Congestion Control and Caching in CANES*

Samrat Bhattacharjee, Kenneth L. Calvert, Ellen W. Zegura
Networking and Telecommunications Group, College of Computing
Georgia Institute of Technology, Atlanta, GA 30332
{bobby,calvert,ewz}Qcc.gatech.edu

Abstract

Active networks provide a meta-level interface that
can be programmed to customize the network’s behav-
tor on a per-user basis. In this paper, we present
some applications of active networking developed by
the CANES active networking research group at Geor-
gta Tech.

1 Introduction

Active networks provide a programmable platform
on which network services can be defined or altered by
injecting code or other information into the nodes of
the network. With active networking, the network is
no longer viewed as a passive mover of bits, but rather
as a more general computation engine: information
injected into the network may be modified, stored, or
redirected as it is being transported [1]. Active net-
works support dynamic (i.e., on-the-fly) control of the
network’s behavior. Such dynamic control is poten-
tially useful on multiple levels.

On the global level, such changes are motivated by
the need to reduce the time required to develop and
deploy new network services. The shared infrastruc-
ture of the network presently evolves at a much slower
rate than other computing technology. For example,
the basic concepts and algorithms of IP multicast have
been known for a decade, but it is still not a “stan-
dard” service of the network infrastructure, in spite of
its demonstrated utility.

On the other hand, local control of network behav-
ior could enable users to create services tailored to
their particular applications. While the traditional
interface to the network service hides many details
(e.g., topology) of the underlying network from the
user for the sake of simplicity and scalability, active
networks offer a more general interface. This allows
network knowledge —such as the impending onset of
congestion— to come together with application knowl-
edge —such as the semantics of data units and their
interdependencies— in a timely way, improving the
overall utility of the service to the user. Obviously,

*This work was supported by DARPA under contract num-
ber under contract number N66001-97-C-8512. The work of
Ellen W. Zegura was supported in part by NSF Careers Award
MIP-9502669. This summarizes work originally appearing in
HPN’97, and in Infocom’98

such a capability opens up many exciting possibilities.
Active networks can utilize information that is only
available inside the network [2]. In general, applica-
tions that can benefit from such knowledge permit in-
novative active networking solutions. In this paper, we
present a survey of applications being investigated by
the canEs (Composable Active Network Elements!)
project at Georgia Tech., that benefit from active net-
working. The applications that we present in detail
are (i) congestion control, and (ii) caching in wide
area networks. During congestion, the network knows
where the congestion occurs. However, the source of
the data usually knows best what to do with its data if
it encounters congestion. In Section 2, we show how,
using active networking, this network and end-system
knowledge can be brought together to form effective
application-specific congestion control schemes. Sec-
tion 3 i1s a survey of our work on wide-area caches,
and how active networking can be used to reduce ac-
cess latencies in a wide-area network using relatively
small caches. We present a summary of our results in
Section 4.

2 Application-Specific Congestion

Control

Despite advances in techniques to provide hard
guarantees on quality of service, there will always be
applications that prefer to use a best-effort service.
These applications will dynamically adapt their rate
to match available network bandwidth, as opposed to
reserving bandwidth in advance. This expectation is
based on the fact that the network will at times re-
ject requests for reserved bandwidth and applications
will have to use a non-reserved service or go away.
A guaranteed service is also likely to be more expen-
sive. Further, the recent advances in understanding
the self-similar nature of traffic [3, 4, 5] indicate that
effective congestion control is likely to require longer
time scale methods (e.g., source adaptation and ad-
mission control) rather than shorter time scale meth-
ods (e.g., adding more buffering).

At the same time, however, it must be noted that
the sender-adaptation model [6], which has worked so
well in the Internet, presents well-known challenges.
The first is the time interval required for the sender to

lhttp://www.cc.gatech.edu/projects/canes

detect congestion, adapt to bring losses under control,
and have the controlled-loss data propagate to the re-
ceiver. During this interval, the receiver experiences
uncontrolled loss, resulting in a reduction in quality
of service that “magnifies” the actual bandwidth re-
duction. (For example, if a portion of each of several
application data units is lost, each entire data unit
may become useless to the receiver.) As transmission
and application bandwidths increase, this problem is
exacerbated because propagation delays remain con-
stant.

