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Abstract

Active Networks allow users to \program" the network infrastructure, by injecting information that

describes or controls a distributed algorithm to be executed for the user by the network infrastructure.

The nature of the services that can be implemented with such a facility is determined by the programming

interface to the active network, i.e. the set of abstractions it exposes to users. The complexity of this

interface may range from a few simple parameters to a completely general programming language.

We present a formal model that supports reasoning independently about the correctness of both the

underlying active network platform and the algorithms injected into it, in a manner that admits the

full range of possible programming interfaces. The model is de�ned using the UNITY formalism, which

facilitates reasoning about distributed computations in a platform- and language-independent way. The

interaction between the underlying platform and the user-injected program is captured in a specialized

form of program composition that allows properties of each to be preserved. The use of the model is

illustrated via an example dealing with mobility.

1 Introduction

Active networks provide a programmable platform on which network services can be de�ned or altered by
injecting code or other information into the nodes of the network. This paradigm o�ers a number of potential
advantages, including the ability to develop and deploy new network protocols and services quickly, and the
ability to customize services to meet the di�erent needs of di�erent classes of users.

Active networks also raise a number of interesting issues. For example, what programmingmodel should
the network support? What abstractions are available, and how can the programmer reason about the
global correctness of a service implemented with them? How can the overall stability of the network be
preserved? What are the mechanisms for injecting code into the network? These are important questions
because distributed algorithms are notoriously di�cult to get right; adding the ability to modify a node's
behavior on the 
y clearly adds another level of complexity.

In this paper we present a programming model for active networks that (i) constrains the degree to
which an active node's behavior can be modi�ed, and (ii) supports rigorous reasoning about the global
behavior of the network. Our approach is to de�ne |formally| a generic network node behavior that can
be customized by means of simple instructions inserted into speci�c \slots" in that behavior. The slots
de�ne the interface to the generic node behavior and the degree to which that behavior can be modi�ed.

�This work supported by DARPA under contract number N66001-97-C-8512.
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This approach ensures that properties of the global network behavior are preserved, provided the injected
code satis�es certain conditions.

We illustrate the approach in this paper using the UNITY formalism both to describe the generic node
behavior (as a program) and to represent the injected code. We chose UNITY because of its simplicity:
UNITY models interaction between di�erent program components in the same way whether they are dis-
tributed (i.e. located at di�erent nodes) or not. Thus, we use the same logical mechanisms to reason about
the global network behavior as about the interaction between the generic node program and the injected
code. Although this tends to complicate reasoning about local behavior, the ability to reason about global
properties comes for free.

The rest of this paper is organized as follows. The next section de�nes the problem, and highlights the
relationship between the network API and the possible reasoning methods. We also place our approach in the
context of other active network research. Section 3 introduces our model of the active network, de�ning the
general form of the �xed and variable parts of the network's behavior using the UNITY formalism. Section 4
presents an example illustrating the theory developed in Section 3, comprising a basic node program and an
injected program that forwards messages toward a mobile resource that migrates throughout the network.
Finally, Section 5 o�ers some conclusions.

2 Background and Related Work

The high-level goal of active networking is to de�ne a dynamically-programmable network platform or \API"
on which network services can be built. Here we consider how di�erent approaches to that problem have
di�erent e�ects on our ability to reason about the problem. We lay out the problem in abstract form, and
also describe some approaches under investigation elsewhere and how they relate to ours.

2.1 Problem Statement

We model the network itself as a collection of nodes, which communicate by sending packets over channels;
the nodes and channels are arranged in some connected but otherwise unspeci�ed topology. We assume for
simplicity that each node of the network exports the same API, and furthermore each node exhibits the
same basic behavior, which consists of repeatedly removing a packet from an incoming channel and then
taking some action based upon the information contained in the packet and the current state of the node.
As a result of this action the state of the node may be modi�ed, and packets may be queued for transmission
on outgoing channels.

We view the behavior of each active node as being made up of two components: a �xed part, which is
the same for every packet; and a variable part, which is determined by the information carried in packets
plus the node state. The �xed part, in e�ect, de�nes the \virtual machine" presented to the programmer,
while the variable part consists of the program that is fed into that virtual machine, plus the input fed into
that program-running-on-virtual-machine. In what follows, we refer to the �xed part of the node behavior
as the underlying program, and the \program" portion of the variable part as the injected program.

Two key issues in the design of an active network API are: (i) the nature of the virtual machine de�ned
by the underlying program, and (ii) the mechanisms for \injecting" the program de�ning the variable part
of the behavior. These issues have a profound a�ect on our ability to reason about the global behavior of the
network. If the underlying program de�nes a Turing-complete interpreter |as exempli�ed by, say, the Java
Virtual Machine [2]| and we place no restrictions on the injected programs, then essentially all of the node
behavior is determined by the injected program. In that case it is di�cult to make any general statements
about the global network behavior without complete knowledge of the injected program. Moreover, it is
di�cult or even impossible to reason simultaneously about the injection process (in which the injected
program is treated by the network as data) and the global behavior of the network under the control of the
injected program.

On the other hand, if the underlying program de�nes a �xed computation, to which the injected program
merely supplies scalar parameters |say, menu selections which de�ne a path through the program| then
the node behavior is completely de�ned by the underlying program, and it is possible to make strong
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statements about the global behavior of the network. Moreover it is straightforward to reason about the
injection process (at least in theory) because the number of possible node behaviors during the process
is �nite. The drawback at this end of the spectrum is that 
exibility is taken away: the set of possible
behaviors is completely de�ned by the underlying program.

Clearly an approach that achieves a middle ground between these two extremes is desirable. Such an
approach de�nes part of the active node's behavior by the underlying program, and part by the injected
program. The goal is to be able to make useful statements about the network's global behavior based on the
�xed part of each node's behavior and on certain constraints or assumptions about the injected program.
At the same time, it should be possible to extend the network's behavior in an in�nite variety of ways via
injected programs that satisfy the constraints. Ideally, the underlying program would be judiciously de�ned
so that these constraints can be checked syntactically at the time the program is \injected". The approach
described in this paper is of this middle-of-the-road type.

While this approach makes it possible to reason about global behavior independent of injected code, it
does not solve the problem of reasoning about the injection process itself, i.e. how the injected program
propagates through the network, and goes from being \data" to being \program". This is an interesting
and important problem, which we do not consider in this paper, assuming instead that the active network
is in a state where the injected program is in place at every node.

The problem of de�ning an active network API raises a number of other issues |security, scalability, and
resource management, to name just a few| that we also assume away in the interest of brevity and separation
of concerns. Thus our model posits a single active network user, and we do not consider performance or
other real-time aspects.

2.2 Other Approaches

The SwitchWare active network architecture [5] developed at U. Penn and Bellcore de�nes two levels of
programming, but in a somewhat di�erent manner than what is described above. The \packet" level is
a scripting language that provides for invocation and composition of lower-level services, but has little
functionality of its own. Programs written in this scripting language are carried in packets and interpreted
by the �xed part of node behavior.

The lower, or \service" level de�nes the functions invoked by packet level scripts. What we would call
the \injected program" is a set of services de�ned in this language; once installed in nodes they can be
invoked by scripts. The current version of the two-level architecture uses a new language called PLAN
(Programming Language for Active Networks) as the packet level scripting language [3], and Java as the
service level language. PLAN is a simple language based on typed lambda calculus. The language itself
allows some generic properties (e.g., guaranteed termination, strong typing) to be asserted about individual
node behaviors, independent of the injected program. However, PLAN depends on the injected (service-level)
program to implement global functionality, and is in this sense a kind of \dual" of our approach.

