Active Networking and the End-to-End Argument

Samrat Bhattacharjee, Kenneth L. Calvert, Ellen W. Zegura*

Networking and Telecommunications Group
College of Computing

Georgia Institute of Technology, Atlanta, GA 30332-0280
{bobby,calvert,ewz}@cc.gatech.edu

Abstract

Active networking is the placement of wuser-
controllable computing functionality in the switching
nodes of a network. The end-to-end argument states
that functions should be placed “in” the network only
if they can be cost-effectively implemented there. We
argue that active networking is a natural consequence
of the end-to-end argument, because certain functions
can be most effectively implemented with information
that is only available inside the network. We propose
a performance model for quantifying the benefit of im-
plementing a particular functionality solely in the end
system versus tmplementing it through a combination
of end system and network support. We show how the
model applies to specific services, including congestion
control and reliable multicast.

1 Introduction

Discussions of the implementation of various func-
tions in a communication network often invoke the end-
to-end argument, an architectural principle that guides
the placement of functions within a distributed sys-
tem [1]. The end-to-end argument is often construed to
preclude the implementation of any kind of higher-level
function within a network. As such, it might seem that
active networks are the antithesis of the end-to-end ar-
gument. We claim, however, that the “activation” of
networks is a natural extension of this well-accepted de-
sign principle. In this paper, we argue the case for ac-
tive networks in view of the end-to-end argument. We
present a model that quantifies the performance ben-
efits of placing functionality in the network, and give
examples where those benefits are significant compared
to solutions based on a traditional passive network ser-
vice.

For the purposes of this discussion, “active network-
ing” refers to the placement of user-controllable com-

*This work was supported in part by NSF Careers Award
MIP-9502669.

puting and other resources in the communication net-
work, where they can be utilized by applications that
need those capabilities [2]. An active network supports
a user-network interface allowing the nodes of the net-
work to be programmed by the application (user) to
provide a desired functionality, such as routing. This
programming might be done on a per-packet basis (as
in the capsule approach of Tennenhouse and Wether-
all [3]) or through an out-of-band signaling mechanism
(e.g. injection of user-specific programming into the
switch, as in Switchware [4]). The level of programma-
bility might range from a Turing-complete program-
ming language to a set of predefined, user-selectable
functions whose behavior can be controlled through pa-
rameters. The important point is that with active net-
works, the network service can be tailored to the user’s
requirements. It is this aspect of active networks that
relates to the end-to-end argument.

The rest of this paper is organized as follows. In
the next section we review the end-to-end argument
and characterize situations where applications can ben-
efit from additional functionality in the nodes of the
network. In Section 3 we present a model that quan-
tifies the benefit to an application of network-based
functionality. Section 4 considers the benefits of net-
work support for reliable multicast transport. Section 5
shows how the model can be applied to various forms of
network-based support for congestion control. Finally,
Section 6 offers some concluding remarks.

2 The End-to-End Argument Revisited

The end-to-end argument “provides a rationale for
moving a function upward in a layered system closer to
the application that uses the function” [1]. According
to the argument, a computer network, as part of the
“lower layers” of a distributed system, should avoid at-
tempting to provide functions that can be better imple-
mented in the end systems, especially if some applica-
tions might not benefit from such functions at all. The

canonical example of such a function is reliable trans-
fer. The network can go to great lengths to protect
against and recover from losses in the network, but an
application that requires reliability will often have to
protect against other sources of error, so those efforts
may be redundant. Moreover, some applications will
not need the network-provided reliability, but would
have to pay for it anyway.

We identify the following principles as the key ideas
of the end-to-end argument as it applies to the place-
ment of functionality in networks:

e Some services require the knowledge and help of
the end-system-resident application or user to im-
plement, and so cannot be implemented entirely
within the network.

e If not all applications will make use of a service,
it should be implemented in such a way that only
those applications using it have to pay the price of
supporting it in the network.

e The amount of support for any given end-to-end
service in the network is an engineering tradeoff
between the performance seen by the application
and the cost of implementing the support.

We claim that these principles do not rule out sup-
port for higher-level functionality within the network.
Rather, they require that the interface to such func-
tionality be carefully designed; that costs and benefits
of such support be calculated; and that the “engineer-
ing tradeoff” be carefully evaluated. The goal of this
paper is to explore some of these tradeoffs in the spe-
cific context of active networking as described above.
A fundamental premise of this paper is the following:

Some services can best be supported or en-
hanced using information that is only avail-
able inside the network.