The other well-known challenge of sender adapta-
tion is detecting an increase in available bandwidth.
This problem, which 1s worse for continuous-media
applications, arises in traditional best-effort networks
because loss i1s the only mechanism for determining
available bandwidth. Thus, for example, if a sender
adapts to congestion by changing to a lossier encod-
ing, it must detect the easing of congestion by periodi-
cally reducing compression and waiting to see whether
losses ensue. In the case of long-lived congestion, this
dooms the receiver to periodic episodes of uncontrolled
loss.

We claim that the best-effort service provided to
adaptive applications can be enhanced by allowing ap-
plications some control over the way their packets are
processed in network switches when they encounter
congestion. Instead of applying “one size fits all”
congestion reduction techniques, mechanisms can be
placed in the network to allow packet processing —e.g.
discarding or transforming— to proceed according to
advice supplied by the application. The observation
is that the application knows how to adapt to conges-
tion, while the network knows when and where adap-
tation is needed. In essence, the adaptation that the
sender would have applied can be performed at the
point of congestion. This solves both of the problems
noted above.

The approach we propose allows for variation in the
treatment among the packets of a single flow. Whereas
the “best-effort” service of IP treats all datagrams uni-
formly, and other proposals for enhanced services al-
low for discrimination between flows, we consider the
benefits of distinctions among the different packets of
a flow. Such a capability helps applications such as
MPEG [7], which may not require total reliability but
which benefit from “better effort” by the network on
behalf of certain data units.

2.1 Operating Model

A flow, for our purposes, 1s a sequence of pack-
ets all having the same source and destination, from
the point of view of a node somewhere in the net-
work. Thus a flow might consist of packets traveling
between a single pair of endpoints, or it might be the
aggregation of a set of lower-level flows. We assume
that a flow is identified by a label of some kind in the
network protocol header.

Generically, programmable congestion control oper-

ates as follows: Based on triggers that indicate conges-
tion control should take place, flow state is examined
for advice about how to reduce quantity of data.

The important components of this generic model
are the triggers responsible for initiating congestion
control, the flow state that contains the specific ad-
vice for this flow, and the reduction techniques defined
by the network and made available to the users. An
important feature of this model is its consistency with
traditional best-effort service. That is, a flow provides
advice about what to do with its data. The network
node is not required to take the advice, and may apply
generic bandwidth reduction techniques.

Such transformations will be application-specific
and computationally complex (not to mention the sig-
nificant issues they raise regarding interaction with
end-to-end mechanisms such as error detection and
sequence numbering). We therefore focus on the spe-
cial case of intelligent discard of data. Using a natural
extension of packet-level discard [8], we allow applica-
tions to define units based on application semantics,
with aim of discarding the entire unit if any portion
must be discarded. It should be noted that for this
scheme to be most effective, buffering is required to
collect application data units to ensure that the “tail”
will not be dropped. Further, the end-to-end reliabil-
ity mechanisms (if any) affect the optimal definition of
a unit. The most benefit derives from dropping units
that are equivalent to the reliable retransmission units;
dropping a unit that is smaller or larger may result in
unnecessary retransmission.

Given that bandwidth reduction will occur by dis-
carding units, a question arises as to which unit
(within a flow) to discard. In the most simple case,
there 1s no choice: when the congestion indication trig-
ger occurs, a fixed unit (typically the one currently
being processed) is subject to discard. More efficient
network behavior i1s possible, however, if we expand
the set of data from which we choose to discard. We
consider congestion control advice that indicates how
to make such a choice. One can think of this advice as
indicating priority or some other policy by which to
discriminate across data in the same flow. Making use
of this advice clearly requires that the network node
have access to a collection of data within a single flow.
Thus, these mechanisms will involve storing and ma-
nipulating flow data before it leaves the node, e.g.,
while sitting in a per-flow queue from which packets
are periodically selected for output by a scheduling
mechanism.

2.2 Example Application and Mecha-
nisms

To illustrate specific mechanisms and evaluate per-
formance, we focus on the use of congestion control
advice to improve the best-effort service provided to
MPEG. For our purposes, the important feature of
an MPEG stream is that it consists of a sequence of
frames of three types: I, P and B. Coding dependen-

Video
Source JN/25 Kbps

Variable

Active
Router 2 Mpbs

Figure 1: Emulation topology

Traffic

cies exist between the frames, causing P and B-frames
to possibly require other frames in order to be prop-
erly decoded. Each I-frame plus the following P and B
frames forms a group of pictures (GOP), which can be
decoded independently of the other frames. The spe-
cific congestion control mechanisms we evaluate are as
follows:

The Partial Packet Discard mechanism is for
baseline comparisons; it defines each IP packet to be a
unit. Packets are discarded if they cannot be buffered
in the output queue.