The ANTS toolkit [6], developed at MIT, roughly corresponds to the \universal Turing machine" model
of �xed behavior described above. In ANTS, both underlying and injected programs are speci�ed in Java.
Packets carry an identi�er that indicates the method to be used in processing the packet and parameters
speci�c to the referenced routine. Some methods are well-known and available at every active node (�xed
part); other routines are injected using an in-band, on-demand code-loading mechanism. ANTS relies on
mobile code techniques such as sandboxing to obtain generic guarantees on network behavior; however, it
is unclear how one would reason formally about global properties of the network programmed in Java.

Both ANTS and PLAN feature a resource usage bound carried in each packet. The �xed behavior of
each node includes decrementing this value upon receipt and discarding the packet if the result is zero.
Any additional packets created during packet processing inherit a resource bound from the original packet.
Precise policies, and associated guarantees, regarding the allocation of resources to these addtional packets
have not been developed.
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3 Formal Model

In this section we describe the relationship and interface between the underlying program and the injected
program. This interface takes the form of one or more slots; for the purposes of this (general) discussion, slots
are identi�ed by natural numbers. Users can inject programs that bind to particular slots. The underlying
program invokes the code bound to each slot at some point during its execution, by raising the slot. The
semantics of the particular underlying program determine the exact conditions under which the slot is raised.
Once a slot is raised, the underlying program suspends and the injected program runs until completion or
until it exhausts its resources. All communication between the injected program and the underlying program
is by shared variables.

In what follows we present our results using the UNITY program notation and logic. The reader who is
unfamiliar with UNITY is referred to the appendix for a brief introduction.

We �rst describe the form of the underlying program, in terms of the program executed at an arbitrary
node v. Then we describe the form required of an injected program, and the transformation that models
the injection process itself. Finally, we state some general results about injection and property preservation.

3.1 Form of the Underlying Program

The underlying program is assumed to be uniform in the sense that every node of the network executes the
same algorithm. Although this assumption can probably be relaxed, it does not seem a serious limitation
and greatly simpli�es the presentation. In what follows we describe the underlying program in terms of the
program running at an arbitrary node v.

The underlying program is required to have a certain structure, namely, the union of two programs:
N [] DS. Program N implements the main packet-processing algorithm (we give an example of such an
algorithm later in the paper) and may also invoke (raise) one or more slots during its execution. Program
DS is responsible for ensuring that the execution of the underlying program resumes after a slot has been
raised.

In order to interface with injected programs, N []DS has certain variables. The variable v:state de�nes
the current node state. Setting this variable to slot:i:raise raises slot i; only N sets v:state to slot:i:raise.
It is also possible for v:state to be set to other values by N . We use the abbreviation v:slot:i:raise for
v:state = slot:i:raise.

Setting v:state to slot:i:complete indicates that slot processing for slot i has completed; program DS

is responsible for setting v:state to this value. We use the abbreviation v:slot:i:complete for v:state =
slot:i:complete. For each slot i, the natural number v:rt:i:usage is a count of the resources used by the
code (if any) bound to slot i, while v:rt:i:bound is the usage bound, i.e. the maximum permissible value of
v:rt:i:usage. The boolean variable v:Progress:i is used in ensuring that slot processing does not deadlock
(see below).

The program DS has the following form:

Program fDefault Slotg DS

initially

D0 h[] i :: v:rt:i:usage; v:rt:i:bound = 0; �ii f Initialization, �i � 0 g
always

D1 h[] i :: v:SlotCondition:i = v:rt:i:bound > v:rt:i:usage ^ v:slot:i:raisei

f Default set of conditions for progress through slot g
D2 h[] i :: v:Progress:i = Q:ii f \default" predicate Q g

assign

D3 h[] i :: v:rt:i:usage := v:rt:i:usage+ 1 if v:SlotCondition:i ^ v:Progress:ii
f Increase resource usage if no other program active g

D4 [] h[] i :: v:state := v:slot:i:complete if v:slot:i:raise ^ v:rt:i:bound = v:rt:i:usagei

f Resource bound exhausted, slot processing complete g
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The program DS provides a \default slot behavior" that |provided the predicate Q:i is weak enough|
ensures that slot processing completes, whether any injected program is bound to the slot or not. The form
of DS is speci�ed completely, except for the predicate Q:i; the \default" value for Q:i (i.e. without any
injected code) is true.

We say that program N []DS is receptive if it satis�es the following requirements:

(U0) The variables of the program can be partitioned into classes:

{ C: variables related to the slot control mechanism. This class contains (only) v:state and the
natural numbers v:rt:i:usage, v:rt:i:bound, and the boolean v:Progress:i, for each slot i.

{ R: variables that can be read (not written) by injected programs.

{ W : variables that can be read or written by injected programs.

{ X: all other variables of the program.

(Note that these classes relate to the accesses permitted to the injected program, not the underlying
program.)

(U1) For each i, and any variable r 2 R, the property

slot:i:raise ^ r = k unless slot:i:complete

holds in the program. (This says that variables that can be read by the injected program do not
change their values while a slot is raised.)

(U2) For each i, the property

v:slot:i:raise ^ v:rt:i:usage = k ^ k < v:rt:i:bound unless

v:slot:i:raise ^ v:rt:i:usage > k ^ v:rt:i:usage � v:rt:i:bound

holds in N . (This says that as long as slot i is raised, the statements in N only increase the resource
counter for i and do not increase it beyond its bound.)

(U3) For each i, the property

v:slot:i:raise unless v:slot:i:complete ^ v:rt:i:usage = v:rt:i:bound

holds in N . (This says that slots \terminate" only when their resource allocations have been used up.)

(U4) For each i, the property
v:slot:i:raise 7! v:slot:i:complete

holds in N [] DS. (This says that each slot eventually completes.) A su�cient condition for this
property to hold, given (U2) and (U3) and the above de�nition of DS, is Q:i � true.

The property of being receptive ensures that the underlying program has a form that is compatible with
the interface expected by injected programs; we de�ne this latter interface next.

3.2 Injecting Programs

For each program J to be injected, a number designating the slot to which J is to be bound must be speci�ed
at injection time. More than one program may be bound to a given slot. A program J that is to be injected
into underlying program N []DS is required to satisfy the following structural constraints:

(J0) All variables named in both N and J are in both R and W .

(J1) No variable in R occurs on the left-hand side of an assignment statement in J .
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A program satisfying these constraints is said to be acceptable to N .
Our model postulates that the injection process \installs" the same code in every node of the network;

during the process of injection, both N and J are transformed, by modifying their program statements as
follows. Let the slot speci�ed for J be i, and let each statement s of J be of the form:

xs := es0 if bs0
: : :

� esn if bsn

We de�ne the injection of J into N , denoted by Inj (N; J), to be the program N []DS0 [] J 0, where DS0

is DS with the statement D2 for slot i modi�ed to be:

v:Progress:i = Q:i ^ h8 s : s 2 J : :bs0 ^ : : :^ :bsni

and J 0 is obtained from J by modifying each statement s (assumed to have the form given above) to be:

�x := �es0 if bs0 ^ v:SlotCondition:i

: : :

� �esn if bsn ^ v:SlotCondition:i

k v:rt:i:usage := v:rt:i:usage + 1 if (bs0 _ : : :_ bsn) ^ v:SlotCondition:i

These modi�cations ensure that (i) each statement of the injected program increases the resource limit if it is
e�ective, and (ii) the predicate v:Progress:i is true whenever none of the statements of the injected program
is e�ective, so that the resource usage counter will increase and the slot will eventually be completed, even
if the injected program deadlocks.