In other words, the network may have information that
is not available to the application, and the timely use of
that information can significantly enhance the service
seen by the application. Examples of information that
is first (or only) available to the nodes of the network
include:

e The time and place where congestion occurs.

e Global patterns of access to objects retrieved over
the network (e.g. Web pages). In particular, the
location of “hot spots”, or points in the network
where requests for objects are highly correlated in
time and space.

e The location of packet losses within multicast dis-
tribution trees.

On the other hand, applications may have informa-
tion that is needed by the network in order to fully
optimize performance. Examples of this type of infor-
mation include:

e The existence of dependencies among application
data units, e.g. some are useless if others are not
received.

e Variations in importance of data units, including
whether to retransmit if lost.

o Whether or not it is acceptable to service a request
using cached data.

Thus, to optimize performance, it is desirable to com-
bine application and network information.

Classically, the end-to-end argument views the net-
work as a monolithic entity that provides a single type
or quality of service to all users. For example, the de-
bate about reliable service assumed the network would
support a single paradigm for all users: either reliable
or best-effort transport. Active networks allow users
to increase the likelihood that the service offered by
the network will be useful to them, by providing an in-
terface that supports multiple (or programmable) ser-
vices.

There are costs associated with such a flexible inter-
face, and they affect all of the network’s users whether
they take advantage of active network support or not.
The (monetary) cost of providing the interface, though
likely to be significant, is paid once and can be amor-
tized over all users for a period of time. The perfor-
mance cost of using the interface should vary with ap-
plication; this is the end-to-end argument. For exam-
ple, applications that need only a best-effort datagram
delivery service should not suffer reduced performance
because of the increased flexibility of the interface. On
the other hand, any performance penalty for customiz-
ing network behavior (e.g. signalling overhead, or tak-
ing packets off the “fast path”) must be more than
offset by improved end-to-end performance delivered
to the ultimate users. These performance costs will be
determined largely by the design of the user-network
interface. While we believe it is possible to design an
interface consistent with these implications of the end-
to-end argument, presentation of such a design is be-
yond the scope of this paper. We therefore do not fur-
ther consider the interface-related performance costs of
an active network.

3 A Model for Service Location

In this section, we quantify the engineering trade-
off that must be made when deciding where to lo-
cate service implementation. Specifically, we develop a

generic model that gives the expected performance un-
der two design options. In the first option, the service
is achieved by implementation exclusively in the end-
systems. In the second option, the service is achieved
through a combination of implementation at the end-
systems and in the network. The equations that we
develop are implied, to an extent, by the text in the
Saltzer paper [1]. We demonstrate the model using the
reliable file transfer example from Saltzer.

3.1 Model Development

To be clear, we first state the assumptions that are
made by our model. Some of these assumptions are
relaxed in the refinements to the model described in
Section 3.3.

e There exist applications that have a need for the
service in question. The purpose of the model is
to evaluate options for the location of the imple-
mentation, not to comment on whether the service

should be offered.

e The implementation of the service in question can
be distributed in two ways: exclusively in the end-
systems, or in a combination of the end-systems
and the network. Two particular designs for the
implementation of the service are being compared:
Design X is exclusively an end-system design; De-
sign C' is a combined end-system and network de-
sign.

o The designs will be compared by evaluating the ez-
pected performance for each design. The complex
part of the analysis is encapsulated in the expected
performance variables (the 77s) of the model. This
will be evident when the model is applied to par-
ticular examples.

e The “network” is treated monolithically. If the ser-
vice is implemented in the network, then all net-
work nodes (switches and routers) are assumed to
cooperate.

e In the combined Design C, the network support
for the service is boolean, in the sense that it either
accomplishes the service or it does not. The pa-
rameter p, expresses the probability that the net-
work support accomplishes the service. In essence,
prn 18 a measure of the effectiveness of the network
support.

