Reasoning About Active Network Protocols 5 October 1998

Reasoning about Active Network Protocols I

Ken Calvert Samrat Bhattacharjee Ellen Zegura
Department of Computer Science Networking and Telecommunications Group
University of Kentucky College of Computing, Georgia Tech.

Lexington, Kentucky Atlanta, Georgia

http.//www.cc.gatech.edu/projects/canes

Sponsor: DARPA

Reasoning About Active Network Protocols 5 October 1998

‘ Active Networking I

Active networks provide a programmable user-network interface.

Users can:

e transmit packets

® /nject code describing how [their] packets should be handled.

Benefits:

e Speed deployment of new services and algorithms.

e Improve service by exploiting the combination of application- and

network-supplied information, e.g.: congestion onset; data dependencies.

Reasoning About Active Network Protocols 5 October 1998

‘ Approaches to Programmability I

® per packet, in-band

Granularity

e per flow, in-/out-of-band

® per node

What kind of abstract machine interprets the injected code?

e static (e.g. IP, ATM)
® pre-customized = code selects from menu (e.g. library)
e Turing machine

By Whom?

e end users vs. service providers vs. developers

Reasoning About Active Network Protocols 5 October 1998

| The Problem I

Conflicting Objectives:
e State global network properties that hold independent of injected code.

e Allow injected code to specify arbitrary behaviors.

Node behavior = fixed part + variable part

fixed part defines (e2e) behavior: network properties easier to show
limited flexibility
variable part defines (e2e) behavior: full flexibility

can’'t prove much a priori

Reasoning About Active Network Protocols 5 October 1998

‘ CANEs Approach I

e Define generic packet processing behavior(s) of nodes.

e Define specific points (slots) where behavior can be modified.

e Provide canned behaviors to go in slots, allow injection of user-defined slot

programs.

Reasoning About Active Network Protocols 5 October 1998

‘Example: Forwarding Behavior I

Parse packet, obtain src, dest, fwding table id, auth token

(Slot 0:[null]) {marker to src, cache payload,
send ack to prev. hop}

1 := Lookup (src, dest, fwding table)

if ¢ = L then (Slot 1:[null]) {error message to src}

(Slot 2:[null]) {snd i to src,
authenticate i }

if ¢ is congested then (Slot 3:[discard]){queue manipulation }

(Slot 4:[null]) {(local) smoothing, scheduling }

enqueue packet for 7.

Define services by injecting/selecting code in slots.

Reasoning About Active Network Protocols 5 October 1998

‘ Language Independent Active Network Environment I

Active node behavior defined by underlying program , plus injected program(s)
bound to slots .

e A formal model using UNITY notation and logic

e Underlying programs interact with injected programs via shared variables.

e Slots are raised to enable the injected code.

e Each slot has resource bounds, restrictions and obligations of injected code.
(Syntactically checkable.)

Why UNITY?

e Single composition operator [| allows a simple model of injection and

resource-bounding mechanisms.

e \Well-understood logical machinery.

Reasoning About Active Network Protocols 5 October 1998

‘ Underlying Program I

Program {Node } Program at each active node v

initially
NO w.state, discCnt, errCnt = idle, 0,0 { Initialization }
assign
NI (([]z:v.inC[z] € v.inC :
v.state,v.inCz],v.Msg,v.LH := newPkt, tail(v.inC[z]), head(v.inC|z]), x)
| (|| %:v.rt.i.usage := 0)
) ifv.idle A (v.inClx] # 1)
{ If channel is non-empty, read message and initialize usage counters }
N2 [v.state := slot.0.raise if v.new Pkt { Raise message arrival event }
N3 | v.state,v.NH := rtFound,v.RtTable(v.Msg.d) if v.slot.0.cmpl
{ Route message to proper channel }
N4 | v.state := slot.1.raise if v.rtFound { Raise routing done event }
N5 [(v.state, v.outClv.NH] := idle, v.outC[v.NH]|;v.Msg
| (discCnt := discCnt + 1 if end(v.outC[v.NH]|) = NullProc
| errCnt := errCnt +1 if end(v.outC[v.NH]) = ErrProc))
if v.slot.1.cmpl { Send message on proper channel; Update Counters }

end { Node}

. J

Reasoning About Active Network Protocols 5 October 1998

‘ Underlying Program — Default Slot Behavior I

Program {DS} Default Slot
initially
DO ([]¢:wv.rt.i.usage,v.rt.i.bnd = 0, B;) { Initialization, 3; > 0 }
always
D1 (]¢:v.SlotCnd.i = (v.rt.i.bnd > v.rt.i.usage) A v.slot.i.raise)
{ Default set of conditions for progress through slot }