We denote the program resulting from injecting J into the underlying program N by Inj (N; J).

3.3 Properties of Injection

We now present some properties that follow from the foregoing de�nitions. In what follows let N []DS be a
receptive program, and let I and J be acceptable to N .

Lemma 1. Inj (N; J) is receptive.

Proof. We show that Inj (N; J) satis�es conditions U0-U4:

Ad (U0): The variables of Inj (N; J) can be partitioned as before, with the variables of J that are not
in R or W being members of X.

Ad (U1): The statements of N are not changed, and none of the statements from J or DS writes to
variables in R, so this property still holds.

Ad (U2): The original statements of N are not changed; the modi�ed statements of J only increase
the value of v:rt:i:usage, as required.

Ad (U3): This holds by a similar argument to the one for (U2).

Ad (U4): Because N []DS is receptive, there exists a proof of this property for the originalN []DS. The
only steps of that proof that might have been invalidated are ensures properties that depend on the
assignment statement DS3, whose guard was strengthened. The strongest claim any such property
can make is that v:rt:i:usage increases by 1. At any state where DS3 is no longer e�ective because
its guard was strengthened, some (modi�ed) statement of J is enabled, and that statement will also
increase v:rt:i:usage by 1. Thus the original property p ensures q can be replaced by a set of properties
p ^ bs0 ensures q, p ^ bs1 ensures q, etc., which, together with the modi�ed ensures property based on
the modi�ed DS3, yield p 7! q by disjunction. The rest of the proof proceeds unchanged.
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The following result shows that our de�nitions are robust, and in some sense commute with union
(parallel composition).

Theorem 2. Let N []DS be receptive, and let I and J be acceptable to N . Then any property P

holds in Inj (Inj (N; J); I) if and only if P holds in Inj (N; I [] J).

Proof Sketch. Because injection does not modify the statements of N , and the modi�cations to DS due to
repeated injections commute, it is possible to de�ne a bijection between the statements of Inj (Inj (N; J); I)
and the statements of Inj (N; I [] J) such that each assignment statement has the same weakest precondition
operator as its corresponding statement. This can be used to show that any proof of P in Inj (Inj (N; J); I)
is a valid proof of P in Inj (N; I [] J), and vice versa.

The next theorem says that any property of N that holds when N is composed with well-behaved
programs is preserved by injection, if the injected program is also well-behaved.

Theorem 3. Let N [] DS be receptive, and let J be acceptable to N . Let P be a set of safety
properties that mention only variables in R and W , and let Q be any property that mentions only
variables of N []DS. If
Hypothesis: P in H
Hypothesis: properties in (U1{U4) in H
Conclusion: Q in N []H

and
P in J

then
Q in Inj (N; J).

Proof Sketch. The proof of Q in N []H whose existence is asserted in the hypothesis is valid for Inj (N; J)
as well, because the properties in the hypothesis hold in Inj (N; J), and the statements of N are not modi�ed
by injection.

The next two results show how properties of the injected program are preserved by injection. These
theorems require that properties be proved of the composite of the injected program and the underlying
program, but allow abstraction from the mechanics of the slot mechanisms. For these theorems, we say a
predicate is pure if it does not depend on any variables other than those in R, W , and variables of J .

Theorem 4. Let N be receptive, and let J be an acceptable program with respect to N . Let p and
q be pure predicates. If p unless q in N [] J , then p unless q in Inj (N; J).

Proof Sketch. Every statement in Inj (N; J) either (i) does not a�ect pure predicates (if it came from

DS) or (ii) has the same e�ect on pure predicates as some statement in N [] J from N or J , possibly with a
stronger guard. The conclusion follows.

Theorem 5. Let N be receptive, and let J be an acceptable program with respect to N . Let p, q
and r be pure predicates. If p 7! q in N [] J , then p 7! q _ h9 i :: :v:SlotCondition:ii in Inj (N; J).

Proof Sketch. The proof is by induction on the length of the proof for N [] J . If p ensures q, the unless

part follows by the previous theorem. The existence of a proof for p ensures q in N [] J implies there is a
statement s in N [] J such that

fp ^ :qg s fqg:

The injection process implies in Inj (N; J) we have a statement s0 (corresponding to s in N [] J) satisfying

fp ^:q ^ h9 i :: v:SlotCondition:iig s0 fqg

which is what is required for p ensures q _ h9 i :::v:SlotCondition:ii in Inj (N; J). The transitivity and
disjunction cases follow by the Cancellation theorem and predicate calculus.
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Variable Type Denotes

v:state, v:Msg nodeState, message Node State, Current Message
v:RouteTable Map endpoint ! chan. index Route Table
v:inC[x], v:outC[x] Sequence of messages Channel indexed by x to, from v

v:NH, v:LH endpoints next hop, last hop
errorCnt, discardCnt integers # msgs rec'd in error, discarded

Table 1: Variables in underlying programs Node and DS running at node v

4 Example

In this section, we present an example underlying program that supports processing slots to which injected
programs can be bound to form composite network services. We present an injected program that, when
composed with the underlying program, enables locating mobile resources in a network.

4.1 An Example Underlying Program Node

In the example underlying program, each node has a number of associated processes. We de�ne the type
endpoint to be a two-tuple consisting of a node identi�er and a process identi�er. The functions node(x),
pr(x) return the node and the process associated with endpoint x. Each node v has a �nite set v:outC
of outgoing channels and a �nite set v:inC of incoming channels. Individual channels in these sets are
identi�ed by indices: v:outC[i] denotes a particular output channel of v. Each output channel is connected
to an input channel of some other node or a process at the local node by unspeci�ed means. The function
end(x) returns the identi�er of the peer at the other end of a channel x. For simplicity, we assume that this
connection is reliable, i.e. any message in v:outC[i] eventually shows up in u:inC[j] for the appropriate u
and j.

The set of processes at a node v is represented by v:process. We assume that two processes ErrProc and
NullProc are always present at each node. The ErrProc process deals with error conditions, and messages
received in error (e.g. messages for non-existent processes at a node) are directed to it. The NullProc is the
source of all messages from a node that does not originate at any other process, and discards all messages
sent to it.

Messages in the network have the following structure:

m = fs; d; bodyg

i.e. messages have a source, a destination, and a body. The source (m:s) and destination (m:d) of a message
are identi�ers are of type endpoint.

The state of the Node program is encoded in the v:state variable which is of type nodeState. The mem-
bers of type nodeState are: nodeState = fidle; slot:i:raise; slot:i:complete; newPkt; routePkt; routeFoundg.
Note that the slot:i:raise and slot:i:complete states are quanti�ed over all slots i. For � of type nodeState,

we de�ne the predicates v:�
def
= v:state = �. Thus, v:idle is equivalent to v:state = idle, etc.

The Node program listed below identi�es two processing slots. Each slot is raised when certain (slot-
speci�c) conditions become true. Injected code, in an appropriate form, can be bound to slots. Code, bound
to a slot, is executed when the slot is raised. The raising of a particular slot x at a node is signaled by
setting the v:state variable to slot:x:raise. The Node program resumes when the v:state variable is set
to slot:x:complete. The current message being processed at node v is identi�ed by the v:Msg variable.

