
Reasoning About Active Network Protocols�

Samrat Bhattacharjee Kenneth L. Calvert Ellen W. Zegura

Networking and Telecommunications Group, College of Computing

Georgia Tech, Atlanta, GA 30332-0280

fbobby,calvert,ewzg@cc.gatech.edu

Abstract

Active Networks allow users to \program" the net-
work infrastructure, by injecting information that de-
scribes or controls a distributed algorithm to be exe-
cuted for the user by the network infrastructure. The
nature of the services that can be implemented with
such a facility is determined by the programming inter-
face to the active network, i.e. the set of abstractions it
exposes to users. The complexity of this interface may
range from a few simple parameters to a completely
general programming language.

We present a model that supports reasoning inde-
pendently about the correctness of both the underly-
ing active network platformand the algorithms injected
into it, in a manner that admits the full range of pos-
sible programming interfaces. The model is described
without relying on any particular formalism. The inter-
action between the underlying platform and the user-
injected program is captured in a specialized form of
program composition that allows properties of each to
be preserved. The use of the model is illustrated via
an example dealing with mobility. For the example, we
use the UNITY formalism to be more precise about the
programs and properties that are preserved.

1 Introduction

Active networks provide a programmable platform
on which network services can be de�ned or altered
by injecting code or other information into the nodes
of the network. This paradigm o�ers a number of po-
tential advantages, including the ability to develop and
deploy new network protocols and services quickly, and
the ability to customize services to meet the di�erent
needs of di�erent classes of users.

Active networks also raise a number of interest-
ing issues for programmers using the network appli-
cation programmer interface (network API). For ex-
ample, what programming model should the network
support? What abstractions are available, and how can

�This work supported by DARPA under contract number

N66001-97-C-8512.

the programmer reason about the global correctness of
a service implemented with them? How can the over-
all stability of the network be preserved? What are the
mechanisms for injecting code into the network? These
are important questions because distributed algorithms
are notoriously di�cult to get right; adding the abil-
ity to modify a node's behavior on the
y clearly adds
another level of complexity.

In this paper we present a programming model for
active networks that (i) constrains the degree to which
an active node's behavior can be modi�ed, and (ii) sup-
ports rigorous reasoning about the global behavior of
the network. Our approach is to de�ne a generic net-
work node behavior that can be customized by means
of simple instructions inserted into speci�c \slots" in
that behavior. The slots de�ne the interface to the
generic node behavior and the degree to which that
behavior can be modi�ed. This approach ensures that
properties of the global network behavior are preserved,
provided the injected code satis�es certain conditions.

The rest of this paper is organized as follows. The
next section de�nes the problem and highlights the re-
lationship between the network API and the possible
reasoning methods. We also place our approach in the
context of other active network research. In Section
3, we illustrate our approach without relying on any
particular formalism. This portion of the paper is in-
tended to be accessible to all readers. A formal de-
scription of our approach can be found in [2]. Section 4
develops an example of moderate complexity using the
approach from Section 3. The example consists of a
generic node program that does message forwarding,
along with an injected program that adds the capabil-
ity to forward messages towards a mobile resource that
migrates through the network. In Section 4 we use the
UNITY formalism to describe the generic node pro-
gram and the injected mobility program. The reader
who is unfamiliarwith UNITY should be able to under-
stand the main ideas of the example; for background
in UNITY needed to understand the details of this sec-
tion, see [3]. Finally, Section 5 o�ers some conclusions.

1

2 Background and Related Work
The high-level goal of active networking is to de-

�ne a dynamically-programmable network platform or
\API" on which network services can be built. Here
we consider how di�erent approaches to that problem
have di�erent e�ects on our ability to reason about the
problem. We lay out the problem in abstract form,
and also describe some approaches under investigation
elsewhere and how they relate to ours.

2.1 Network Model

Wemodel the network as a collection of nodes, which
communicate by sending packets over channels; the
nodes and channels are arranged in some connected
but otherwise unspeci�ed topology. We assume for sim-
plicity that each node of the network exports the same
API, and furthermore each node exhibits the same ba-
sic behavior, which consists of repeatedly removing a
packet from an incoming channel and then taking some
action based upon the information contained in the
packet and the current state of the node. As a result of
this action the state of the node may be modi�ed, and
packets may be queued for transmission on outgoing
channels.

We view the behavior of each active node as being
made up of two components: a �xed part, which is the
same for every packet; and a variable part, which is
determined by the information carried in packets plus
the node state. The �xed part, in e�ect, de�nes the
\virtual machine" presented to the programmer, while
the variable part consists of the program that is fed
into that virtual machine, plus the input fed into that
program-running-on-virtual-machine. In what follows,
we refer to the �xed part of the node behavior as the
underlying program, and the \program" portion of the
variable part as the injected program.