The parameters of the model are listed in Table 1.
The expected performance under Design C, T¢, is a
function of the other model parameters. We have two
possibilities: (1) the service is achieved by the network

Exclusively End-system (Design X)
Tx Expected performance

Combined End-system and Network (Design C)
Tc Expected performance
pn Pr{network support accomplishes service}
Tr Expected performance, end-system version
Tn Expected performance, network version

Table 1: Parameters of performance model

support or (2) the service is not achieved by the net-
work, and the end-system must provide the service.
Thus the expected performance is given by:

Tc = (1 _pn)TE +pnTN

3.2 Example: Reliable Data Transfer

Saltzer et al. motivate the end-to-end argument
with the example of point-to-point reliable data trans-
fer. We demonstrate our model on the reliable data
transfer example, though we simplify the details some-
what for clarity of exposition.

The premise is that data may be corrupted in various
ways, with sources of corruption both in the endsys-
tems and within the network. Two designs are pro-
posed. In Design X, the endsystems implement a
mechanism (e.g., checksum) to check whether the data
received is corrupted. If corruption is detected, the re-
ceiver requests a retransmission from the sender. In
Design C', the network implements some ability to de-
tect and correct corruption errors that are caused by
the network, while the data is en-route.

To use the model, we must supply the performance
parameters based on the application and the methods
for implementing functionality. For this example, we
use the expected transfer time as the performance met-
ric. For Design X, let tx denote the time for the re-
ceiver to request the data, the data to be sent through
the network, and the receiver to check the integrity of
the data. If the check reveals an error, a request will be
made to retransmit the data. This process will repeat
until the data is received without error. We assume
that the probability of an error on each transmission is
independent and given by probability p. Thus,

o0
E Pr{i transmissions }it x
i=1

tx Zi(l —p)p' Tt =tx/(1-p)

Tx

For Design C, let ¢ denote the time for the re-
ceiver to request the data, the data to be sent through
the network, and the receiver to check the integrity
of the data. We expect t¢ > tx, since in Design C
the network is doing some reliability checks while the
data is sent, thus adding time to the transfer. We will
say that the network “accomplishes reliable transfer”
if (1) there is no error in transmission or (2) there is
an error that can be corrected by the network version
of reliability. Let p denote the probability of an error
in transmission; let ¢ denote the probability that the
network can correct the error, given that there is an
error. Then,

pIy = (1-p+pgltc

The expected performance with the end-system ver-
sion covers the case when there is an error in the initial
transmission that the network cannot correct. At least
one retransmission is required; retransmissions will oc-
cur until there is either no error, or an error that the
network can correct. For a given retransmission, the
probability that it is successful is 1 — p + pq; the prob-
ability that it is not successful is p(1 — ¢). We assume
that each retransmission is independent. Then,

o0
te + Z Pr{i retransmissions }it ¢
i=1

te+te Y i(l—p+pg)(p(l—q)"

= te(l+ 1/_(1 —p+pq))

Tk

Combining the performance values,

Te = (1-p+pg)tc
+p(1 = q)tc(1+1/(1—p+ pg))

3.3 Refinements to the Model

The model makes several assumptions about the
combined Design C' that do not hold for every service
implementation and networking environment. For ex-
ample, the network support for a service may not be
boolean; the network may be able to accomplish some
useful portion of the service, with the end-system left
the task of completing the service. In this case, the
model must enumerate the possibilities for partial net-
work functionality and the corresponding performance.
The expected performance for Design C' will have the
form:

Ic = Z pilc,

where i indexes over all possible partial network func-
tionalities, p; denotes the probability that the network

accomplishes the particular partial functionality and
Tc; denotes the expected performance for this combi-
nation of network and end-system collaboration. The
basic model represents the special case of two “partial”
network functionalities: either completely accomplish-
ing the function or not accomplishing the function. By
similar methods, we can also relax the assumption that
the network is monolithic, to account for multi-node
networks, with possibly heterogeneous behavior at the
different nodes.

4 Example: Reliable Multicast

Reliable delivery of multicast data is an example
of an application that can potentially benefit (via en-
hanced performance) from network-based functional-
ity. The “traditional” IP multicast service hides from
its users the details of the routing topology and the
number and location of receivers [5]. For unreliable
multicast, this approach makes sense and allows scal-
ing to larger applications; however, there are inherent
problems in using this model when it is desired to de-
liver data to all receivers reliably.