We de�ne the predicate at(m; v) to be \message m is the current message at node v", i.e. at(m; v)
def
=

v:Msg = m. At each node, messages are routed according to a routing table (represented by v:RouteTable).
The routing table is a map between endpoints and integers, and an entry in the routing table of the form
v:RouteTable(d) is the identi�er for the index of the channel from node v to endpoint d. Let �(i; j) denote
the distance (in hops) between nodes i and j in the network. We assume that �(i; j) > 0, if i 6= j, and 0 else.
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We assume that routing tables have the following properties (v is quanti�ed over nodes, and d is quanti�ed
over endpoints in the following):

h8 v; d : v 6= node(d) : v:RouteTable(d) = n ) �(end(v:outC[n]); node(d)) < �(v; node(d))i

h8 v; d : v = node(d) ^ h9 k :: v:outC[k] = pr(d)i : v:RouteTable(d) = ki

h8 v; d : v = node(d) ^ :h9 k :: v:outC[k] = pr(d)i : v:RouteTable(d) = i ^ v:outC[i] = ErrProci

Thus, if the endpoint passed to the routing table at node v identi�es a node i di�erent from v, then an
index to an outgoing channel to node x is returned such that the distance (in hops) from node x to node i
is strictly smaller than the distance to i from the current node; x is the next hop to i from v. In case the
endpoint passed to the routing table identi�es a process on the current node to which an outgoing channel
exists, the identi�er for such a channel is returned. A channel to the error process (ErrProc) is returned in
case the endpoint identi�es a process on the current node to which no outgoing channel exists.

Program fProgram at each active node vg Node

initially

N0 v:state; discardCnt; errorCnt = idle; 0; 0 f Initialization g
assign

N1 hh[]x : v:inC[x] 2 v:inC : v:state; v:inC[x]; v:Msg; v:LH := newPkt; tail(v:inC[x]); head(v:inC[x]); xi
k h8 i :: v:rt:i:usage := 0ii if v:idle ^ (v:inC[x] 6= ?)

f If channel is non-empty, read message and initialize usage counters g
N2 [] v:state := slot:0:raise if v:newPkt f Raise message arrival event g
N3 [] v:state; v:NH := routeFound; v:RouteTable(v:Msg:d) if v:slot:0:complete

f Route message to proper channel g
N4 [] v:state := slot:1:raise if v:routeFound f Raise routing done event g
N5 [] hv:state; v:outC[v:NH] := idle; v:outC[v:NH]; v:Msg

k h discardCnt := discardCnt+ 1 if end(v:outC[v:NH]) = NullProc

[] errorCnt := errorCnt+ 1 if end(v:outC[v:NH]) = ErrProcii

if v:slot:1:complete f Send message on proper channel; Update Counters g

end fNodeg

It can be shown that Node []DS is receptive, using the following partition of variables:

� C: v:state, v:rt:i:usage, v:rt:i:bound, v:Progress:i, i = f0; 1g.

� R: v:RouteTable, v:NH, v:LH, errorCnt, discardCnt

� W : v:Msg, v:outC[x] for all output channels

� X: v:inC[x] for all input channels

4.2 Properties of Node []DS

We now state some properties of the underlying program. Let

D(m)
def
= �(i; node(m:d)) if at(m; i) _m 2 i:outC[j]:

Thus, D(m) is the distance in hops a message m is from its destination node. For each node v in the network
executing the example underlying program, the following properties hold:
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Progress Properties

NP0 :v:idle 7! v:idle f Message Processing is bounded g
NP1 m 2 i:inC[j] 7! at(m; j) f Channels drain g
NP2 at(m; v) ^D(m) > 0 7! j = v:RouteTable(m:d) ^m 2 v:outC[j]

f Messages are routed to the correct next hop g

Property NP0 states that processing incurred due to any message at any node is �nite. Using the channel
properties, and the fact that message processing is �nite, we derive property NP1, which states that all
messages in an channel to a node is eventually processed by the node. Property NP2 states that messages
are forwarded on the current output channel, as speci�ed by the routing table.

From these local node properties, we can derive the following property global property for the network.

GP0 at(m; i) 7! at(m;node(m:d)) f All messages are delivered g

Property GP0 states that all messages are eventually delivered to their destination.

4.3 An Example Injected Program

In this section, we present an acceptable injected program for locating mobile resources in the network.

4.4 Mobility

Unlike static resources within a network, the location of a mobile resource (i.e. the node at which the
resource is currently available) can change dynamically and asynchronously. A mobile resource may be
available at a particular node at a given time, and then migrate to another node in the network. During
the migration period, the resource is not available at any node in the network. In this section, we present
an injected program that tracks and locates such mobile resources in an active network.

Assumptions We make the following assumptions about the environment and the migration of the mobile
resources:

� Channels do not lose or corrupt messages, and bu�ers are not bounded.

� Each mobile resource has an unique identi�er and an associated home node where it is initially located.
The identity of the home node for each mobile resource is known at all nodes.

� Resources do not migrate forever; i.e. each migration period is �nite, and followed by a period when
the resource is available at some node in the network. Further, resources are not modi�ed during
migration.

� A resource is available at only one node at a given time. Thus two di�erent nodes cannot possess the
same mobile resource at the same time.

� The node environment is responsible for update to state variables in the mobility algorithm to in-
dicate the (un)availability of each mobile resource. The updates to the state variables by the node
environment satisfy a set of rules speci�ed by the mobility algorithm.

4.5 The mobility algorithm

In our exposition, we assume that there is only one mobile resource. However, the algorithm and programs
presented readily work with any �nite number of mobile resources.

In order to locate the mobile resource in the network, we associate a timestamp with the resource.
Each node maintains a corresponding logical clock and a last known location for the mobile resource. The
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resource's timestamp is increased each time the resource arrives at a particular node. An update message
about the resource arrival with the new timestamp is sent to the last node from which the resource migrated
(the identity of the the last node is carried with the resource). Accesses to the resource are sent towards the
most current location known to the source of the access. A timestamp in the access determines the currency
of the resource location carried in the access. En-route, if the access encounters a node with more current
information (i.e. the node's logical clock is higher than the timestamp carried in the access), it is redirected
towards the new location. We show that this scheme results in accesses continually making progress towards
the current location of the resource, either by �nding the resource or by �nding a newer update.

Details Initially the resource is located at its home node, its timestamp is zero, and this information is
available at all nodes. When a resource migrates from a node, all subsequent accesses to the resource that
reach this node are queued till a message with newer information about the resource's location arrives. This
new update must arrive as the resource must eventually become current at some node, causing an update
to be sent. Upon receipt of the update, the queued accesses are forwarded towards the new location of the
resource. In case the resource migrates right back to the node at which it was last located |i.e. the identity
of the last location carried in the resource is the new node where the resource is now located| only a new
timestamp is generated and all queued messages queued at this node are forwarded to processes at this node.

Optimality Note that we do not guarantee that accesses will always �nd the mobile resource. This is a
consequence of the very general model of mobility we have assumed. Even in a two node network, we can
create a scenario in which the location of the resource is de�ned to be the other node each time the access
arrives at some node. When an update arrives, the resource will be forwarded towards the other node. In
this manner, the access will always chase the resource in the network but never actually locate the resource.
However, our algorithm is optimal in the sense the access is bound to encounter more and more current
information about the location of the resource (i.e. ever increasing timestamps at each node). There are
well-known heuristics that are often used to enhance the average case performance of mobility algorithms:
e.g. always sending an update to the home node of a resource when a resource arrives at a node, etc. These
techniques are not essential to prove the correctness of the mobility protocol, and as such, we have not
included them in our algorithm.

