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Abstract
Active networking offers a change in the usual network paradigm: from passive carrier of
bits to a more general computation engine. The implementation of such a change is likely
to enable radical new applications that cannot be foreseen today. Large-scale deployment,
however, involves significant challenges in interoperability, security, and scalability. In this
paper we define an active networking architecture in which users control the invocation of
pre-defined, network-based functions through control information in packet headers.

After defining our active networking architecture, we consider a problem (namely, net-
work congestion) that may benefit in the near-term from active networking, and thus may
help justify migration to this new paradigm. Given an architecture allowing applications
to exercise some control over network processing, the bandwidth allocated to each applica-
tion’s packets can be reduced in a manner that is tailored to the application, rather than
being applied generically. Our results show that the ability to gracefully adapt to congestion
makes a good case for active networking.
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1 INTRODUCTION

As the cost of computing power decreases, it is worthwhile to consider the
benefits of adding computing to various types of systems, either to enhance
services or to trade off against other costs such as time, bandwidth and stor-
age. Active Networking (AN) refers to the addition of user-controllable com-
puting capabilities to data networks*. With active networking, the network
i1s no longer viewed as a passive mover of bits, but rather as a more general
computation engine: information injected into the network may be modified,
stored, or redirected as it is being transported. Obviously, such a capability
opens up many exciting possibilities. However, active networking also raises a
number of issues, including security, interoperability and migration strategy.
All of these are influenced in large part by the active networking architecture,

*In this paper we focus on packet- and cell-switched networks. We follow Tennenhouse and
Wetherall [7] in adopting the term active networking; the differences between our approach
and theirs are elucidated later.
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which defines the interface between the users and the capabilities provided by
the network.

In this paper, we consider an approach to active networking that generalizes
traditional packet switching. In our approach, users can select from an avail-
able set of functions to be computed on their data, and can supply parameters
as input to those computations. The available functions are chosen and im-
plemented by the network service provider, and support specific services; thus
users are able to influence the computation of a selected function, but cannot
define arbitrary functions to be computed. This approach has some benefits
with respect to incremental deployment as well as security and efficiency: AN
functions can be individually implemented and thoroughly tested by the ser-
vice provider before deployment, and new functions can be added as they are
developed.

2 AN ARCHITECTURE FOR ACTIVE NETWORKING

2.1 A Generic Model of Packet Processing

The network consists of switching nodes, which are connected via links. In this
simple model, nodes don’t do anything except process the packets received on
their incoming links; processing an incoming packet may result in one or more
packets being transmitted on outgoing links.

More precisely, the state of a node comprises the following pieces:

® An input queue of packets. Packets received on any link are placed in the
input queue.

® For each outgoing link, an output queue containing packets to be transmit-
ted on that link.

® A collection of generic state information. This represents long-lived infor-
mation maintained at the node, such as routing tables or virtual-circuit
switching tables.

We postulate that each node in the network supports a particular set of
functions, each of which has a unique identifier. Each packet contains a set of
headers, which specify (i) the identifier of one or more functions to be applied
to the packet; and (ii) parameters to be supplied to those functions. When
the packet is processed, the function identified by each header is applied,
resulting in updating of the node’s state and possibly modification of the rest
of the packet. Thus we postulate that for each function identifier f, and each
parameter value p for function f, there is a particular subset of the node’s
generic state information that is relevant to f and parameter p. Functions
cannot modify or use parts of the node state that are not relevant.

Each node repeatedly performs the following:



Remove a packet M from the input queue;
while (more functions need to be applied to M):
Let f, p be the function ID and parameter from the next header of M,
Let g be the state component relevant to f and p;
Invoke function f on M, with p as parameter:
(optionally) Modify M;
(optionally) Update g;
(optionally) Queue messages for output;

Traditional networking functions can be characterized as node-processing func-
tions in this model. For example, when an IP datagram containing destination
address X is received by a router node (none of whose addresses is X) over
an Ethernet, the router node examines two of the datagram headers, which
identify the “Ethernet function” and the “IP forwarding function”. The Eth-
ernet function checks the error-control code and removes the Ethernet header,
while the TP forwarding function determines which outgoing link the packet
should be forwarded on, and adds the appropriate link-level header for that
link.