The Static Priority mechanism is able to distin-
guish packets carrying I-frames (I-packets) from other
packets, and upon congestion, discards all other P-
and B-packets in its queue before discarding an I-
packet. Thus, this scheme provides static total pri-
ority to I-packets.

The active mechanism we consider identifies de-
pendencies between units. Our Group of Picture
(GOP) Level Discard maintains state about the
type of frame discarded. In case an I frame has
been discarded, we discard the corresponding P and
B frames as well. Thus, the GOP discard recognizes
both the priority of each packet and the application-
level frame boundaries.

2.3 Results

Experimental Setup The experimental topology
is shown in Figure 1. The “video source” source gen-
erated MPEG traffic at a given rate, and the “back.
traffic” source generates trace driven background traf-
fic at specified rates. The bandwidth on the link from
the active router to the destination is constrained to
2 Mbps; thus any combination of source and back-
ground traffic that exceeds 2 Mbps will result in con-
gestion into the destination. In this experiment, the
active router had a 8K total buffer.

In this experiment, the source generates a 30
frames-per-second MPEG stream of average rate 725
Kbps. We vary the average rate at which the back-
ground traffic is generated from 1 Mbps to 2Mbps.

In order to evaluate the application-specific conges-
tion control schemes, we consider two metrics.

e Fraction of I Frames received. The fraction
of I frames that are received provide a good mea-
sure of the quality of the resultant MPEG stream.
As our results have shown, this easily measured

Frac. of rcvd. data discarded, 725 Kbps Src, 2Mpbs Bottleneck
9 T T T T

. . .
08
° i
8
= 0.7 A 1
S e
2 i
o . .7 4
S 08
] i
© A
S o5t .
g
T 04r =]
o e Bz
5 03r U g
B 02§ GOP Drop —— 1
E Static Priority -+
01l PPD -e- i
R R R R R R R

0
1000 1100 1200 1260 1300 1400 1500 1700 2000
Rate of Background Traffic (Kbps)

Figure 2: Fraction of received data discarded

metric is a good approximation of the actual SNR
of a stream [9].

e Fraction of bytes that were eventually dis-
carded at the receiver. Under congestion, it is
possible for partial MPEG frames to be received
since part of the frame that was being carried in
another IP packet was discarded. Also, due to
the inter-dependent frame structure of MPEG,
frames can only be decoded if all other frames
that they depend on have also been received. We
measure the fraction of data that is received but
cannot be used due to incomplete frames, or miss-
ing related frames.

Fraction of Received Data Discarded Figure 2
shows that as the average background traffic rate is
increased, for the Static Priority and PPD schemes
the amount of useless data received increases. Under
heavy congestion, nearly 90% of the data received is
discarded. Note that 30-40% of the received data is
discarded by these non-active mechanisms when the
background traffic varies between average rates 1200—
1300 Kbps. This range of background traffic corre-
sponds to the case when the the average incoming traf-
fic rate at the router is about 96-101% of the outgoing
link capacity.

Not only does the data discarded at the receiver re-
sult in the inevitable poor quality of the received video
stream, it also results in a large fraction the channel
allocated to the receiver being effectively wasted. The
active mechanism (GOP discard) achieves 100% chan-
nel utilization — none of the data received is discarded
regardless of the rate of the background traffic.

I-frames received Figure 3 shows the fraction of
I-frames sent that are received without error at the
receiver. As the background traffic rate increases, the
fraction of I-frames received drops steeply for the non-
active mechanisms (Static Priority and PPD). The
fraction of I-frames received under the active mecha-
nism (GOP) also decreases, but the degradation is far

Frac. of I-Frames rcvd., 725 Kbps Src, 2Mpbs Bottleneck

0.9 r 1
0.8 }:\,\\W\»]

°
[
=
@ - T
b 0.7 SR GOP Drop ——
> T, Static Priority -+
g 06 L PPD -&-
S .
X 0.5 | =,
S o
s o4y
3]
©
[03 r
0.2

01
1000 1100 1200 1260 1300 1400 1500 1700 2000
Rate of Background Traffic (Kbps)

Figure 3: Fraction of I-frames received

more graceful. If we consider the background rates be-
tween 12001300 Kbps (96-101% of outgoing channel
capacity), the non-active mechanisms deliver between
65—-75% of I-frames. Under similar background traffic
rates, the active mechanism delivers 94-98% of all the
I-frames.