4.6 Implementation

Messages in the mobility algorithm correspond to the seven-tuple fs; d; r; loc; ts; type; bodyg where s and d

are the source and destination of the message. The resource is identi�ed by r; loc, ts correspond to resource
location and an associated timestamp. The �eld type encodes the type of the message: it can be one of
Access (for accesses to mobile resource) or Update (for updates on resource location). Finally, the body is
the \payload" of the message.

The algorithm described is implemented by maintaining the following set of variables at each node:

� The state of the resource at each node is encoded in the v:rState variable which is of type state and
can assume one of the three values Cur;Mig; or Fwd. The states v:rState = Cur, v:rState = Mig

and v:rState = Fwd at node v are denoted by v:Cur; v:Mig; and v:Fwd respectively. v:Cur detects
if the resource is resident at node v. v:Mig detects the state when the resource has migrated from v

but an updated location information has not been received at v yet. v:Fwd is true if the resource is
not resident at v, and the node is not in Mig state. During certain state transitions, each node has to
discharge certain obligations in order for the algorithm to be correct. We use the variable v:rStable
to detect whether such obligations have been ful�lled during these state transitions.

� The variables v:rLC; v:rLoc store the value of logical clock and last known location for the resource
at node v. Variable v:rQ is a bu�er where accesses are queued while v:Mig holds.

� The home node for each resource r is denoted by r:home. Resources are initially available at their
homes, and the initial timestamp is zero. Further, for each resource r, the identity of the home node
is known at all nodes.
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Figure 1: Possible transitions for node state

� If present (i.e. v:Cur at node v), the resource can be accessed through the variable res. Speci�cally,
res:ts and res:loc represent the timestamp and the location carried with the resource.

Resource Availability and Migration Figure 1 shows the valid transitions for the node state. Some
transitions of the node state model the arrival and departure of the resource, and are triggered by the
node environment. The predicate v:Cur detects whether the resource is present at the node. The node
environment must set the node state to Cur and the v:rStable variable to false to indicate the resource's
arrival at v. Similarly, the environment must set the node state to Mig when the resource migrates. The
resource may migrate only when v:Cur^v:stable holds. In general, the node environment may only update
the value of v:rState when v:rStable is true. Thus, once the resource arrives at a node (v:Cur^:v:rStable
holds), the resource can migrate only after the mobility algorithm has set the state to v:Cur ^ v:stable.

We now formalize the rules for resource migration and the properties of the node environment.

Rules of resource migration

M0 h8 i; j : i 6= j : :i:Cur _ :j:Curi f Resource resident at only one node g
M1 v:Mig ^ v:rLC = k unless h9 i :: i:Cur ^ :i:stable ^ res:ts = k ^ res:loc = vi

f Resource does not change during migration g
M2 v:Mig ^ v:rLC = k 7! h9 i :: i:Cur ^ :i:stable ^ res:ts = k ^ res:loc = vi

f Resource does not change during migration and migration terminates g
Properties of node environment

M3 :v:Cur ^ v:stable unless v:Cur ^ :v:stable f Resource arrival g
M4 v:Cur ^ v:stable unless v:Mig ^ v:stable f Resource departure g
M5 h8 s : fCur;Mig; Fwdg : v:s ^ :v:stable unless v:s ^ :v:stablei

f Environment may not change state unless v:stable holds g
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Variable Type Denotes

v.rState, v.rStable state, boolean Node state, whether state is stable
v.rLoc, v.rLC node id, integer Last known location, Logical clock at node
v.rQ queue of type message Bu�er to queue accesses during migration

Table 2: Variables in the implementation of the mobility algorithm

4.6.1 UNITY Program Speci�cation

For the sake of brevity, we de�ne the following abbreviations. At each node v:

fwd (s; d; r; rd; ts; t; b)
def
= hv:outC[v:RouteTable(d)] := v:outC[v:RouteTable(d)]; fs; d; r; rd; ts; t; bgi

and
Qh

def
= head(v:rQ)

Thus, fwd (v; d; r; �; k; Access; body) corresponds to sending a message towards the destination d from
the current node (v), and the resource identi�er, resource location, resource timestamp, message type, and
message body in the message equal to r, �, k, Access, and body respectively. Similarly Qh refers to the
message (if any) at the head of the queue of messages in the queue v:rQ at node v. Further, given end-
point d, we de�ne redir(x; d) to be the new endpoint fx; pr(d)g; thus, redir(x; d) is an endpoint with the
same process identi�er as d but re-directed to node x. Finally, we de�ne nullPr(x) to be the endpoint
fx;NullProcg.

Program fMobility algorithmgMobility

initially

MA0 v:rState; v:rLC; v:rLoc; v:rStable; v:rQ = Fwd; 0; r:home; true;?
if v 6= r:home � Cur; 0; v; true;? if v = r:home

f Resource r is initially located at r:home; this is known to all other nodes g
assign

MA1 v:Msg:d; v:Msg:loc; v:Msg:ts := redir(v:rLoc; v:Msg:d); v:rLoc; v:rLC
if v:rLC > v:Msg:ts ^ v:Msg:type = Access ^ (v:Fwd_ v:Cur) ^ v:stable

f Re-direct accesses containing stale information g
MA2 v:rLoc; v:rLC := v:Msg:loc; v:Msg:ts if v:rLC < v:Msg:ts ^ v:Fwd ^ v:stable

f Update local clock and forwarding information if message contains newer information g

MA3 hfwd (Qh:s; redir(v;Qh:d); Qh:r; v; res:ts+ 1; Qh:type;Qh:body)
k v:rQ := tail(v:rQ)i if v:Cur ^ :v:stable ^ v:rQ 6= ?

f Resource arrives at node v; Deliver all queued messages g
MA4 hv:rLoc; v:rLC; res:ts; res:loc; v:rStable := v; res:ts + 1; res:ts + 1; v; true

k fwd (nullPr(v); nullP r(res:loc); v; r; res:ts+ 1; Update;?) i
if v:Cur ^ :v:stable ^ res:loc 6= v ^ v:rQ = ?

f Resource arrived from other node; Increment clock, send message to last known location g
MA5 v:rLoc; v:rLC; res:ts; res:loc; v:rStable := v; res:ts + 1; res:ts+ 1; v; true

if v:Cur ^:v:stable ^ res:loc = v ^ v:rQ = ?

f Resource migrated back to node v from node v; Increment clock g

MA6 v:rQ; v:Msg:d := v:rQ; v:Msg; nullP r(v)
if v:Mig ^ v:Msg:ts � v:rLC ^ v:Msg:type = Access

f Access to migrating resource; Queue access, and redirect current message to NullProc g

MA7 v:rState; v:rLoc; v:rLC; v:rStable := Fwd; v:Msg:loc; v:Msg:ts; (v:rQ = ?)
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if v:Mig ^ v:Msg:ts > v:rLC f New update; v:rStable detects empty v:rQ g

MA8 hv:rQ; v:rStable := tail(v:rQ); (tail(v:rQ) = ?)
k fwd (Qh:s; redir(v:rLoc;Qh:d); Qh:r; v:rLoc; v:rLC;Qh:type;Qh:body) i

if :v:stable ^ v:Fwd f forward queued messages to new location till queue is empty g

end fMobilityg

4.7 Composing Mobility with Node

The Mobility program is designed to be bound to slot 0 in the Node program. After processing by the
Mobility program, the current message will be forwarded by the Node program. If the current message is
at its destination, it will be forwarded to a process; otherwise, it will be forwarded a node corresponding
to the next hop towards its destination. Speci�cally, Update messages are discarded at their destination as
they are directed to the NullProc process. When the resource is available at the node, all Access messages
are forwarded on channels to their respective processes. The guarantee about resource availability provided
by the mobility algorithm is as follows: Access messages are forwarded to a process at a node v if and only
if v:Cur holds. This condition does not imply that v:Cur must hold when the Access message is eventually
read or processed by the terminating process at node v. Thus, a race condition may ensue if the resource
migrates before the forwarded messages reach their individual processes. We do not model restrictions on
resource migration that may be imposed by higher layer processes beyond the stability criteria speci�ed by
the mobility algorithm.