2.2 Problem Statement

Two key issues in the design of an active network
API are: (i) the nature of the virtual machine de�ned
by the underlying program, and (ii) the mechanisms
for \injecting" the program de�ning the variable part
of the behavior. These issues have a profound a�ect on
our ability to reason about the global behavior of the
network. If the underlying program de�nes a Turing-
complete interpreter |as exempli�ed by, say, the Java
Virtual Machine [4]| then essentially all of the node
behavior is determined by the injected program. In
that case it is di�cult to make any general statements
about the global network behavior without complete
knowledge of the injected program. Moreover, it is di�-
cult or even impossible to reason simultaneously about
the injection process (in which the injected program
is treated by the network as data) and the global be-
havior of the network under the control of the injected

program.

On the other hand, if the underlying program de-
�nes a �xed computation, to which the injected pro-
gram merely supplies scalar parameters |say, menu
selections which de�ne a path through the program|
then the node behavior is completely de�ned by the
underlying program, and it is possible to make strong
statements about the global behavior of the network.
Moreover it is straightforward to reason about the in-
jection process (at least in theory) because the number
of possible node behaviors during the process is �nite.
The drawback at this end of the spectrum is that
ex-
ibility is taken away: the set of possible behaviors is
completely de�ned by the underlying program.

Clearly an approach that achieves a middle ground
between these two extremes is desirable. Such an ap-
proach de�nes part of the active node's behavior by the
underlying program, and part by the injected program.
The goal is to be able to make useful statements about
the network's global behavior based on the �xed part
of each node's behavior and on certain constraints or
assumptions about the injected program. At the same
time, it should be possible to extend the network's be-
havior in an in�nite variety of ways via injected pro-
grams that satisfy the constraints. Ideally, the underly-
ing program would be judiciously de�ned so that these
constraints can be checked syntactically at the time the
program is \injected". The approach described in this
paper is of this middle-of-the-road type.

While this approach makes it possible to reason
about global behavior independent of injected code, it
does not solve the problem of reasoning about the in-
jection process itself, i.e. how the injected program
propagates through the network, and goes from being
\data" to being \program". This is an interesting and
important problem, which we do not consider in this

paper, assuming instead that the active network is in
a state where the injected program is in place at every
node.

The problem of de�ning an active network API
raises a number of other issues |security, scalability,
and resource management, to name just a few| that
we also assume away in the interest of brevity and sep-
aration of concerns. Thus our model posits a single ac-
tive network user, and we do not consider performance
or other real-time aspects.

2.3 Other Approaches

The SwitchWare active network architecture [1] de-
veloped at University of Pennsylvania and Bellcore de-
�nes two levels of programming, but in a somewhat
di�erent manner than what is described above. The
\packet" level is a scripting language that provides for
invocation and composition of lower-level services, but

has little functionality of its own. Programs written in
this scripting language are carried in packets and inter-
preted by the �xed part of node behavior. The lower, or
\service" level de�nes the functions invoked by packet
level scripts. Thus, the injected program is de�ned by
the script contained in a packet and the node-resident
service functions called by the script. The underlying
program does limited generic packet processing (e.g.,
checks a resource bound) and then invokes an inter-
preter.

The current version of the two-level architecture uses
a new language called PLAN (Programming Language
for Active Networks) as the packet level scripting lan-
guage [5], and Java as the service level language. PLAN
is a simple language based on typed lambda calculus.
The language itself allows some generic properties (e.g.,
guaranteed termination, strong typing) to be asserted
about individual node behaviors, independent of the
injected program. However, PLAN depends on the
service-level functions to implement global functional-
ity.

The ANTS toolkit [6], developed at MIT, roughly
corresponds to the \universal Turing machine" model
of �xed behavior described above. Packets carry an
identi�er that indicates the method to be used in pro-
cessing the packet and parameters speci�c to the refer-
enced Java routine. Some methods are well-known and
available at every active node; other routines are made
available using an in-band, on-demand code-loading
mechanism. The injected program is de�ned by the
identi�er in the packet and the associated Java rou-
tine. The underlying program checks a resource bound
(similar to SwitchWare), and executes the code-loading
mechanism as needed. The underlying program then
invokes the Java interpreter. ANTS relies on mobile
code techniques such as sandboxing to obtain generic
guarantees on network behavior; however, it is unclear
how one would reason formally about global properties
of the network programmed in Java.

3 Slot-Based Programming Model
In this section we describe the relationship and inter-

face between the underlying program and the injected
program in our approach. This interface takes the form
of one or more slots; for the purposes of this (gen-
eral) discussion, slots are identi�ed by natural num-
bers. Users can inject programs that bind to partic-
ular slots. The underlying program invokes the code
bound to each slot at some point during its execution,
by raising the slot. The semantics of the particular un-
derlying program determine the exact conditions under
which the slot is raised. Once a slot is raised, the un-
derlying program suspends and the injected program
runs until completion or until it exhausts its resources.

The issue of resources is further discussed below. All
communication between the injected program and the
underlying program is by shared variables.

In what follows we present our results without refer-
ence to any particular formalism. A formal description
can be found in [2]. We �rst describe the form of the
underlying program, in terms of the program executed
at an arbitrary node v. Then we describe the form
required of an injected program, and the transforma-
tion that models the injection process itself. Finally, we
state some general results about injection and property
preservation.