In general, only a subset of receivers will correctly
receive any particular data unit, due to losses on some
links of the multicast routing tree; lost data units must
then be retransmitted or recovered in some other way.
Traditional point-to-point reliable transfer protocols do
not generalize well to point-to-multipoint, because they
require the sender to maintain per-receiver state to
keep track of who has received each data unit; this
limits scalability for obvious reasons. This has led
to various proposals for diluting the amount of state
required [6, 7]. For example, NACK-based protocols
reduce the amount of Sender state required, but in-
troduce the NACK-implosion problem, and result in
unnecessary retransmissions being sent to some or all
receivers.

A common approach is to spread the responsibil-
ity for multicast retransmission among the Receivers,
by constructing an explicit “tree” of receivers on top
of the network-level multicast service (e.g., [8]) In ef-
fect, this subdivides the multicast group into smaller
groups according to the parent-child relationships in
this tree. For such grouping to be efficient, out-of-band
information about the network topology is required so
that nodes that are “near” each other in the underly-
ing topology are grouped together. The point is that
the information needed for efficient retransmission of
lost data —namely the location of losses within the
network— is hidden by the IP multicast service inter-
face.

4.1 Applying the Model

It follows from the foregoing that a benefit (in the

form of reduced latency) should accrue from the place-

ment of buffering and retransmission functionality in
the network to support reliable multicast. We will ap-
ply the model of Section 3 to the performance (i.e. la-
tency) seen by a multicast Receiver in recovering from
a lost packet. With network support, when a packet is
lost, it is retransmitted from the first node upstream of
where the loss occurred. The request and the retrans-
mitted data thus travel the minimum possible distance.
In topology-unaware schemes, where retransmission is
always handled by end-system Receivers, the request
and response have to travel an additional distance to
reach an end-system supporting the recovery function.!

To quantify the performance benefit of network sup-
port for reliable multicast, we need to determine the
latency experienced by a Receiver between the time of
transmitting the request and the time of receiving the
retransmitted packet, with and without network sup-
port. In quantifying this latency, we make the following
simplifying assumptions:

e the latency is determined by the number of hops
traveled by the request and retransmitted packets;

e neither the retransmission request nor the retrans-
mitted packet are lost.

In Design X, only end-systems participate in the recov-
ery; the “active” Design C involves the end-systems as
well as the interior nodes of the network.

Note that in Design C', the network nodes have to
do more work to forward every packet transmitted by
the Sender, namely buffering a copy for some period of
time. This may tend to increase the end-to-end delay
seen by Receivers for packets that are not lost, com-
pared to Design X. This performance differential must
be taken into account (along with the probability of a
lost packet) when comparing the overall performance
of Design X and Design C'; we do not model it here,
however, as it depends strongly on the way each de-
sign is implemented. We do note that recent studies
of MBONE traffic show that the likelihood of any par-
ticular multicast packet being delivered correctly to all
receivers is surprisingly small, on the order of 20% [9].
4.2 Loss Recovery Approaches

When a multicast packet is lost in the network, we
refer to that portion of the multicast routing tree that
does not receive the packet as the loss tree. The router
at the root of this tree, where the loss occurred, is re-
ferred to as the loss node. In both Design X and Design

! Papadopoulos et al [7] have recently proposed an extension to
router functionality to support reliable multicast. Their proposal
stops short of placing the retransmission function in the router
nodes themselves, but rather offers a service requiring less state,
and allowing end nodes to handle the retransmission functions
more efficiently. The service permits packets to be efficiently
directed toward “nearby” receivers.

affected

nearby‘R

Figure 1: Stub and transit domains and distances

C, a Receiver noticing the loss sends a retransmission
request toward the Sender.? In Design C, the “active”
approach, this request stops when it reaches the first
node upstream of the loss tree; that node retransmits
the lost packet to the requesting Receiver, provided it
still has a buffered copy. 3 If the upstream node does
not have a buffered copy of the requested packet, it
forwards the request upstream toward the Sender.

In Design X, the end-system-only approach, the re-
quest message is directed —by unspecified means—
from the loss node to a “nearby” Receiver that is not
in the loss tree; that Receiver then retransmits the lost
packet to the affected Receiver.