For composition with the Mobility program, the Node program speci�es the following safety property
for writing into the v:Msg variable:

stablev:Msg:type 6= Access ^ v:Msg = m in Mobility:

Using this safety property, property GP0, and Theorem 3, we can derive:

GP1 at(m; i) ^m:type 6= Access 7! at(m;node(m:d))

All non-Access messages are delivered to their destination by Inj (Node;Mobility)

Property GP1 states that all messages with message type di�erent from Access eventually reach their
destination node. Next we derive properties of messages of type Access using properties of Mobility in
Inj (Node;Mobility).

4.8 Properties of Inj (Node;Mobility)

We derive the following properties for each node in which Inj (Node;Mobility) is executed:

Safety of clocks and timestamps

MP0 res:ts = k unless res:ts > k f Resource's timestamp monotonically increases g
MP1 v:rLC = k unless v:rLC > k f Logical Clocks monotonically increase g

Safety and Progress for unstable Fwd state

MP2 v:Fwd^ :v:stable unless v:Fwd ^ v:stable f Unstable Fwd states must stabilize g
MP3 v:Fwd^ :v:stable 7! v:Fwd^ v:stable

f Unstable Fwd states always terminate to stable Fwd states g

Safety and Progress for unstable Cur state
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MP4 v:Cur ^:v:stable unless v:Cur ^ v:stable f Unstable Cur states must stabilize g
MP5 v:Cur ^:v:stable 7! v:Cur ^ v:stable

f Unstable Cur states always stabilize to stable Cur states g
MP6 v:Cur ^:v:stable ^ v:rLC = k unless v:Cur ^ v:stable ^ v:rLC > k

f Unstable Cur state must increase clock and stablize g
MP7 v:Cur ^:v:stable ^ v:rLC = k 7! v:Cur ^ v:stable ^ v:rLC > k

f Unstable Cur state always increases clock and stablizes g

Safety and Progress for Mig state

MP8 v:Mig ^ v:rLC = k unless (v:Fwd^ v:rLC > k) _ (v:Cur ^ :v:stable ^ v:rLC = k)
f Mig state must be followed by Fwd or unstable Cur state g

MP9 v:Mig ^ v:rLC = k 7! :v:Mig ^ v:rLC > k

f Mig state ends with an increment of the node's logical clock g

The properties MP0, MP1 specify that the resource timestamp and logical clocks at each node can
only increase. Properties MP2, MP3, MP4, MP5 specify that periods during which a node is unstable
(i.e. :v:stable holds) is �nite. Further, MP6 says that each time the resource arrives at a node, the node's
logical clock is increased. Property MP8 speci�es that a node in migration state must stay in migration
state until an update with higher timestamp or the resource arrives at the node. Property MP9 states
that a migration phase at a node always comes to an end, i.e. the node always receives a message with
a newer timestamp, or the resource migrates back to the same node. Thus, periods during which a node
is in migration state is always �nite. Further, MP9 states that after the migration period, the logical
clock at the node must increase. This must be so because either the update has a greater timestamp, or
the clock at the node is incremented if the resource arrives at the node. In general, the safety properties
prohibit transitions that are not present in the state transition diagram (Figure 1). The progress properties
correspond to the arcs in the transition diagram | they represent all the legal state transitions.

A Global Property of Node []Mobility De�ne predicate atq(m; v) as follows

atq(m; v)
def
= at(m; v) _m 2 v:rQ

Given that Node program satis�es the conditions U0{U4, and theMobility program satis�es J0 and identi�es
slot 0 in Node to be bound to, Node []Mobility program has the following global property:1.

GP1 at(m; v) ^m:type = Access 7! at(m;m:d) _ h9 i :: at(m; i) ^ i:Curi
_h9 j :: atq(m; j) ^ j:rLC > m:tsi

f Access Messages always �nd the resource, a new update, or are delivered to their destination g

Using Theorem 5, and GP1, we derive the following property for Inj (Node;Mobility):

at(m; v) ^m:type = Access 7! at(m;m:d) _ h9 i :: at(m; i) ^ i:Curi
_h9 j :: atq(m; j) ^ j:rLC > m:tsi _ h9 v :: :v:SlotCondition:0i

f Unless resource bounds are violated, the Mobility properties are preserved g

5 Conclusion

We have described an abstract form of programming interface for active networks. The interface de�nes
the interaction between a �xed, underlying node program and code which can be injected into the network.

1This proof of this property and some other properties of Node []Mobility are given in Appendix B
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The interface constrains the functionality of the injected program to certain points in the execution of the
underlying program. Using a formal model, we have shown how to reason about the correctness of the
network + injected program starting from properties proved of each in isolation. We have illustrated the
use of the techniques on a nontrivial example in UNITY dealing with mobility.

The UNITY notation is simple and easy to learn. This simplicity comes at a cost. There is no type
theory, for example, nor any form of variable scoping|these must be handled outside the formalism. Any
sequencing of statements must be handled explicitly by the programmer. On the other hand, UNITY
programs naturally promote maximum parallelism, and treat global properties essentially the same as local
ones. The UNITY syntax provides a powerful, yet simple means of encoding programs.

Our approach is designed to facilitate proofs that an active network's global behavior maintains certain
correctness properties provided the injected programs satisfy certain restrictions. In this paper, some of
these restrictions were syntactic (J0 and J1), but some were not (e.g. the hypotheses in several of the
Theorems). The problem of checking injected programs for suitability remains an interesting one.
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Appendix A: Overview of UNITY

The UNITY formalismwas introduced by Chandy and Misra in 1987 [1], and has proven useful for reasoning
rigorously about the correctness of distributed algorithms in a variety of contexts [4].

The Unity formalism consists of a program notation capable of representing any distributed algorithm, a
speci�cation notation for representing simple temporal properties (i.e. properties that express characteristics
of a program's behavior as it evolves over time), and a proof system, which allows one to prove assertions
of the form \P holds in F", where P is an expression in the program notation, and F is expressed in the
speci�cation notation. Such an assertion means that all possible computations of F have the characteristic
represented by the the temporal predicate P .

A program in UNITY is represented as a �nite set of concurrent assignment statements of the form:

�x := �e0 if b0
� �e1 if b1

� � �

� �ek if bk

where �x is a list of variables and each �ei is a list of expressions of the same length. the semantics are
that all the predicates bi are evaluated; if one is true the corresponding expressions on the right-hand side
are evaluated and the results are simultaneously assigned to the corresponding variables on the left-hand
side. [The bi are required to be mutually exclusive.] If no bi evaluates to true, the values of the variables on
the left-hand side of the statement remain unchanged, and the statement is said to be ine�ective.