3.1 Form of the Underlying Program

The underlying program is assumed to be uniform in
the sense that every node of the network executes the
same algorithm. Although this assumption can prob-
ably be relaxed, it does not seem a serious limitation
and greatly simpli�es the presentation. In what fol-
lows we describe the underlying program in terms of
the program running at an arbitrary node v.

The underlying program is required to have a certain
structure, namely, the union of two programs: N and
DS (denoted by N [] DS)1. Program N implements
the common packet-processing algorithm (we give an
example of such an algorithm later in the paper) and
may also invoke (raise) one or more slots during its
execution. Program DS provides a \default slot be-
havior" that speci�es processing to occur in each slot
in the absence of any injected programs bound to the
slot. Further, program DS ensures that the execu-
tion of the underlying program resumes after a slot has
been raised, even if an injected progrma deadlocks. In
Section 4 we give an example of a program DS that
satis�es the necessary conditions.

The underlying program interfaces with injected
programs using well-known variables. This provides
a general interface that can be implemented in most
programming languages. One part of the interface con-
sists of the raising of slots, to indicate that the injected
program may execute. This is accomplished via the
variable v:state, which de�nes the current node state.
Setting this variable to slot:i:raise raises slot i; only N
sets v:state to slot:i:raise. It is also possible for v:state
to be set to other values by N . All injected programs
that are bound to slot i become eligible for execution
if and only if the node state is set to slot:i:raise.

A second part of the interface consists of the ter-
mination of a slot. Setting v:state to slot:i:complete

indicates that slot processing for slot i has completed;
regardless of all the injected programs bound to slot

1The union of two programs corresponds to parallel composi-

tion. Instructions from either program can be arbitrarily inter-

leaved in the composite.

i, program DS is responsible for setting v:state to this
value, and only programDS may change the node state
to slot:i:complete.

A third part of the interface consists of the resource
accounting. To ensure that an injected program ter-
minates, each slot is assigned a bounded amount of
resources, and each statement executed in a slot con-
sumes resources. For each slot i, the natural num-
ber v:rt:i:usage is a count of the resources used by
the code (if any) bound to slot i, while v:rt:i:bound

is the usage bound, i.e. the maximum permissible
value of v:rt:i:usage. The process of injection (see
below) ensures that (i) statements of injected pro-
grams may only execute if v:rt:i:usage < v:rt:i:bound,
and (ii) each executed statement of a bound in-
jected program increments v:rt:i:usage. Program DS

sets the node state to slot:i:complete if and only if
v:rt:i:usage = v:rt:i:bound. An additional boolean
variable v:Progress:i is used to ensure that slot pro-
cessing does not deadlock.

We now de�ne the notion of a receptive underlying
program. A receptive program can be composed with
suitable injected programs. We say that program N []
DS is receptive if it satis�es the following requirements:

(U0) The variables of the program can be partitioned
into classes:

{ C: variables related to the slot control
mechanism. This class contains (only)
v:state and the natural numbers v:rt:i:usage,
v:rt:i:bound, and the boolean v:Progress:i,
for each slot i.

{ R: variables that can be read (not written)
by injected programs.

{ W : variables that can be read or written by
injected programs.

{ X: all other variables of the program.

(Note that these classes relate to the accesses per-
mitted to the injected program, not the underlying
program.)

(U1) Variables that can be read by the injected program
do not change their value while a slot is raised.

(U2) As long as slot i is raised, the statements only
increase the resource counter for i and do not in-
crease it beyond its bound.

(U3) Slots \terminate" only when their resource alloca-
tions have been exhausted.

(U4) Each slot eventually terminates.

Note that properties U2, U3 and U4 are ensured
by the program DS. The property of being receptive
ensures that the underlying program has a form that
is compatible with the interface expected by injected
programs; we de�ne this latter interface next.

3.2 Injecting Programs

For each program J to be injected, a number des-
ignating the slot to which J is to be bound must be
speci�ed at injection time. More than one program
may be bound to a given slot. A program J that is to
be injected into underlying program N []DS is required
to satisfy the following structural constraints:

(J0) All variables named in both N and J are in R or
W .

(J1) No variable in R occurs on the left-hand side of an
assignment statement in J .

A program satisfying these constraints is said to be
acceptable to N .

Our model postulates that the injection process \in-
stalls" the same code in every node of the network;
during the process of injection, both N []DS and J are
transformed by modifying their program statements.
The statement modi�cations ensure that (i) each state-
ment of the injected program increases the resource
limit if it is executed, and (ii) program DS is able to
terminate slot processing if the injected program dead-
locks. After modifying the statements, the installation
process takes the parallel composition of N []DS and
J to produce a new program. We denote the resulting
program by Inj (N; J) 2.

3.3 Properties of Injection

Let N []DS be a receptive program, and let I and J
be acceptable to N . Our de�nition of injection permits
us to prove the following properties:

� Inj (N; J) is receptive.

� Any property P holds in Inj (Inj (N; J); I) if and
only if P holds in Inj (N; I [] J). This shows that
our de�nitions of injection are robust and, in some
sense, commute with parallel composition.