More results, including multi-hop scenarios, more
active mechanisms, destination feedback, and detailed
evaluation of individual streams can be found in [9].

3 Self-Organizing Wide-Area Caches

Traditional approaches to network caching place
large caches at specific points in the network. In con-
trast, we consider networks in which relatively small
caches are placed at every node. As a response mes-
sage moves through the network, each node decides
whether or not to store the object. Effective use of
a large number of small caches is a non-trivial prob-
lem: unless they are effectively organized, only a small
number of unique items will be cached (as the caches
are much smaller), but these cached items will be
replicated at many locations throughout the network.
Thus, accesses to the few cached objects will exhibit
low latencies, but overall average latency will not de-
crease appreciably. However, if objects are cached too
sparsely, then the latency again does not decrease and
caching provides little benefit.

In this section, we show how such small caches can
be organized using “active” schemes, and present sim-
ulation results of their performance in comparison to
existing caching schemes.

3.1 Self-Organizing Caches

We describe our self-organizing schemes as if ev-
ery node of the network caches objects, but all that
is required is that caches be reasonably uniformly dis-
tributed. Thus, these schemes obviate the need to
decide where to place caches which can be a critical
decision for traditional caching mechanisms.

In what follows, the network is considered to be a
collection of domains, each of which is represented as
a graph of switching nodes connected by links. Do-
mains are of two types, transit, which (as their name
implies) carry transit traffic, and stub, through which

only packets addressed to or from some node in the do-
main are carried. The graph models used in our sim-
ulations are constructed using the GT-ITM Internet
topology modeling package [10]. These graph models
ensure that the paths along which packets travel in the
simulations have the characteristics that (i) the path
connecting two nodes in the same domain stays en-
tirely within that domain, and (ii) the shortest path
connecting node u in stub domain U to node v in
another stub domain V' goes from U through one or
more transit domains to V', and does not pass through
any other stub domains. Note that “nodes” in these
models represent routers, and end systems are not
explicitly modeled. Thus references to “servers” or
“server nodes” should be interpreted as meaning nodes
to which one or more servers are connected.

We assume an application in which clients request
objects from servers located throughout the network.
Each object 1s assumed to have a globally unique iden-
tifier (e.g. a hash function of a URL or message body),
and to fit in a single “message”. FEach transaction
is 1nitiated by a request message sent from a client
toward a server, containing the ID of one requested
object. The request message travels through the net-
work until it reaches a node where the requested ob-
ject 1s stored, which may be a cache or the server itself.
A response message containing the object then trav-
els from the server (or cache) back to the originating
client, completing the transaction. For simplicity, we
assume messages are never lost. This simple model
ignores the problem of end-to-end transfer of objects
too large to fit in a single message. However, it is ad-
equate for our purposes, namely comparison of active
caching methods with traditional ones.

Our goal is to have nodes make local decisions
about which objects they place in their (small) caches,
in such a way that resources are used effectively over-
all. In particular, we wish to avoid having the same
(few) objects cached at most of the nodes of the net-
work. We describe two related approaches.

Modulo Caching. To ensure that cached objects
are distributed through the network, we introduce
a distance measure called cache radius, measured in
transmission hops. The caching policy uses the radius
measure as follows: on the path from the server (or
cache) to the requesting client, an item is cached at
nodes that are the cache radius apart. Thus, an ob-
ject ends up being distributed in concentric “rings”
centered on the server where it resides; the rings are
separated by a number of hops equal to the cache ra-
dius. The radius i1s a parameter of the policy; it might
be set globally, on a per-object basis, or even locally in
different parts of the network. (Our simulation results
assume a common global cache radius, equal to 3.)
The mechanism used to implement this policy lo-
cally at each node is a simple modulus. The response
message contains a hop count that is initially set to the

object identifier modulo the radius; the count is incre-
mented by each node through which the packet passes.
When the incremented count modulo the cache radius
equals zero, the object 1s cached at that node.

Lookaround. Network caches store relatively large
objects compared to the amount of space required to
store the location of an item within the network. For
example, an object in a network cache can be several
thousand bytes, while its location could be an IP ad-
dress (4 bytes). This fact can be exploited by having a
self-organizing cache dedicate some of its cache space
to store locations of (nearby) items.