Large concurrent assignment statements can also be represented using the k operator: the statement

hk i : 0 � i < 4 : xi := yi if bi

is equivalent to
x0; x1; x2; x3 := y0; y1; y2; y3 if b

The di�erent statements of a program are composed with the [] operator

x := y if b [] u := v if c

which can also be used as a quanti�er:

h[] i : i 2X : xi; yi := xf(x); yg(x)i

The above represents a program with as many statements as there are elements of X.
The execution model of a UNITY program has no explicit notion of control 
ow. The execution consists

of an in�nite number of steps, where at each step a statement is selected and executed. If the statement is
ine�ective, the step does not change the overall state of the program (i.e. the values of all the variables). The
model requires that each statement be selected in�nitely often, but o�ers no other guarantee on the schedul-
ing, i.e. there is no bound on the number of steps between executions of any particular statement. This
model obviously highlights the asynchrony between di�erent parts of a distributed or concurrent program.

The correctness properties of a UNITY program are partitioned into assertions about safety and progress
properties of a program. According to Lamport, safety properties ensure \bad things do not happen". Safety
properties constrain the permissible states the program can be in by preventing a state transition into an
invalid state. Informally, progress properties state that \good things do happen".

Safety Properties The fundamental safety property of UNITY programs is the unless property. It is a
binary relation over program state predicates and is de�ned for a program P as follows:

p unless q � h8 s : s in P : fp ^ :qg s fp _ qgi
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This means that if p is true at some point and q is not, then in all subsequent steps p remains true or q
becomes true. Thus, a program in state where p can only falsify p by transitioning through a state where q
holds. Consider the following example of an unless property:

x = k unless x > k

This property states that in all executions of the program, the value of the variable x never decreases, i.e.
x is monotonically increasing. Two important special cases of unless are stable and invariant, de�ned as
follows:

stablep � p unless false and invariantp � (initial condition) p) ^ stablep

Thus, a stable predicate remains true forever once it becomes true. An invariant is always true|all states
in the program always satisfy all invariants during any execution. Consider the example properties:

stablex > 0 and invariantx > 0

The �rst property states that once the value of variable x becomes positive, it will always remain positive.
If x were initially positive, then we can assert the second property | x is always positive in all states for
all executions of the program.

Progress Properties The most basic progress of UNITY programs are speci�ed in terms of the ensures
property, which for a given program P is de�ned as follows:

p ensures q � (p unless q ^ h9 s : s in P : fp ^ :qg s fqgi)

This if p is true in some state, then p remains true as long as q does not hold. Further, there is a statement
s that explicitly establishes q. Thus, once p becomes true, q must become true. The following is an example
of an ensures property:

x = k ensures x > k

which states that the value of x is non-decreasing and that x will increase. Thus, not only are there no
statements that decrease the value of x, but there is at least one statement that increases the value of x.
Almost all progress properties of UNITY programs are in terms of the leads-to(7!) operator. It is de�ned
as the transitive, disjunctive closure of the ensures relation. A program has the property p 7! q if and only
if this property can be derived by a �nite number of applications of the following inference rules:

p ensures q

p 7! q
;

p 7! r; r 7! q

p 7! q
; for any set W :

h8m : m 2W : p(m) 7! qi

h9m : m 2W : p(m)i 7! q
:

Thus, once p becomes true, q is or will become true. For example, the property

x = k 7! x > k

states that once a program once the value of x is equal to k, at a subsequent state, the value of x is guaranteed
to be greater than k.

Appendix B: Proofs of Properties of Node []Mobility

We show GP1:
at(m; v) ^m:type = Access 7! at(m;m:d) _ h9 i :: at(m; i) ^ i:Curi
_h9 j :: atq(m; j) ^ j:rLC > m:tsi

Proof:

Let p � at(m; v) ^m:type = Access ^m:ts = k.
Let q � at(m;m:d)_ h9 i :: at(m; i) ^ i:Curi _ h9 j :: atq(m; j) ^ j:rLC > ki.
Let a � at(m;m:d), b � h9 i :: at(m; i) ^ i:Curi, and c � h9 j :: atq(m; j) ^ j:rLC > ki.
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Thus, q � a _ b _ c.
Note that:

p � p ^ (v:Cur _ v:Mig _ v:Fwd)^ (v:rLC > k) _ (v:rLC = k) _ (v:rLC < k)

We have to show that each of the nine cases
p ^ v:Cur ^ v:rLC > k; p^ v:Mig ^ v:rLC > k; p^ v:Fwd ^ v:rLC > k etc. all lead-to q.
0. p ^ v:Cur ^ v:rLC � k ) b f v:Cur holds g
1. p ^ v:Cur ^ v:rLC < k ) b f v:Cur holds g
2. p ^ v:Cur) b f 0,1, Thus, all Cur states lead-to q g

3. p ^ v:Mig ^ (v:rLC > k)) c f v:rLC > k g

4. p ^ v:Fwd^ (v:rLC > k)) c f v:rLC > k g

Consider p ^ v:Mig ^ v:rLC = k:
5. p ^ v:Mig ^ v:rLC = k unless atq(m; v) ^ v:Mig ^ v:rLC = k f Program Text g
6. p ^ v:Mig ^ v:rLC = k ensures atq(m; v) ^ v:Mig ^ v:rLC = k f MA6 g

Note that:
7. atq(m; v) ^ v:Mig ^ v:rLC = k unless atq(m; v) ^ :v:Mig f Program Text g
8. v:Mig ^ v:rLC = k unless (v:Fwd ^ v:rLC > k) _ (v:Cur ^ v:rLC = k) f Program Text g
9. atq(m; v) ^ v:Mig ^ v:rLC = k unless (atq(m; v) ^ v:Fwd^ v:rLC > k)

_(atq(m; v) ^ v:Cur ^ :v:stable ^ v:rLC = k) f 7, 8, Conjunction g
10. v:Mig ^ v:rLC = k 7! (v:Cur ^ :v:stable ^ v:rLC = k) _ (v:Fwd^ v:rLC > k) f Proved below g

Thus, from 9, and 10
11. atq(m; v) ^ v:Mig ^ v:rLC = k 7! (atq(m; v) ^ v:Fwd^ v:rLC > k)

_(atq(m; v) ^ v:Cur ^ :v:stable ^ v:rLC = k) f 9, 10, PSP g

In each of the three ensuing cases:
12. atq(m; v) ^ v:Fwd ^ v:rLC > k) c f v:rLC > k g

13. atq(m; v) ^ v:Cur ^ :v:stable ^ v:rLC = k) b f v:Cur holds g
14. atq(m; v) ^ v:Mig ^ v:rLC = k 7! c _ b f 11, 12, 13, Implication g
Therefore:
15. p ^ v:Mig ^ v:rLC = k 7! c _ b f 6, 15, Transitivity g

Consider p ^ v:Mig ^ v:rLC < k:
16. p ^ v:Mig ^ v:rLC < k unless p ^ v:Fwd^ v:rLC = k f Program Text g
17. p ^ v:Mig ^ v:rLC < k ensures p ^ v:Fwd^ v:rLC = k f MA7 g

We will show that p ^ v:Fwd^ v:rLC = k 7! q next.
Consider p ^ v:Fwd^ v:rLC � k:
18. p ^ v:Fwd^ v:rLC � k � p ^ v:Fwd ^ v:rLC � k ^D(m) � 0

f D(m)
def
= �(i;m:d) if at(m; i) _m 2 i:outC[j] g

There are two cases, D(m) = 0, and D(m) > 0
19. p ^ v:Fwd^ v:rLC � k ^D(m) = 0) at(m;m:d) f Case I: D(m) = 0) at(m;m:d) g
20. p ^ v:Fwd^ v:rLC � k ^D(m) = l ^ l > 0