� For any acceptable program J , any property of
N that holds when N is composed using parallel
composition with J is preserved by injecting J into
N []DS. Note that injection di�ers from parallel
composition of N and J because of the presence
of DS and the program statement modi�cations.
This result means that the presence of the default

2We do not explicitly mention DS in the notation for the re-

sulting program because we expect that in most cases a common

default slot program will be used for any underlying programN .

slot behavior and the program statement modi�-
cations do not interfere with the preservation of
properties by parallel composition.

Our results also permit the preservation of prop-
erties of the injected programs, provided that the in-
jected program does not exhaust its slot resource limits.
These results require that properties be proved of the
composite of the injected program and the underlying
program, but allow abstraction from the mechanics of
the slot mechanisms. For these results, we say a pred-
icate is pure if it does not depend on any variables
other than those in R,W , and variables of the injected
program. We can show that

� All global safety properties involving only pure
predicates are preserved by injection.

� All global progress properties involving only pure
predicates are preserved by injection, unless a slot
resource limit is exhausted at some node.

4 Example
In this section, we present an example underlying

program, in the UNITY notation, that supports pro-
cessing slots to which injected programs can be bound
to form composite network services. We present an
injected program that, when composed with the un-
derlying program, enables locating mobile resources in
a network.

4.1 An Example Underlying Program

In the example underlying program, Node, each
node has a number of associated processes. We de-
�ne the type endpoint to be a two-tuple consisting of a
node identi�er and a process identi�er. The functions
node(x), pr(x) return the node and the process asso-
ciated with endpoint x. Each node v has a �nite set

v:outC of outgoing channels and a �nite set v:inC of
incoming channels. Individual channels in these sets
are identi�ed by indices: v:outC[i] denotes a particular
output channel of v. Each output channel is connected
to an input channel of some other node or a process
at the local node by unspeci�ed means. The function
end(x) returns the identi�er of the peer at the other
end of a channel x. For simplicity, we assume that this
connection is reliable, i.e. any message in v:outC[i]
eventually shows up in u:inC[j] for the appropriate u
and j.

The set of processes at a node v is represented by
v:process. We assume that two processes ErrProc

and NullProc are always present at each node. The
ErrProc process deals with error conditions; messages
received in error (e.g. messages for non-existent pro-
cesses at a node) are directed to it. The NullProc

is the source of all messages from a node that do not
originate at any other process; NullProc discards all
messages sent to it.

Messages in the network have the structure m =
fs; d; bodyg, i.e. messages have a source, a destination,
and a body. The source (m:s) and destination (m:d)
of a message are identi�ers are of type endpoint.

The state of the Node program is encoded in
the v:state variable which is of type nodeState.
The members of type nodeState are: nodeState =
fidle; slot:i:raise; slot:i:complete; newPkt; routePkt;

routeFoundg. Note that the slot:i:raise and
slot:i:complete states are quanti�ed over all slots i.
For � of type nodeState, we de�ne the predicates

v:�
def
= v:state = �. Thus, v:idle is equivalent to

v:state = idle, etc.
The Node program listed in Figure 1 reads a mes-

sage from any non-empty incoming channel (state-
ment N1) and processes it using the slot processing
model. The program identi�es two processing slots.
Each slot is raised (statements N2, N4) when certain
(slot-speci�c) conditions hold. The Node program re-
sumes when the v:state variable is set to slot:i:complete
(statementsN3 andN5). As described before, the DS
program is responsible for the termination of each slot.
The DS program is listed in Figure 2, and achieves ex-
actly the default slot behavior described in Section 3.

The current message being processed at node v is
identi�ed by the v:Msg variable. We de�ne the predi-
cate at(m; v) to be \message m is the current message

at node v", i.e. at(m; v)
def
= v:Msg = m. At each

node, messages are routed according to a routing ta-
ble (represented by v:RouteTable) (statement N3).
The routing table is a map between endpoints and in-
tegers, and an entry in the routing table of the form
v:RouteTable(d) is the identi�er for the index of the
channel from node v to endpoint d. Let �(i; j) denote
the distance (in hops) between nodes i and j in the
network. We assume that �(i; j) > 0, if i 6= j, and
0 otherwise. We assume that routing tables have the
following properties (v is quanti�ed over nodes, and d

is quanti�ed over endpoints in the following):

h8v; d : v 6= node(d) : v:RouteTable(d) = n)

�(end(v:outC[n]); node(d) < �(v; node(d))i)
h8v; d : v = node(d) ^ h9 k :: v:outC[k] = pr(d)i :

v:RouteTable(d) = ki

h8v; d : v = node(d) ^ :h9 k :: v:outC[k] = pr(d)i :
v:RouteTable(d) = i ^ v:outC[i] = ErrProci

Thus, if the endpoint passed to the routing table at
node v identi�es a node i di�erent from v, then an
index to an outgoing channel to node x is returned
such that the distance (in hops) from node x to node