Caching nodes keep a periodically-updated list of
items cached at neighbors. Logically, each node’s
cache is divided into “levels”: level zero contains ob-
jects cached locally. Level one contains the locations of
objects cached at nodes one hop away, level two con-
tains locations of objects cached at nodes two hops
away, etc. When a request message is processed, the
levels are searched in sequence beginning with zero; if
a hit 1s detected in a nearby cache, the request is sim-
ply re-routed to that node (source and destination ad-
dresses are not changed). If the information about the
neighbor’s cache turns out to be incorrect, the neigh-
bor simply forwards the datagram toward the destina-
tion. Thus, the mechanism is fail-safe and backward
compatible: a mix of active and non-active nodes may
exist in the network, and the active cache functions
may fail at any time and fall back on the regular for-
warding functions. (In our simulations, we constrain
the lookaround to nodes in the same domain.)

The number of levels of adjacent caching main-
tained and checked in this lookaround algorithm be-
comes a parameter of the policy. With this ap-
proach, even very small caches can look like “vir-
tual” large caches. We refer to this extension of the
modulo caching scheme as Modulo Caching with
Lookaround.

3.2 Traditional Mechanisms

Our simulations compare the above self-organizing
caching schemes to “traditional” caching schemes, in
which each cache attempts to store each (popular) ob-
ject passing through it, without any global coordina-
tion beyond the placement of the cache within the
network. We consider the following placement strate-
gies:

Cache at Transit Nodes (“Transit-Only”).
Transit nodes have to be traversed for every non-
local stub domain access; a large fraction of paths in
the network have to go through transit routers. This
ubiquity of transit nodes in network paths make them
prime candidates for caches.

Cache at Stub Nodes Connected to Transit
Nodes (“SCT”). Stub nodes connected to transit

nodes have to be traversed in order to access the tran-
sit network. Thus, these stub nodes form good loca-
tions for network caches.

Cache at Every Node (“No AN”). We also con-
sider an approach in which caches are located in every
node (like the self-organizing schemes), but without
any coordinating mechanisms enabled. This case cor-

responds to a “null” active function in an active net-
work. We refer to it as “INo AN”.

3.3 Caching Results

We compare the performance of traditional and
self-organizing techniques for wide-area caching using
a locally developed discrete event network simulator
called AN-Sim. AN-Sim simulates an active network
as described in [9], and allows for realistic models of
the network topology.

We simulated many networks that differ in num-
ber of nodes, diameter, average node degree, ratio of
transit nodes to stub nodes, etc. For the results that
follow, a 1500 node graph was used. It had 60 tran-
sit nodes, 1440 stub nodes, and average degree 3.71
Each stub node is assumed to connect to one server,
thus each graph has 1440 servers. A subset of the
servers, chosen uniformly at random, are designated
to be popular servers. The number of popular servers
is nominally 300. (One experiment explores the effect
of varying the number of popular servers.) There are
4 billion (23?) unique objects in each simulation, the
vast majority of which are not accessed. Each object is
associated with a particular server, thus each server’s
content is unique. A subset of objects at each popular
server is designated to be popular. (Unpopular servers
have only unpopular items.) The number of popular
objects is fixed at 48 per popular server (for a nominal
total number of popular objects of 14400.)

To decide upon a query, first a client is chosen.
The client picks a server, then picks an object at the
server. The access patterns governing the choice of
client, server and object at a server are described be-
low. Every stub node 1s assumed to connect to one
client. We simulate several different access patterns.
In the uniform access pattern, a client 1s chosen at ran-
dom. Then, a server is chosen using a Zipf distribu-
tion: the popular servers are chosen with a probabil-
ity 1 — €. All other client requests go to an unpopular
server, chosen at random. If a popular server is se-
lected, then a popular object at that server is selected
95% of the time. The remaining 5% of the accesses to
a popular server select from the unpopular objects. If
an unpopular server is selected, then a random object
is selected.

In the correlated access pattern, accesses are not in-
dependent, but rather may involve the same client and
server pairs. In the correlated access pattern, there are
two types of accesses: initial accesses and dependent
accesses. An initial access is generated using the uni-
form access pattern described above. Initial accesses

are separated in simulation time using an initial ac-
cess inter-arrival time distribution. With a fixed cor-
relation probability, an initial access is the “anchor”
for a train of future dependent accesses that are in-
terspersed in time with the initial access generation
process. A train has an average length of 16 accesses;
the time of each future dependent access is determined
by an offset distribution from the time of the anchor
access. A dependent access has the same client and
server as the anchor access. With a fixed probability,
the item selected in a dependent access is the same as
the previous item in the train. Otherwise, the item is
selected according to the uniform access pattern de-
scribed above.