D2 (]i:v.Prog.i = Q.7)
{ “packground” predicate), set to true if no programs are bound to slot 2 }
assign
D3 (] i:v.rt.i.usage := v.rt.i.usage + 1if v.SlotCnd.i A v.Prog.i)
{ Increase resource usage if no other program active }
D4 | (]¢:v.state := v.slot.i.cmpl if v.slot.i.raise A v.rt.i.bnd = v.rt.i.usage)
{ Resource bound exhausted, slot processing complete }

end {DS}

Reasoning About Active Network Protocols 5 October 1998

| General Results I

Definitions

e Well-formedness (receptivity) of underlying program
e Well-formedness (acceptability) of injected program

® Injection transformation, combines with default slot program
Metatheorems

® Injection preserves receptivity.

e Injection distributes over |.

® Injection preserves properties of (underlying program H injected program).

® Injection preserves pure properties of injected program, modulo resource

bounds.
Properties of Underlying Program

e Messages eventually reach their destinations.

10

Reasoning About Active Network Protocols 5 October 1998

‘ Example: Mobility I

® A resource migrates spontaneously from node to node.

The Problem

e Messages are addressed to the “last known address” of the resource.

e Nodes keep pointers to resource location, forward messages toward it.

The Approach

e Bind code for mobility to slot O.

e Messages for the resource carry last-known location, plus a (logical)
timestamp.

e When nodes see messages with newer timestamps, they update their

pointers to the resource.

e \When resource arrives at a node, it increments timestamp and sends an

update to the previous location in the message.

11

Reasoning About Active Network Protocols

Properties

e Messages not addressed to the resource reach their destination.
e Messages reach either the resource or a node with newer information.

5 October 1998

‘ Mobility Example I

—-nroperty of
mobility algorithm

= =¥transition by

Deliver queued
messages.
Send update

v.Cur

to last residence A environment
I v.stable ~
~
/ v.Fwd

Resource N\
v.Cur arrival v.stable
Al
v.stable / empty
/ message

ueue
resoure / Send al
esource \ / queued

departure Arrival of messages

Location

v.Fwd
Al
I v.stable

v.Mig
Al
v.stable

queue not
empty

J

12

Reasoning About Active Network Protocols 5 October 1998 13

‘ Mobility Example I

Program {Mobility } Mobility Code for Slot 0

initially

MAO wv.rState,v.rLC,v.rLoc,v.rStable,v.rQQ = Fwd,0,r.home, true, L
if v £ r.home ~ Cur,0,v,true, L if v = r.home

{ Resource r is initially located at 7. home; this is known to all other nodes }
assign
MA1 v.Msg.d,v.Msg.loc,v.Msg.ts := redir(v.rLoc,v.Msg.d),v.rLoc,v.rLC
if v.rLC > v.Msg.ts N\ v.Msg.type = Access A\ (v.Fwd V v.Cur) N v.stable
{ Re-direct accesses containing stale information }
MA2 wv.rLoc,v.rLC := v.Msg.loc,v.Msg.tsif v.rLC < v.Msg.ts \ v.Fwd A v.stable
{ Update local clock and forwarding information if message contains newer information }

MA3 (fwd (Qh.s,redir(v, Qh.d), Qh.r,v, res.ts + 1, Qh.type, Qh.body)
| v.rQ = tail(v.rQ)) if v.Cur N —v.stable ANv.rQ # L
{ Resource arrives at node v; Deliver all queued messages }

. etc.

. J

Reasoning About Active Network Protocols 5 October 1998

Conclusions

e A model of active node programming using UNITY

e The slot model is intended to permit reasoning about global behavior with

limited knowledge of the injected program.

e \We still need strong/precise constraints on the injected program to guarantee

underlying properties (e.g. every message reaches its destination).

e Mobility as an application for active nets

Future Work

e Other applications: reliable multicast. . .

e Reasoning about behavior during injection, when some nodes have the

injected code and some don't.