Program fNodeg Program at each active node v

initially

N0 v:state; discardCnt; errorCnt = idle; 0;0 f Initialization g
assign
N1 hh[] x : v:inC[x] 2 v:inC : v:state; v:inC[x]; v:Msg; v:LH := newPkt; tail(v:inC[x]);head(v:inC[x]); xi

k h8 i :: v:rt:i:usage := 0ii if v:idle ^ (v:inC[x] 6= ?) f If channel is non-empty, read message and initialize usage counters g

N2 [] v:state := slot:0:raise if v:newPkt f Raise message arrival event g
N3 [] v:state; v:NH := routeFound; v:RouteTable(v:Msg:d) if v:slot:0:complete f Route message to proper channel g
N4 [] v:state := slot:1:raise if v:routeFound f Raise routing done event g
N5 [] hv:state; v:outC[v:NH] := idle; v:outC[v:NH]; v:Msg

k h discardCnt := discardCnt+ 1 if end(v:outC[v:NH]) = NullProc

[] errorCnt := errorCnt + 1 if end(v:outC[v:NH]) = ErrProcii
if v:slot:1:complete f Send message on proper channel; Update Counters g

end fNodeg

Figure 1: UNITY listing of program Node

Program fDSg Default Slot
initially
D0 h[] i :: v:rt:i:usage; v:rt:i:bound = 0; �ii f Initialization, �i � 0 g
always
D1 h[] i :: v:SlotCondition:i = v:rt:i:bound > v:rt:i:usage^ v:slot:i:raisei

f Default set of conditions for progress through slot g
D2 h[] i :: v:Progress:i = Q:ii f \default" predicate Q, set to true if no programs are bound to slot i g
assign
D3 h[] i :: v:rt:i:usage := v:rt:i:usage+ 1 if v:SlotCondition:i^ v:Progress:ii

f Increase resource usage if no other program active g
D4 [] h[] i :: v:state := v:slot:i:complete if v:slot:i:raise^ v:rt:i:bound = v:rt:i:usagei

f Resource bound exhausted, slot processing complete g
end fDSg

Figure 2: UNITY listing of program DS

i is strictly smaller than the distance to i from node
v; x is the next hop to i from v. In case the endpoint
passed to the routing table identi�es a process on the
current node to which an outgoing channel exists, the
identi�er for such a channel is returned. A channel to
the error process (ErrProc) is returned in case the end-
point identi�es a process on the current node to which
no outgoing channel exists.

It can be shown that Node []DS is receptive, using
the following partition of variables:

� C: v:state, v:rt:i:usage, v:rt:i:bound,
v:Progress:i, i = f0; 1g.

� R: v:RouteTable, v:NH, v:LH, errorCnt,
discardCnt

� W : v:Msg, v:outC[x] for all output channels

� X: v:inC[x] for all input channels

4.2 Properties of Node [] DS

We now state some properties of the underlying pro-
gram. Let

D(m)
def
= �(i; node(m:d)) if at(m; i) _m 2 i:outC[j]:

Thus, D(m) is the distance in hops a message m is
from its destination node. For each node v in the net-
work executing the example underlying program, the
following properties hold:

Progress Properties

NP0 :v:idle 7! v:idle

f Message Processing is bounded g
NP1 m 2 i:inC[j] 7! at(m; j) f Channels drain g
NP2 at(m; v) ^D(m) > 0 7!

j = v:RouteTable(m:d) ^m 2 v:outC[j]
f Messages are routed to the correct next hop g

Property NP0 states that processing incurred due to
any message at any node is �nite. Using the channel
properties, and the fact that message processing is �-
nite, we derive property NP1, which states that all
messages in a channel to a node are eventually pro-
cessed by the node. Property NP2 states that mes-
sages are forwarded on the correct output channel, as
speci�ed by the routing table.

From these local node properties, we can derive the
following property global property for the network.

GP0 at(m; i) 7! at(m;node(m:d))

f All messages are delivered g

Property GP0 states that all messages are eventually
delivered to their destination.

4.3 An Example Injected Program

In this section, we present an acceptable injected
program,Mobility, for locating mobile resources in the
network. Unlike static resources within a network, the
location of amobile resource (i.e. the node at which the
resource is currently available) can change dynamically
and asynchronously. A mobile resource may be avail-
able at a particular node at a given time, and then
migrate to another node in the network. During the
migration period, the resource is not available at any
node in the network. In this section, we present an
injected program that forwards messages towards such
mobile resources in an active network.

4.3.1 Assumptions

We make the following assumptions about the environ-
ment and the migration of the mobile resources:

� Channels do not lose or corrupt messages, and
bu�ers are not bounded.

� Each mobile resource has a unique identi�er and
an associated home node where it is initially lo-
cated. The identity of the home node for each
mobile resource is known at all nodes.

� Resources do not migrate forever; i.e. each migra-
tion period is �nite, and followed by a period when
the resource is available at some node in the net-
work. Further, resources are not modi�ed during
migration.

� A resource is available at only one node at a given
time. Thus two di�erent nodes cannot possess the
same mobile resource at the same time.

