Congestion-Control and Caching in CANES

Samrat Bhattacharjee Ken Calvert Ellen Zegura

Networking and Telecommunications Group Georgia Institute of Technology Atlanta, Georgia, USA College of Computing

http://www.cc.gatech.edu/projects/canes

Sponsors: DARPA, NSF

Application: Congestion Control

Claims:

- service and dynamically adjust rate. There will always be applications that prefer to use best-effort
- Sender adaptation model has worked well in Internet.
- Sender adaptation has well known challenges.

while network knows when to adapt. **Observation:** Application knows how to adapt to congestion,

Application-specific Congestion Control

Operation:

reduce quantity of data. take place, flow state is examined for advice about how to Based on triggers that indicate congestion control should

Ways to reduce quantity of data:

- Compress
- Transform
- Discard

An Example: MPEG

Structure of frame sequence:

Dependencies amonst MPEG Frames

Key features:

- Application-layer units, of several types
- Dependencies

Application-specific Policies for MPEG

Trigger Policies:

Invoke when arriving packet does not fit.

Discard Policies:

- Partial Packet Discard (PPD): Tail-drop IP packets
- Static Priority: Impose static priority on packets. (priority I > priority P > priority B)
- cannot be accomodated. GOP Discard: Discard entire Group of Pictures if I-frame

Figure 1: I-frames received

Figure 2: Wasted bytes at receiver