4.3 Structure of Recovery Paths

To quantify the reduced recovery latency of Design
C, we model the Internet as a collection of routing do-
mains, each of which is a connected set of nodes such
that the path between two nodes in the same domain
does not include any node outside that domain. We
define two classes of routing domains: stub domains,
which carry only traffic originating from or destined for
some node in the domain; and transit domains, which
may carry traffic that does not originate or terminate
within the domain. A network node in a stub domain
is called a stub node, and a node in a transit domain
is a transit node. We make the (reasonable) assump-
tion that end-systems connect only to stub nodes, and
also that there is a single transit domain connecting
all stub domains. For the purposes of our model, the
path followed by a packet from a multicast Sender to
any Receiver consists of a sequence of one or more stub
nodes, followed by zero or more transit nodes, followed
by one or more stub nodes, as illustrated in Figure 1.

2We consider only a single Receiver, though in general more
than one Receiver is affected. Either design could incorporate
mechanisms to control the number of retransmission requests
originated from the loss tree.

3In either design, the retransmitted message might be either
unicast or multicast, depending on the protocol. The choice
should have no effect on the latency perceived by the requesting
Receiver, though it may affect other measures of performance of
a reliable multicast protocol, such as the number of redundant
messages.

We view each loss and recovery to be a random event
affecting a single Receiver, and quantify the expected
performance of each approach (T¢ and Tx) in terms
of the number of hops traversed by the request and re-
transmitted packet for a lost packet in each design. For
brevity of exposition, we make the following additional
assumptions:

e losses are uniformly distributed along the path
connecting the exit node from the Sender’s stub
domain and the entry node of the affected Re-
ceiver’s stub domain (a recent study found that
losses in this part of the path account for a sub-
stantial majority of the losses in the MBONE [9]);

e all stub domains are topologically similar and have
exactly one connection to the transit domain;

e the Sender’s stub domain contains no other Re-
ceivers;

e in Design C, if the first node upstream of a loss
does not have a copy of the requested packet, the
request goes all the way to the Sender.

We define the performance in terms of the following
quantities (refer to Figure 1): tg is the expected num-
ber of hops between the affected Receiver and the exit
from the Receiver’s stub domain; tf is the expected
number of hops between the entrance to the affected
Receiver’s stub domain and the loss node. For Design
X, we also have ty, the expected number of hops be-
tween the loss node and the entrance to the “nearby”
Receiver’s domain, tgs, the expected number of hops
between the nearby Receiver and its stub domain en-
trance, and tg, the expected number of hops between
the entrances to the affected and nearby Receivers’ stub
domains. (Note that reasonable routing topologies will
satisfy a triangle inequality, so that tg +ty > tr.)

Also, in Design C: t/ is the number of hops between
the Sender’s stub domain entrance and the loss node,
ts is the number of hops between the Sender and the
entrance to the Sender’s stub domain, and p,, is the
probability that the node upstream of the loss node has
a buffered copy of the lost message when the request
arrives.

Note that the t’s are all primarily determined by
the topology of the network and the location of the
loss. The distance to a nearby Receiver’s domain, g,
is determined by topology and the average “density” of
Receivers in the network, and thus should decrease as
multicast group size increases (assuming Receivers are
distributed throughout the network uniformly). The
probability p, can be made as large as desired, but only
by increasing the cost of implementing the protocol.

4.4 Performance

For Design X, the request travels from the affected
Receiver out of its stub domain, to the loss node, and
then to the nearby Receiver. The retransmitted packet
travels from the nearby Receiver out of its stub domain,
to the entrance to the affected Receiver’s stub, and then
to the affected Receiver. Thus:

Tx =tp+1ty +ty +2tp +tg +1g

For Design C', the request similarly travels from the
affected Receiver to the next node upstream from the
loss node, at which point we consider two cases. If the
upstream node has a copy of the packet (probability
PN), it retransmits the packet, which follows the same
path back, and the total number of hops is given by:

Ty = Q(tR—I—tL + 1)

Otherwise, the request travels all the way to the
Sender, and the retransmitted packet travels all the
way back to the affected Receiver, giving a hop count

of
Tg =2(tgr +tr + 1o + ts)

Thus we have:
Te =2pp(tr+tr + 1)+ 2(1 —pp)(tr+tr + 1o +1ts)

Assumptions made earlier about the topology and loss
distributions imply that tg = tg: = ts and tp = tr,
and we can rewrite:

Tx = 4+ (tr +ty +1tg)
Te = 4tp+4tr —2pp(tr+tr —1)