� The node environment is responsible for update to
state variables in the mobility algorithm to indi-
cate the (un)availability of each mobile resource.
The updates to the state variables by the node
environment satisfy a set of rules speci�ed by the
mobility algorithm.

4.3.2 The mobility algorithm

In our exposition, we assume that there is only one mo-
bile resource. However, the algorithm and programs
presented readily work with any �nite number of mo-
bile resources.

In order to locate the mobile resource in the network,
we associate a timestamp with the resource. Each
node maintains a corresponding logical clock and a
last known location for the mobile resource. The re-
source's timestamp is increased each time the resource
arrives at a particular node. An update message about
the resource arrival with the new timestamp is sent to
the last node from which the resource migrated (the
identity of the last node is carried with the resource).
Accesses to the resource are initially sent towards the
most current location known to the source of the access.
A timestamp in the access determines the currency of
the resource location carried in the access. En-route,
if the access encounters a node with more current in-
formation (i.e. the node's logical clock is higher than
the timestamp carried in the access), it is redirected
towards the new location. We show that this scheme
results in accesses continually making progress towards
the current location of the resource, either by �nding
the resource or by �nding a newer update.

Details Initially the resource is located at its home
node, its timestamp is zero, and this information is
available at all nodes. When a resource migrates from
a node, all subsequent accesses to the resource that
reach this node are queued until a message with newer
information about the resource's location arrives. This
new update must arrive as the resource must eventually
become current at some node, causing an update to be
sent. Upon receipt of the update, the queued accesses
are forwarded towards the new location of the resource.
In case the resource migrates right back to the node
where it was last located |i.e. the identity of the last
location carried in the resource is the new node where
the resource is now located| only a new timestamp is
generated and all queued messages queued at this node
are forwarded to processes at this node.

Optimality Note that we do not guarantee that ac-
cesses will always �nd the mobile resource. This is a
consequence of the very general model of mobility we
have assumed. Even in a two node network, we can
create a scenario in which the location of the resource
is de�ned to be the other node each time the access
arrives at some node. When an update arrives, the re-
source will be forwarded towards the other node. In
this manner, the access will always chase the resource
in the network but never actually locate the resource.
However, our algorithm is optimal in the sense the ac-
cess will encounter more and more current information
about the location of the resource (i.e. ever increas-
ing timestamps at each node). There are well-known
heuristics that are often used to enhance the average

case performance of mobility algorithms: e.g. always
sending an update to the home node of a resource when
a resource arrives at a node. These techniques are not
essential to prove the correctness of the mobility pro-
tocol, and, as such, we have not included them in our
algorithm.

4.3.3 Implementation

Messages in the mobility algorithm correspond to the
seven-tuple fs; d; r; loc; ts; type; bodygwhere s and d are
the source and destination of the message. The re-
source is identi�ed by r; loc and, ts correspond to re-
source location and an associated timestamp, respec-
tively. The �eld type encodes the type of the message:
it can be one of Access (for accesses to mobile resource)
or Update (for updates on resource location). Finally,
the body is the \payload" of the message.

The algorithm described is implemented by main-
taining the following set of variables at each node:

� The state of the resource at each node is en-
coded in the v:rState variable which is of type
state and can assume one of the three values
Cur;Mig; or Fwd. The states v:rState = Cur,
v:rState = Mig and v:rState = Fwd at node v
are denoted by v:Cur; v:Mig; and v:Fwd respec-
tively. v:Cur detects if the resource is resident
at node v. v:Mig detects the state when the re-
source has migrated from v but updated location
information has not been received at v yet. v:Fwd
is true if the resource is not resident at v, and the
node is not in Mig state.

During certain state transitions, each node has to
discharge certain obligations in order for the algo-
rithm to be correct. We use the variable v:rStable
to detect whether such obligations have been ful-
�lled during these state transitions.

� The variables v:rLC and v:rLoc store the value
of logical clock and last known location for the
resource at node v. Variable v:rQ is a bu�er where
accesses are queued while v:Mig holds.

� The home node for each resource r is denoted by
r:home. Resources are initially available at their
homes, and the initial timestamp is zero. Further,
for each resource r, the identity of the home node
is known at all nodes.

� If present (i.e. v:Cur at node v), the resource can
be accessed through the variable res. Speci�cally,
res:ts and res:loc represent the timestamp and the
location carried with the resource.

 v.Cur
 /\
v.stable

 v.Mig
 /\
v.stable

 v.Fwd
 /\
v.stable

 v.Fwd
 /\
! v.stable

 v.Cur
 /\
! v.stable

transition by
 environment

property of
mobility algorithm

Resource
departure

Resource
 arrival

Arrival of
Location
 Update

Send all
 queued
messages

Deliver queued
 messages.
 Send update
to last residence

message
queue not
empty

empty
message
queue

Figure 3: Possible transitions for node state

Resource Availability and Migration Figure 3
shows the valid transitions for the node state. Some
transitions of the node state model the arrival and de-
parture of the resource and are triggered by the node
environment. The predicate v:Cur detects whether the
resource is present at the node. The node environment
must set the node state to Cur and the v:rStable vari-
able to false to indicate the resource's arrival at v.
Similarly, the environment must set the node state to
Mig when the resource migrates. The resource may
migrate only when v:Cur ^ v:stable holds. In general,
the node environment may only update the value of
v:rState when v:rStable is true. Thus, once the re-
source arrives at a node (v:Cur ^ :v:rStable holds),
the resource can migrate only after the mobility algo-
rithm has set the state to v:Cur ^ v:stable.

