:0:cmpl

f Route message to proper channel g

N4 [] v:state := slot:1:raise if v:rtFound f Raise routing done event g

N5 [] hv:state; v:outC [v:NH] := idle; v:outC [v:NH]; v:Msg

k h discCnt := discCnt + 1 if end(v:outC [v:NH]) = NullProc

[] errCnt := errCnt + 1 if end(v:outC [v:NH]) = ErrProcii

if v:slot:1:cmpl f Send message on proper channel; Update Counters g

end fNodeg

Reasoning About Active Network Protocols 5 October 1998 9

Underlying Program — Default Slot Behavior

Program fDSg Default Slot

initially

D0 h[] i :: v:rt:i:usage; v:rt:i:bnd = 0; �ii f Initialization, �i � 0 g

always

D1 h[] i :: v:SlotCnd:i = (v:rt:i:bnd > v:rt:i:usage) ^ v:slot:i:raisei

f Default set of conditions for progress through slot g

D2 h[] i :: v:Prog:i = Q:ii
f “background” predicate Q, set to true if no programs are bound to slot i g

assign

D3 h[] i :: v:rt:i:usage := v:rt:i:usage + 1 if v:SlotCnd:i ^ v:Prog:ii

f Increase resource usage if no other program active g

D4 [] h[] i :: v:state := v:slot:i:cmpl if v:slot:i:raise ^ v:rt:i:bnd = v:rt:i:usagei

f Resource bound exhausted, slot processing complete g

end fDSg

Reasoning About Active Network Protocols 5 October 1998 10

General Results

Definitions

� Well-formedness (receptivity) of underlying program

� Well-formedness (acceptability) of injected program

� Injection transformation, combines with default slot program

Metatheorems

� Injection preserves receptivity.

� Injection distributes over [].

� Injection preserves properties of (underlying program [] injected program).

� Injection preserves pure properties of injected program, modulo resource

bounds.

Properties of Underlying Program

� Messages eventually reach their destinations.

Reasoning About Active Network Protocols 5 October 1998 11

Example: Mobility

The Problem

� A resource migrates spontaneously from node to node.

� Messages are addressed to the “last known address” of the resource.

� Nodes keep pointers to resource location, forward messages toward it.

The Approach

� Bind code for mobility to slot 0.

� Messages for the resource carry last-known location, plus a (logical)

timestamp.

� When nodes see messages with newer timestamps, they update their

pointers to the resource.

� When resource arrives at a node, it increments timestamp and sends an

update to the previous location in the message.

Reasoning About Active Network Protocols 5 October 1998 12

Mobility Example

 v.Cur
 /\
v.stable

 v.Mig
 /\
v.stable

 v.Fwd
 /\
v.stable

 v.Fwd
 /\
! v.stable

 v.Cur
 /\
! v.stable

transition by
 environment

property of
mobility algorithm

Resource
departure

Resource
 arrival

Arrival of
Location
 Update

Send all
 queued
messages

Deliver queued
 messages.
 Send update
to last residence

message
queue not
empty

empty
message
queue

Properties

� Messages not addressed to the resource reach their destination.

� Messages reach either the resource or a node with newer information.

Reasoning About Active Network Protocols 5 October 1998 13

Mobility Example

Program fMobility g Mobility Code for Slot 0

initially

MA0 v:rState; v:rLC ; v:rLoc; v:rStable; v:rQ = Fwd; 0; r:home; true;?

if v 6= r:home � Cur ; 0; v; true;? if v = r:home

f Resource r is initially located at r:home; this is known to all other nodes g

assign

MA1 v:Msg:d; v:Msg:loc; v:Msg:ts := redir(v:rLoc; v:Msg:d); v:rLoc; v:rLC

if v:rLC > v:Msg:ts ^ v:Msg:type = Access ^ (v:Fwd _ v:Cur) ^ v:stable

f Re-direct accesses containing stale information g

MA2 v:rLoc; v:rLC := v:Msg:loc; v:Msg:ts if v:rLC < v:Msg:ts ^ v:Fwd ^ v:stable

f Update local clock and forwarding information if message contains newer information g

MA3 hfwd (Qh:s; redir(v;Qh:d); Qh:r; v; res:ts + 1; Qh:type;Qh:body)

k v:rQ := tail(v:rQ)i if v:Cur ^ :v:stable ^ v:rQ 6= ?

f Resource arrives at node v; Deliver all queued messages g

. . . etc.

Reasoning About Active Network Protocols 5 October 1998 14

Finis

Conclusions

� A model of active node programming using UNITY

� The slot model is intended to permit reasoning about global behavior with

limited knowledge of the injected program.

� We still need strong/precise constraints on the injected program to guarantee

underlying properties (e.g. every message reaches its destination).

� Mobility as an application for active nets

Future Work

� Other applications: reliable multicast. . .

� Reasoning about behavior during injection, when some nodes have the

injected code and some don’t.