Performance Metrics We use the following met-
rics to evaluate the performance of network caches.

e Round trip length (RTL). We measure the
number of hops traversed by the packets involved
in a transaction. This is perhaps the simplest
and most “true” measure of network cache per-
formance.

¢ Fraction of queries that generate cache
hits. After an initial startup period, the cache
performance stabilizes. We measure the fraction
of queries that are serviced by cache hits. Note
that queries served by caches not only reduce ac-
cess latencies and conserve bandwidth, but also
reduce server load.

In the rest of this section, we present details of a small
cross section of our experiments.

Server Dist 0.8, Repeat Prob 0.1, Modulo Radius 3
11.5 g T T T T T T

No AN ——
Stub connected to Transit -+--
Transit Only -8--7
Modulo Caching ~x
Modulo w/ Lookaround ---

11 305

-~ 105 |5k ED ...__Modulo w/ 2 hop Lookaround -=--|
3 N S
E ' Ko L
g 10 ¢ RN
2 - X
= a, :
o 95 ’
5 h *
B .
ol]
=R
85| NocCache RTL=13.23 e

5 10 15 20 25 30 35 40 45
Nominal Cache Size

Figure 4: Latency with Low Access Correlation

Variation in Cache Size We varied the nominal
cache size from 4 to 48 cache slots per interface. The
Modulo and No-AN methods use nominal cache size,
as these methods cache at all nodes. The correspond-
ing numbers for Transit-Only caching are 33 to 397
slots per interface, and for Stubs-connected-to-Transit

(SCT) caching, 15 to 188 slots/interface. All of the

caching mechanisms, except SCT, show a smooth de-
crease in number of hops traversed per round trip as
the cache size is increased.

In Figure 4, the probability of repeating an accesses
within a set of correlated accesses is 0.1. The Mod-
ulo cache radius is fixed at three. The Lookaround
schemes perform better than all but the Transit-Only
caching scheme, and the performance of the two-level
Lookaround scheme is within 10% of the Transit-Only
scheme in all cases. It should be noted that the
number of cache slots per interface for the two-level
Lookaround scheme is an order of magnitude smaller
than for the Transit-Only scheme. Also, the average
degree of the transit nodes is much greater than the
average degree of the graph. Thus the transit node
caches are 25 times larger than the Modulo caches.
Comparatively, the SCT caches average 4.25 times
larger than the Modulo caches.

As accesses become more correlated, as shown in
Figure 5 (repeat probability 0.5), the Modulo with
Lookaround scheme outperform all others. Also sig-
nificant in Figures 4 and 5 is the behavior of the caches
in the SCT scheme. The performance improvements
are negligible beyond 12 cache slots per interface, and
as such this method does not scale well with increase
in cache size.

10 [~

Server Dist 0.8, Repeat Prob 0.5, Modulo Radius 3

No AN ——

Stub connected to Transit -+---

9.5 N Transit Only =
- Modulo Caching -

Modulo w/ Lookaround -&--

) Modulo w/ 2 hop Lookaround -x--
= I
g o e Modulo w2 hop oolaral
g R
-
e
E
T
=
=}
24
8t e J
No Cache RTL=13.24
7.5 b

5 10 15 20 25 30 35 40 45
Nominal Cache Size

Figure 5: Latency with High Access Correlation

For the same parameters as in Figure 5, Figure 6
shows the fraction of queries that generate cache hits.
Once again, all the methods except SCT show im-
provement with increase in cache size. The SCT
method actually results in a proportionately large
fraction of hits—but the large number of hops in the
round trip suggests that more hits occur in the stub
node to which the server is connected, and not the
client. This is not unexpected—the gateway stub node
connected to the transit domain for a busy server will
experience a lot of traffic due to the busy server, and
as such, will cache a large part of that data as well.