4.3.4 UNITY Program Speci�cation

The UNITY speci�cation for Mobility is shown
in Figure 4. For the sake of brevity, we de�ne the
following abbreviations. At each node v:

fwd (s; d; r; rd; ts; t; b)
def
= hv:outC[v:RouteTable(d)]

:= v:outC[v:RouteTable(d)]; fs; d; r; rd; ts; t; bgi

and

Qh
def
= head(v:rQ)

Thus, fwd (v; d; r; �; k;Access; body) corresponds
to sending a message towards the destination d from
the current node (v), and the resource identi�er, re-
source location, resource timestamp,message type, and
message body in the message equal to r, �, k, Access,
and body respectively. Similarly Qh refers to the mes-
sage (if any) at the head of the queue of messages in
the queue v:rQ at node v. Further, given endpoint d,
we de�ne redir(x; d) to be the new endpoint fx; pr(d)g;

thus, redir(x; d) is an endpoint with the same process
identi�er as d but re-directed to node x. Finally, we
de�ne nullPr(x) to be the endpoint fx;NullProcg.

4.4 Composing Mobility with Node

The Mobility program is designed to be bound to
slot 0 in the Node program. After processing by the
Mobility program, the current message will be for-
warded by the Node program. If the current message is
at its destination, it will be forwarded to a process; oth-
erwise, it will be forwarded a node corresponding to the
next hop towards its destination. Speci�cally, Update
messages are discarded at their destination as they are
directed to the NullProc process. When the resource
is available at the node, all Access messages are for-
warded on channels to their respective processes. The
guarantee about resource availability provided by the
mobility algorithm is as follows: Access messages are
forwarded to a process at a node v if and only if v:Cur
holds. This condition does not imply that v:Cur must
hold when the Access message is eventually read or
processed by the terminating process at node v. Thus,
a race condition may ensue if the resource migrates be-
fore the forwarded messages reach their individual pro-
cesses. We do not model restrictions on resource mi-
gration that may be imposed by higher layer processes
beyond the stability criteria speci�ed by the mobility
algorithm.

For composition with the Mobility program, the
Node program speci�es the following safety property
for writing into the v:Msg variable:

stablev:Msg:type 6= Access ^ v:Msg = m inMobility:

Using this safety property, property GP0 and that
properties of the underlying program are preserved un-
der injection, we can derive:

GP1 at(m; i) ^m:type 6= Access 7!

at(m;node(m:d))

Property GP1 states that all messages with message
type di�erent from Access eventually reach their desti-
nation node. Next we state properties of the Mobility

program and messages of type Access using properties
of Mobility in Inj (Node;Mobility).

4.5 Properties of Inj(Node;Mobility)
We can derive the following properties for each node

in which Inj (Node;Mobility) is executed:

� Resource timestamp and logical clocks at each
node can only increase.

� Unstable periods at each node are �nite.

� Each time the resource arrives at a node, the
node's logical clock is increased.

� A node in migration state must stay in migration
state until an update with higher timestamp or
the resource arrives at the node. Further, after
the migration period, the logical clock at the node
must increase. This must be so because either the
update has a greater timestamp, or the clock at
the node is incremented if the resource arrives at
the node. Thus, using this property, we can state
that periods at which a node is in migration state
are always �nite.

We can derive the following global property ofNode[]
Mobility. De�ne predicate atq(m; v) as follows

atq(m; v)
def
= at(m; v) _m 2 v:rQ

Given that Node program satis�es the conditions U0{
U4, and theMobility program satis�es J0 and identi�es
slot 0 inNode to be bound to, Node[]Mobility program
has the following global property:

GP1 at(m; v) ^m:type = Access 7!

at(m;m:d) _ h9 i :: at(m; i) ^ i:Curi
_h9 j :: atq(m; j) ^ j:rLC > m:tsi

This says that the Access messages always �nd the
resource, a new update, or are delivered to their desti-
nation.

Using the property that the safety and progress
properties of pure predicates in the injected pro-
gram are not modi�ed unless resource bounds are vio-
lated, and GP1, we derive the following property for
Inj (Node;Mobility):

at(m; v) ^m:type = Access 7!

at(m;m:d) _ h9 i :: at(m; i) ^ i:Curi
_h9 j :: atq(m; j) ^ j:rLC > m:tsi

_h9 v :::v:SlotCondition:0i

This property states that unless resource bounds are
violated, the properties of the Mobility program are
preserved.