2.2 From Packet Forwarding to Active Networking

We define active networking to be extension of the set of functions that can
be invoked at a network node beyond those required to simply move bits
from place to place. The basic idea of our approach to active networking is
the incremental addition of user-controllable functions, where each function
is precisely defined and supports a specific service.

In general, the introduction of new AN functions of the type we have in
mind involves specification of the following:

® The identifier associated with the function.

® The parameters associated with the function, and the method of encoding
them in a packet.

® The semantics of the function. Ideally, function semantics would be given
in a standard notation such as LOTOS [3], SDL [4], or another notation
developed specifically for the purpose. A standard environment, comprising
support services such as private state storage and retrieval, access to shared
state information (e.g. routing tables), message forwarding primitives, etc.,
would provide a foundation on which new AN functions services could be
built.

In this view of AN, addition of a new function to a network node would be
the responsibility of the network service provider. As with current networks,
once a function is specified, each provider or vendor would be free to imple-



ment the functionality in a manner consistent with the specification. This
approach corresponds roughly to the way new features are deployed in the
public switched telephone network today: users have the option of provision-
ing various features implemented and deployed by the service provider.

There 18 another approach to extending the set of available functions at a
node: adding a single very powerful (Turing-complete) function, which inter-
prets its parameter as a program and then executes that program with the
packet and the relevant state as inputs. This single function thus extends the
set of functions computable at a node to include all computable functions. The
“active capsule” approach of Wetherall and Tennenhouse [7] is based upon this
idea. In this approach, the interface between the user and the active network
is a programming language, with well-defined syntax and semantics.

2.3 An AN Implementation

We have implemented several AN functions in an IP routing architecture.
We defined an “Active Processing” IP option IPOPT_AP, which specifies a
particular AN function in IP routers. The IPOPT_AP option is a tuple of the
form (f, m, a). The identifier f identifies the active processing function and m
is used to retrieve cached state associated with the current flow. av is a variable
(possibly null) sequence of arguments to the function f. We augmented an
existing SunOS IP kernel to support an in-kernel active processing router. We
implement an associative memory function M, which can be used to retrieve
state (e.g. queues) associated with the current flow. We define an AN function
dispatch table A, such that A[i] is the address of the #th active processing
function. We modified the TP option processor to execute A[f](M (m), «) for
each datagram that specifies an AN IP option. we simulate congestion by
defining a “virtual router memory limit.” The datagram discard routine is
initiated as this virtual router memory is exhausted. To let the router queues
grow, we service the router queues at predefined output rates — this is used
to simulate various output link rates.

3 PROGRAMMABLE CONGESTION CONTROL

3.1 Operating Model

A flow, for our purposes, is a sequence of packets all having the same source
and destination, from the point of view of a node somewhere in the network.
Thus a flow might consist of packets traveling between a single pair of end-
points, or it might be the aggregation of a set of lower-level flows. We assume
that a flow 1s identified by a label of some kind in the network protocol header.

Generically, programmable congestion control operates as follows: Based



on triggers that indicate congestion control should take place, flow state is
examined for advice about how to reduce quantity of data.

The important components of this generic model are the triggers responsible
for initiating congestion control, the flow state that contains the specific advice
for this flow, and the reduction techniques defined by the network and made
available to the users. An important feature of this model is its consistency
with traditional best-effort service. That is, a flow provides advice about what
to do with its data. The network node is not required to take the advice, and
may apply generic bandwidth reduction techniques.