Variation in Server Distribution We have used
a Zipf distribution to model server popularity (i.e. a

Server Dist 0.8, Repeat Prob 0.1, Modulo Radius 3
0.65 ; —_—

06 | - * T

055 | S s

05 r

0.45 ¢

04 r

0354/ No AN —

Stub connected to Transit -+-

Fraction of Queries generating Hits

03|/ Transit Only -o-- 4
: Modulo Caching ~x
0.25 x Modulo w/ Lookaround -+-- 4
/i Modulo w/ 2 hop Lookaround -*--
02¢]
0.15

5 10 15 20 25 30 35 40 45
Nominal Cache Size

Figure 6: Cache Hits with High Access Correlation

fraction 1 —e of the accesses are to the fraction € of the
nodes). However, it is not clear exactly what fraction
of the nodes should be considered to be servers. In
this experiment (Figure 7), we vary the fraction of all
nodes that are servers from 0.01 to 0.5. Even when
a large fraction of nodes are servers, the cache per-
formances are not significantly affected. Thus, wide-
area caching seems robust in face of widely varying
server locations and distributions. It is interesting to
note that round trip latencies for Transit-Only cache
schemes do not improve much when the server distri-
butions are extremely skewed, e.g. when less than 10%
of the nodes are servers. The other schemes improve
as the number of popular objects (which is a multi-
ple of the number of servers) decrease, but in case of
Transit-Only caches, even if all the objects are cached
everywhere, the query has to reach the transit nodes
before 1t is serviced.

Cache Size 16, Repeat Prob 0.5, Modulo Radius 3
14 T T T T T T T T T

13 70//4/_49/9—6\:

No Cache ——

12| No AN -+---|

Stub connected to Transit -a-
Transit Only

11 + Modulo Caching -+--+

Modulo w/ Lookaround -x--

10 L Modulo w/ 2 hop Lookaround o~ |

Round Trip Latency

0 005 01 015 02 025 03 035 04 045 05
Server Distribution (Fraction of Total Nodes)

Figure 7: Latency with Varying Server Distributions

Details on these and other results, including more
topologies, access schemes, and an analytic model can

be found in [11].

4 Summary

Active Networking is a new area of networking re-
search with potentially many exciting applications. In
this paper, we have presented a summary of two appli-
cations of active networking developed by the CANES
research group at Georgia Tech. Our experience with
application-specific congestion control shows that ac-
tive networking can used to provide better service
when the network is congested to applications that
use best-effort service. Further, the relative perfor-
mance of the active congestion control schemes im-
proves as congestion worsens. Our work on self-
organizing caching mechanisms show that active net-
works can be used to coordinate sets of small caches in
order to reduce access latencies. Our results show that
active caching is beneficial across a range of network
topologies and access patterns, and it is especially ef-
fective when access patterns exhibit significant locality
characteristics.

References
[1] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wether-
all, and G. Minden, “A survey of active network re-

search,” IFEE Communications Magazine, vol. 35,
no. 1, 1997.

[2] S. Bhattacharjee, K. Calvert, and E. Zegura, “Active
networking and the end-to-end argument,” in Pro-
ceedings of ICNP’97, 1997.

[3] W. Leland, M. Taqqu, W. Willinger, and D. Wilson,
“On the self-similar nature of Ethernet traffic (ex-
tended version),” IEEE/ACM Transactions on Net-
working, pp. 1-15, February 1994.

[4] N. Likhanov, B. Tsybakov, and N. Georganas, “Anal-
ysis of an ATM buffer with self-similar (fractal) input
traffic,” in IFEF Infocom ’95, 1995.

[5] W. Willinger, M. Taqqu, R. Sherman, and D. Wil-
son, “Self-similarity through high-variability: statis-
tical analysis of Ethernet LAN traffic at the source
level,” in ACM Sigcomm °95, pp. 100-113, 1995.

[6] V. Jacobson, “Congestion avoidance and control,” in

ACM SIGCOMM 88, 1988.

[7] I. O. for Standardisation,
of moving pictures and associated

ISO/IEC/JTC1/SC29/WG-11, March 1993.

[8] G. Armitage and K. Adans, “Packet reassembly dur-
ing cell loss,” IEEFE Network Magazine, September
1993.

[9] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura,
“An Architecture for Active Networking,” in Proceed-
ings of High Performance Networking 97, 1997.

[10] K. L. Calvert, M. B. Doar, and E. W. Zegura, “Model-
ing Internet Topology,” IEEFE Communications Mag-
azine, June 1997.

[11] S. Bhattacharjee, K. Calvert, and E. Zegura, “Self-
organizing wide-area network caches,” in IEFE Info-
com’98, 1998.

“Generic coding

audio.”