5 Conclusion
We have described an abstract form of programming

interface for active networks. The interface de�nes the
interaction between a �xed, underlying node program
and code which can be injected into the network. The
interface constrains the functionality of the injected
program to certain points in the execution of the under-
lying program. Using a formal model, we have shown

Program fMobilitygMobility algorithm

initially

MA0 v:rState; v:rLC; v:rLoc; v:rStable; v:rQ = Fwd; 0; r:home; true;?
if v 6= r:home � Cur; 0; v; true;? if v = r:home f Resource r is initially located at r:home; this is known to all other nodes g

assign
MA1 v:Msg:d; v:Msg:loc; v:Msg:ts := redir(v:rLoc; v:Msg:d); v:rLoc; v:rLC

if v:rLC > v:Msg:ts ^ v:Msg:type = Access^ (v:Fwd _ v:Cur) ^ v:stable f Re-direct accesses containing stale information g

MA2 v:rLoc; v:rLC := v:Msg:loc; v:Msg:ts if v:rLC < v:Msg:ts^ v:Fwd ^ v:stable
f Update local clock and forwarding information if message contains newer information g

MA3 hfwd (Qh:s; redir(v; Qh:d); Qh:r; v; res:ts+ 1;Qh:type;Qh:body)
k v:rQ := tail(v:rQ)i if v:Cur ^ :v:stable ^ v:rQ 6= ? f Resource arrives at node v; Deliver all queued messages g

MA4 hv:rLoc; v:rLC; res:ts; res:loc; v:rStable := v; res:ts+ 1; res:ts+ 1; v; true
k fwd (nullPr(v); nullPr(res:loc); v; r; res:ts+ 1; Update;?) i if v:Cur ^ :v:stable ^ res:loc 6= v ^ v:rQ = ?

f Resource arrived from other node; Increment clock, send message to last known location g

MA5 v:rLoc; v:rLC; res:ts;res:loc; v:rStable := v; res:ts+ 1; res:ts+ 1; v; true
if v:Cur ^ :v:stable^ res:loc = v ^ v:rQ = ? f Resource migrated back to node v from node v; Increment clock g

MA6 v:rQ; v:Msg:d := v:rQ; v:Msg; nullPr(v) if v:Mig ^ v:Msg:ts � v:rLC ^ v:Msg:type = Access

f Access to migrating resource; Queue access, and redirect current message to NullProc g

MA7 v:rState; v:rLoc; v:rLC; v:rStable := Fwd; v:Msg:loc; v:Msg:ts; (v:rQ = ?) if v:Mig ^ v:Msg:ts > v:rLC

f New update; v:rStable detects empty v:rQ g
MA8 hv:rQ; v:rStable := tail(v:rQ); (tail(v:rQ) = ?)

k fwd (Qh:s; redir(v:rLoc;Qh:d); Qh:r; v:rLoc; v:rLC;Qh:type;Qh:body) i
if :v:stable ^ v:Fwd f Forward queued messages to new location until queue is empty g

end fMobilityg

Figure 4: UNITY listing of Program Mobility

how to reason about the correctness of the network and
program starting from properties proved of each in iso-
lation. We have illustrated the use of the techniques on
a nontrivial example in UNITY dealing with mobility.

The UNITY notation is simple and easy to learn.
This simplicity comes at a cost. There is no type the-
ory, for example, nor any form of variable scoping|
these must be handled outside the formalism. Any
sequencing of statements must be handled explicitly
by the programmer. On the other hand, UNITY pro-
grams naturally promote maximum parallelism, and
treat global properties essentially the same as local
ones. The UNITY syntax provides a powerful, yet sim-
ple means of encoding programs.

Our approach is designed to facilitate proofs that
an active network's global behavior maintains certain
correctness properties provided the injected programs
satisfy certain restrictions. In this paper, some of these
restrictions were syntactic (J0 and J1), but some were
not (e.g. the hypotheses in several of the properties
of the slot processing model). The problem of checking
injected programs for suitability remains an interesting
one.

References
[1] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar,

A. Keromytis, J. Moore, C. Gunter, S. Nettles, and

J. Smith. The Switchware Active Network Archi-
tecture. IEEE Network Special Issue on Active and

Controllable Networks, 12(3):29{36, 1998.

[2] S. Bhattacharjee, K. Calvert, and E. Zegura. Rea-
soning about active network protocols. Technical
Report GIT-CC-98/19, Georgia Institute of Tech-
nology, 1998.

[3] K. Mani Chandy and Jayadev Misra. Parallel

Program Design: A Foundation. Addison-Wesley,
1988.

[4] J. Gosling and H. McGilton. The Java language
environment: A White paper. Sun Microsystems,
1995.

[5] Michael Hicks, Pankaj Kakkar, T. Moore, Carl A.
Gunter, and Scott Nettles. PLAN: A Packet Lan-
guage for Active Networks. To appear in Inter-
national Conference on Functional Programming,
1998.

[6] D. Wetherall, J. Guttag, and D. L. Tennenhouse.
ANTS: A toolkit for building and dynamically
deploying network protocols. In IEEE OPE-

NARCH'98, San Francisco, CA, April 1998.