In its most powerful and general form, congestion control might reduce
bandwidth requirements by applying transformations to reduce the quantity
of data at a congestion point. Such transformations will be application-specific
and computationally complex (not to mention the significant issues they raise
regarding interaction with end-to-end mechanisms such as error detection and
sequence numbering). We therefore focus on the special case of intelligent dis-
card of data. Using a natural extension of packet-level discard [1], we allow
applications to define units based on application semantics, with aim of dis-
carding the entire unit if any portion must be discarded. It should be noted
that for this scheme to be most effective; buffering is required to collect ap-
plication data units to ensure that the “tail” will not be dropped. Further,
the end-to-end reliability mechanisms (if any) affect the optimal definition of
a unit. The most benefit derives from dropping units that are equivalent to
the reliable retransmission units; dropping a unit that is smaller or larger may
result in unnecessary retransmission.

Given that bandwidth reduction will occur by discarding units, a question
arises as to which unit (within a flow) to discard. In the most simple case,
there 1s no choice: when the congestion indication trigger occurs, a fixed unit
(typically the one currently being processed) is subject to discard. More effi-
cient network behavior is possible, however, if we expand the set of data from
which we choose to discard. We consider congestion control advice that indi-
cates how to make such a choice. One can think of this advice as indicating
priority or some other policy by which to discriminate across data in the same
flow. Making use of this advice clearly requires that the network node have
access to a collection of data within a single flow. Thus, these mechanisms
will involve storing and manipulating flow data before it leaves the node, e.g.,
while sitting in a per-flow queue from which packets are periodically selected
for output by a scheduling mechanism.

3.2 Example Application and Mechanisms

To illustrate specific mechanisms and evaluate performance, we focus on the
use of congestion control advice to improve the best-effort service provided
to MPEG. For our purposes, the important feature of an MPEG stream is



that it consists of a sequence of frames of three types: I, P and B. Coding
dependencies exist between the frames, causing P and B-frames to possibly
require other frames in order to be properly decoded. Each I-frame plus the
following P and B frames forms a group of pictures (GOP), which can be
decoded independently of the other frames.

The specific components of the programmable congestion control are im-
plemented as follows:

® Source-attached advice. We consider mechanisms in which the source
identifies “units” such that the unit will be discarded if any portion of the
unit must be dropped.
The Partial Packet Discard mechanism is for baseline comparisons; it
defines each IP fragment to be a unit. Fragments are discarded if they
cannot be buffered in the output queue.
Our Frame Level Discard (EMD) mechanism defines a unit to be an
MPEG frame. The advice given is to queue a datagram if and only if its cor-
responding frame can be queued in its entirety. We maintain state for each
frame that is being discarded or buffered, and use this state information to
decide, in constant time, to buffer or discard a particular datagram.
We further consider a mechanism that identifies dependencies between
units. Our Group of Picture (GOP) Level Discard maintains state
about the type of frame discarded. In case an I frame has been discarded,
we discard the corresponding P and B frames as well.

® Choice among units. We consider one policy for making choices amongst
units. When an I frame is too large to be accommodated in the output
queue, and the queue contains P and B frames such that their combined
sizes are greater than that of the I frame, then such P, B frames are dis-
carded, and the I frame transmitted.

® Triggers. Finally, we consider two types of triggers. In the first, we de-
tect and respond to congestion only when data arrives that cannot fit in
the output queue. All three mechanisms mentioned above use this trigger.
We also consider an “early” trigger, following the Early Packet Discard of
Romanow and Floyd [6]. This trigger detects and responds to congestion
when the output queue occupancy exceeds a certain threshold. Our Early
MPEG Discard mechanism combines the GOP Level Discard with an
early congestion trigger.

4 EXPERIMENTAL METHODOLOGY

4.1 Topology and Data streams

The experimental topology i1s shown in Figure 1. The bandwidth of the link
between the source and the router, and between the congestion producing host
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Figure 1 Experimental topology

MPEG Avg. Frame Avg. I Frame Avg. GOP Avg. Y

stream (bytes) (bytes) (bytes) SNR.
BO 8177 20222 81782 21.00
FO 9256 36755 92568 23.05
MO 8970 36272 89713 23.86
TO 4174 18623 41750 25.60

Table 1 MPEG stream statistics

and the router is varied in the experiments. The source host runs Solaris 2.5.1.
All other hosts run SunOS 4.1.3; the routers executing our modified SunOS
4.1.3 kernel. The physical connectivity is provided by 155 Mbps ATM links.
The output queues of the routers 0, 1 have 48K, 64K of memory, respectively.