It follows that, to achieve T < Tx, we require

3t —ty —tg

n > o s
p Q(tR—}—tL—l)

Note that ¢ty in the numerator decreases with Receiver
density, so as groups get larger, p, must increase in
order for Design C' to remain superior.
4.5 Scaling

Design C' above requires that network nodes buffer
packets for each reliable multicast “flow”. A factor of
n scaleup in the number of flows supportable by the
network can be achieved simply by storing the infor-
mation required to recover at every mth node, instead
of every node. This can be accounted for in the model
through the parameter p,. There are now m + 1 cases:
m cases where some network node has a buffered copy
of the desired packet, and one case where no node has
a copy. Given that some node has a copy, with prob-
ability 1/m the first node upstream of the loss has it;

with probability 1/m the second node upstream has
it, etc. The expected increase in Ty is approximately
(m —1)/2, as long as m is small enough to guarantee
that some node has a copy before the request reaches
the Sender.

5 Example: Congestion Control

Another application that can potentially benefit
from a combination of end-system and network pro-
cessing is congestion control [10]. We claim that the
best-effort service provided to adaptive applications
can be enhanced by allowing applications some con-
trol over the way their packets are processed in net-
work switches when they encounter congestion. In-
stead of applying “one size fits all” congestion reduc-
tion techniques, mechanisms can be placed in the net-
work to allow packet processing —e.g. discarding or
transforming— to proceed according to advice supplied
by the application. The observation is that the appli-
cation knows how to adapt to congestion, while the
network knows when and where adaptation is needed.

In this section, we evaluate the performance of sev-
eral congestion control mechanisms, one that involves
no special network assistance to the application, and
three that are combined application and network mech-
anisms.

Generically, application specific congestion control
operates as follows:

Based on triggers that indicate congestion
control should take place, flow state — specif-
ically installed by the application — is exam-
ined for advice about how to reduce quantity
of data.

Advice about a particular flow is contained in the flow
packets themselves and may be stored at the node. We
assume the source attaches the application-specific ad-
vice to the packets in the flow.

5.1 Best-Effort MPEG Delivery

To illustrate application specific congestion con-
trol we focus on the use of congestion control ad-
vice to improve the best-effort service provided to
MPEG video.While we use MPEG as an example, the
techniques can easily be generalized to any applica-
tion which has application-layer units of various types,
and/or dependencies that span across units. The spe-
cific MPEG congestion control mechanisms that we ex-
amine are as follows:

The Partial Packet Discard (PPD) mechanism
is the exclusively end-system design, in the sense that
the network provides no special assistance to help im-
prove the best-effort delivery of MPEG. PPD defines
each IP packet to be a unit; datagrams are discarded
if they cannot be buffered in the output queue.

Congestion Generator

Active Router
4Mbps

Figure 2: Emulation topology

Three designs are considered that combine end-
system knowledge with network discarding policy. The
Static Priority Discard mechanism establishes a
generic two level priority within the data stream. For
MPEG streams, datagrams carrying I-frames are con-
sidered to be higher priority than all other datagrams.
The Frame Level Discard mechanism defines a unit
to be an MPEG frame. The advice given is to queue
a datagram if and only if its corresponding frame
can be queued in its entirety. The Group of Pic-
ture (GOP) Level Discard maintains state about
the type of frame discarded. In case an I-frame has
been discarded, we discard the corresponding P and
B frames as well. Thus, the GOP level discard mech-
anism is the application-specific case in which infor-
mation about both priority and dependencies amongst
application specific data units is available to the net-
work. Detailed descriptions of the mechanisms and the
experiments can be found in [10].

The experimental topology is shown in Figure 2.
The bandwidth on the links between the source and the
router, and between the congestion generator and the
router, are large enough so that these links are never
congested. The bandwidth on the link from the router
to the destination is 4 Mbps, thus any combination of
source and background traffic that exceeds 4 Mbps will
result in congestion into the destination. The conges-
tion generator continually replays packet traces with
average cumulative bandwidth of 2.1 Mbps.

To compare the end-system only design (PPD) to
the three combined designs (Static Priority Discard,
Frame Level Discard and GOP Level Discard) we must
define a reasonable performance metric. We consider
two metrics. The first is the fraction of data that is
received but cannot be used due to partial or not de-
codable frames. This useless data places a burden on
the receiver and the network. The second metric is
more oriented towards application performance. We
measure the average signal-to-noise ratio (SNR) for the
received stream; in cases when frames are dropped, we
use the last correctly decoded frame as a substitute for
the missing frame.