7! at(m; i) ^ (i:Fwd_ i:Mig _ i:Cur) ^D(m) < l

f Case II: D(m) > 0, Property of Node []Mobility and v:RouteTable g

Node i can now be in one of three states Cur; Fwd;Mig each of which lead-to q:
21. at(m; i) ^ i:Cur ^D(m) < l ) b f 2 g

Consider the Mig states:
22. at(m; i) ^ i:Mig ^D(m) < l � at(m; i) ^ i:Mig ^D(m) < l
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^(i:rLC > m:ts _ i:rLC = m:ts _ i:rLC < m:ts) f Excluded Middle g

23. at(m; i) ^ i:Mig ^D(m) < l ^ i:rLC = m:ts 7! c _ b f 15 g

24. at(m; i) ^ i:Mig ^D(m) < l ^ i:rLC > m:ts 7! c f 3 g

25. at(m; i) ^ i:Mig ^D(m) < l ^ i:rLC < m:ts 7! at(m; i) ^ i:Fwd^D(m) < l ^ i:rLC = m:ts f 17 g

And now the induction on the Fwd states:
26. at(m; i) ^ i:Fwd^D(m) < l ^ i:rLC > m:ts) c f 4 g

27. p ^ v:Fwd^ v:rLC � k ^D(m) = l 7! (p ^ v:Fwd^ v:rLC � k ^D(m) < l) _ (a _ b _ c)
f 19, 21, 23, 24, 25, 26 g

28. p ^ v:Fwd^ v:rLC � k 7! (a _ b _ c) f 27, Induction g
29. p ^ v:Mig ^ v:rLC < k 7! q f 29, 28, Transitivity g
Thus:
30. p 7! q f 3, 4, 2, 15,28,29 g

We now prove MP9:
v:rLC = k ^ v:Mig 7! v:rLC > k ^ :v:Mig

Proof:

0. v:Mig ^ v:rLC = k 7! h9 i :: i:Cur ^ :i:stable ^ res:ts = k ^ res:loc = vi f M2 g

Let len(q) be the number of messages in queue q,
and consider case when i = v. Let p � v:Cur ^ :v:rStable ^ res:ts = k ^ res:loc = v.
In this case, we have to show that resource arrival always increments the node's logical clock.
Before the clock increments, all the queued messages have to be forwarded.

1. v:Mig ^ v:rLC = k 7! p _ h9 i : i 6= v : i:Cur ^ :i:stable ^ res:ts = k ^ res:loc = vif i = v _ i 6= v g

2. p unless v:Cur ^ v:rStable ^ v:rLC > k f Program Text g
3. p � p ^ (v:rQ = ?_ v:rQ 6= ?) f Excluded Middle g
4. p ^ (v:rQ = ?) unless v:Cur ^ v:rStable ^ v:rLC > k f Program Text g
If v:rQ is empty, then just increment the clock : : :
5. p ^ (v:rQ = ?) ensures v:Cur ^ v:rStable ^ v:rLC > k f MA5 g

: : :else we have to empty the queue �rst.
6. p ^ v:rQ 6= ?^ len(v:rQ) = l unless (p ^ v:rQ 6= ?^ len(v:rQ) < l) _ (p ^ v:rQ = ?)

f Program Text g
7. p ^ v:rQ 6= ?^ len(v:rQ) = l ensures (p ^ v:rQ 6= ?^ len(v:rQ) < l) _ (p ^ v:rQ = ?)

f MA3 g

v:rQ always empties, and we are back to the �rst case:
8. p ^ v:rQ 6= ? 7! (p ^ v:rQ = ?) f 7, Induction g
9. p ^ v:rQ 6= ? 7! v:Cur ^ v:rStable ^ v:rLC > k f 8, 5, Transitivity g
10. v:Mig ^ v:rLC = k 7!

:v:Mig ^ v:rLC > k _ h9 i : i 6= v : i:Cur ^ :i:stable ^ res:ts = k ^ res:loc = vi

f v:Cur ^ v:stable) :v:Mig, 1, 9, Cancellation g

Now consider the case when i 6= v, and let r � i:Cur ^ :i:stable ^ res:ts = k ^ res:loc = v, and let
q � h9m0 : node(m0:s) = i ^ node(m0:d) = v^

m0:ts > k ^m0:loc = i ^m0:type = Update : m0 2 i:outC[i:RouteTable(m0:d)]i :
We again have to show that i:rQ empties which ensures q
: 11. r � r ^ (i:rQ = ?_ i:rQ 6= ?) f Excluded Middle g
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12. r ^ (i:rQ = ?) unless q f Program Text g
13. r ^ (i:rQ = ?) ensures q f MA4 g

14. r ^ i:rQ 6= ?^ len(i:rQ) = l unless (r ^ i:rQ 6= ?^ len(i:rQ) < l) _ (r ^ i:rQ = ?)
f Program Text g

15. r ^ i:rQ 6= ?^ len(v:rQ) = l ensures (r ^ i:rQ 6= ?^ len(i:rQ) < l) _ (r ^ i:rQ = ?)
f MA3 g

16. r ^ i:rQ 6= ? 7! (r ^ v:rQ = ?) f 15, Induction g
17. r ^ i:rQ 6= ? 7! q f 16, 13, Transitivity g
18. r 7! q f 13, 17, Completion g
19. q 7! at(m0; v) ^m0:ts > k f Property of Node g

Update reaches v:
20. r 7! at(m0; v) ^m0:ts > k f 18, 19, Transitivity g
21. v:rLC = k ^ v:Mig 7! (at(m0; v) ^m0:ts > k) _ :v:Mig ^ v:rLC > k f 20,10, Cancellation g
22. v:rLC = k ^ v:Mig 7! (at(m0; v) ^m0:ts > k ^ v:rLC = k ^ v:Mig)

_(v:Fwd ^ v:rLC > k) _ (v:Cur ^ :v:rStable ^ v:rLC = k) f 21, MP8, PSP g

23. v:Fwd ^ v:rLC > k) :v:Mig ^ v:rLC > k f v:Fwd) :v:Mig g

24. v:rLC = k ^ v:Mig 7! (at(m0; v) ^m0:ts > k ^ v:rLC = k ^ v:Mig) _ (:v:Mig ^ v:rLC > k)
f 22,23,MP7, Cancellation g

25. at(m0; v) ^m0:ts > k ^ v:rLC = k ^ v:Mig unless :v:Mig ^ v:rLC > k f Program Text g
26. at(m0; v) ^m0:ts > k ^ v:rLC = k ^ v:Mig ensures :v:Mig ^ v:rLC > k f MA7 g

27. v:Mig ^ v:rLC = k 7! :v:Mig ^ v:rLC > k f 24, 26, Cancellation g

We also establish:
v:Mig ^ v:rLC = k 7! (v:Cur ^ :v:stable ^ v:rLC = k) _ (v:Fwd ^ v:rLC > k)

which is needed for the proof of GP1.
Proof:

28. v:rLC = k ^ v:Mig 7! (at(m0; v) ^m0:ts > k ^ v:rLC = k ^ v:Mig)
_(v:Fwd ^ v:rLC > k) _ (v:Cur ^ :v:rStable ^ v:rLC = k) f 22 g

29. at(m0; v) ^m0:ts > k ^ v:rLC = k ^ v:Mig unless v:Fwd^ v:rLC > k f Program Text g
30. at(m0; v) ^m0:ts > k ^ v:rLC = k ^ v:Mig ensures v:Fwd^ v:rLC > k f MA7 g

31. v:Mig ^ v:rLC = k 7! (v:Cur ^ :v:stable ^ v:rLC = k) _ (v:Fwd^ v:rLC > k)
f 28, 30, Cancellation g
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