Fraction of Received Data Discarded at Receiver

0.8

| PPD —— |
? Frame Drop ——
° 0.6 [GOP Drop -=- |
3 Static Priority
8 05 3
| e
-5 04t |
g 03f |

0.2 |

oal X |
O | | "‘ ‘ 3 ‘ & L

1 1.5 2 2.5 3 - . . 5

Source Rate (Mbps)

Figure 3: Fraction of received data discarded

5.2 Use of Model: Discarded Data

Figure 3 shows the fraction of received data dis-
carded at the receiver as the transmission rate of the
source is varied. Remarkably, the GOP Level Dis-
card mechanism does not transmit any useless data.
When the source rate exceeds 2 Mbps, thus congest-
ing the link to the destination, the percentage of data
discarded under PPD increases rapidly, from 20% to
85%. Frame Level Discard also performs poorly, with
the percentage of data discarded reaching 50%. Inter-
estingly, the Static Priority scheme does relatively well
until the link to the destination is more severely loaded:
the percentage of data discarded is under 10% until the
source rate exceeds 3 Mbps.

We can take the data from Figure 3 and view it in
light of the model of Section 3. Let Dpj denote the
expected fraction of data discarded at the receiver un-
der the end-system only design (PPD) at a given source
rate of k Mbps. Let the performance of the end-system
design at a source rate of k£ Mbps be Tp . Define Tp
to be 1 — Dp . When the source rate is 2 Mbps, per-
formance of PPD Tp>=0.78, but as the source rate is
increased, the expected performance rapidly decreases.
When the source rate is increased to 4 Mbps, the per-
formance Tp 4 decreases to 0.17.

The other three mechanisms are examples in which
there is a varying degree of co-operation between the
end-systems and the network. These cases correspond
to three different design choices for the combined end-
system and network (Design C'). Let Dg i, Dr i, Da i
denote the expected fraction of data discarded at the
receiver under the Static Priority, Frame Level Discard,
and GOP Level Discard design choices, respectively at
a source rate of £ Mbps. We can define the performance
at source rate k Mbps of each of the three designs sim-
ilar to the performance in the PPD case, i.e.

E,k :1_Di,ka Z:{SaF7G}

SNR for Fixed Rate Sources (Original SNR: 25.6 dB)
26 T T T T T T T

PPD ——
- Frame Drop -+ |
22 L N GOP Drop -~ |
Static Priority -

24 ¥

o %

20
18
16 |
14 +
12 +

SNR at destination (dB)

10

1 1.5 2 2.5 3 3.5 4 4.5 5
Source Rate (Mbps)

Figure 4: SNR of received MPEG stream

Tg r attains optimal performance for all source rates.
The performance of Static Priority at a source rate of
2 Mbps T’s 5 is 0.94, but decreases to 0.78 as the source
rate increases to 4 Mbps. At a source rate of 2 Mbps,
the performance of Frame Level Discard is 0.86, and de-
creases to 0.56 as the source rate is increased to 4 Mbps.

5.3 Use of Model: SNR

The discarded data metric may not capture every-
thing of interest about the performance of the conges-
tion control mechanisms. In particular, a metric that
is more closely tied to application performance is likely
to be of interest. We compute the signal-to-noise ra-
tio (SNR) of the decoded stream at the receiver; in
cases when frames are dropped, we use the last cor-
rectly decoded frame as a substitute for the dropped
frame. The SNR is computed with respect to the orig-
inal uncompressed (YUV) files which were used to cre-
ate the transmitted MPEG stream.

Figure 4 shows the SNR of the received MPEG
stream as the source rate is varied. No data is lost
at a transmission rate of 1 Mbps in Figure 4 and as
such the SNR at the receiver is equal to the trans-
mitted SNR in all cases (25.6 dB). Under marginal
congestion (source rate 2 Mbps), there is higher sig-
nal degradation under PPD (21.1 dB) compared to all
other schemes (> 22 dB). However as the severity of
congestion increases, the PPD fares poorly (10.2 dB
at source rate of 4 Mbps). Both the Frame Level Dis-
card and the Static Priority Discard schemes perform
similarly (< 16.0 dB) under severe congestion (source
rate > 4 Mbps). The application specific GOP Level
Discard scheme performs best under similarly severe
congestion (SNR > 17.6 dB.)

5.4 Alternate End-system Design

Finally, we consider a more sophisticated scheme at
the end-systems to help achieve high quality service.
In particular, we add a simple form of end-to-end feed-

back to allow the source to adapt to the available band-
width. This is done with flow control over UDP as
follows. The flow control mechanism has three param-
eters: the feedback resolution F', the reaction rate R
and the source increment S. The mechanism operates
on the principles of linear increase and exponential de-
crease as follows. The receiver sends feedback whenever
it determines that at least F' frames have been trans-
mitted since it last sent feedback. This determination
is made by receiving the last frame in the set of F', or
receiving a frame from a later set (based on sequence
number). If all F' frames were received correctly, the
receiver sends an ACK, otherwise it sends a NACK.
For each NACK, the sender cuts its rate in half. Upon
receiving R consecutive ACKs, the sender increases its
rate by S.

In our experiments, the source rate is initialized to
1 Mbps, and constrained to less than 8 Mbps. The
source increment S is 2 Mbps, and the reaction rate R
is [40/F], where F is the feedback resolution and is
set to 8.

Under these conditions, the PPD and Static Priority
mechanisms waste 35% and 20% of the link bandwidth
respectively. The Frame Level Discards wastes 9% of
the link bandwidth by transmitting packets that are
useless at the receiver. Again, link utilization is opti-
mal under GOP Discard, and no data transmitted by
the GOP Level Discard mechanism is discarded at the
receiver.

With feedback, the PPD and Priority schemes pro-
vide a SNR of 17.1 dB and 17.5 dB respectively. The
Frame Level Discard is able to provide a SNR of 21.6
dB, while the GOP Level Discard mechanism provides
SNR above 22 dB.

6 Concluding Remarks

In this paper, we have argued that active networking
—in particular the provision of a generic service inter-
face that can be programmed and customized by indi-
vidual users— is consistent with, and even suggested
by, the end-to-end argument. We have enumerated the
costs associated with providing such a generic active
networking interface, and presented a model for quan-
tifying performance gains using active networking tech-
niques. We have shown how the model can be applied
with two services, reliable multicast and application-
specific congestion control. In both cases, the active
networking approach utilizes information that is only
available inside the network, and outperforms the end-
to-end solutions.

As future work, we are considering extensions to
model that will relax some of the assumptions of the
original model, and quantifying the benefits to other
applications (like self-organizing network caching) due

to active networking.

References

[1] H. Saltzer, D. P. Reed, and D. Clark, “End-to-end
arguments in system design,” ACM Transactions on
Computing Systems, vol. 2, no. 4, 1984.

[2] D. Tennenhouse, J. Smith, and G. M. W. Sincoskie,
D. Wetherall, “A survey of active network research,”
IFEE Communications Magazine, vol. 35, no. 1, 1997.

[3] D. L. Tennenhouse and D. J. Wetherall, “Towards an
active network architecture,” in Multimedia Comput-
ing and Networking ’96, January 1996.

[4] J. Smith, “Switchware: Accelerating network evolu-
tion,” Tech. Rep. MS-CIS-96-38, CIS Dept., University
of Pennsylvania, 1996.

[5] T. Pusateri, “Distance Vector Multicast Routing Pro-
tocol,” Internet Draft, Internet Engineering Task
Force, 1997. Work in progress.

[6] J. C. Lin and S. Paul, “RMTP: a reliable multicast
transport protocol,” in Proceedings of Infocom, Mar.
1996.

[7] C. Papadopoulos, G. Parulkar, and G. Varghese, “An
error control scheme for large-scale multicast applica-
tions.” Available at http://dworkin.wustl.edu/ chris-
tos/PostScriptDocs/current.ps.Z.

[8] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang, “Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing,” in

SIGCOMM, (Cambridge, Massachusetts), Sept. 1995.
[9] M. Yajnik, J. Kurose, and D. Towsley, “Correlation in

the MBone multicast network,” in /EEFE Global Inter-
net Conference, (London), November 1996.

[10] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura,
“An Architecture for Active Networking,” in Proceed-
ings of High Performance Networking 97, 1997.