Four different MPEG streams were subjected to the same tests. Each stream
consisted of 120 frames in 12 GOPs. Particulars about the streams are pro-
vided in Table 1. For experiments with background traffic, the routers were
congested by replaying packet traces with average cumulative bandwidth of

2.15 Mbps.

4.2 Metrics

We evaluate the results of our experiments using the following criteria.

® SNR of received stream. Under congestion, IP packets carrying the
MPEG data may be discarded at intermediate routers. We evaluate the re-
ceived stream by computing the signal-to-noise ratio (SNR) of the received
stream — in cases when frames are dropped, we use the last correctly de-
coded frame as a substitute for the dropped frame. The SNR is computed



with respect to the original YUV files which were used to create the trans-
mitted stream.

® Fraction of I Frames received. The fraction of I frames that are received
provide a good measure of the quality of the resultant MPEG stream.

® Fraction of bytes that were eventually discarded at the receiver.
Due to the inter-dependent frame structure of MPEG, frames can only be
decoded if all other frames that they depend on have also been received.
We measure the fraction of data that is received but cannot be used due
to incomplete frames, or missing related frames.

4.3 Destination Feedback Mechanism

Our active mechanisms can be used in conjunction with source adaptation. We
implemented a simple form of flow control over UDP. The flow control mech-
anism has three parameters: the feedback resolution F'| the reaction rate R
and the source increment S. The mechanism operates on the principles of lin-
ear increase and exponential decrease as follows. The receiver sends feedback
whenever it determines that at least F' frames have been transmitted since it
last sent feedback. If all F' frames were received correctly, the receiver sends
an ACK, otherwise it sends a NACK. For each NACK, the sender cuts its rate
in half. Upon receiving R consecutive ACKs, the sender increases its rate by

S.

5 RESULTS

5.1 Fixed Rate Sources

In Figure 2, we consider the simplest case of a single congested node, a fixed
rate source, and no feedback from the destination. On the x-axis, we vary
the fixed source rate from 2 Mbps to 24 Mbps, corresponding to increasing
overload on the 4 Mbps link between the router and the destination. On the
y-axis we plot the average value of the signal-to-noise ratio for the Y compo-
nent of the MPEG data. Each curve corresponds to a different trigger/advice
mechanism, as described in Section 3.2.

This plot is primarily included so that the reader has a baseline to keep
in mind when we consider other combinations of feedback, background traffic
and multi-node experiments.
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5.2 Sources with Destination Feedback

We consider cases in which the destination provides feedback to the source as
described in section 4.3. The end nodes implement the flow control algorithm
with the following parameters. The source rate is initialized to 1 Mbps, and
constrained to less than 8 Mbps. The source increment S is 2 Mbps, and the
reaction rate R is |40/ F |, where F' is the feedback resolution.

In Figure 3, the GOP level discard and EMD mechanisms consistently main-
tain an average SNR above 21 dB, while transmitting nearly 80% of the I-
frames (Figure 4). No data transmitted via GOP level discard, or EMD is
discarded at the receiver (Figure 5). Due to oscillations in the source rate,
and indiscriminate discard at the intermediate router, the average SNR main-
tained by the PPD algorithm is 5—10 dB less in all cases (compared to GOP
discard, and EMD). Both the PPD and the Frame level discard algorithm
transmit data that i1s discarded at the receiver, thereby wasting network re-
sources. The Frame level discard algorithm only transmits complete frames,
thus, the data discarded at the receiver is due to the transmission of undecod-
able frames. In case of PPD, data is also discarded due to receipt of partial

frames™.

5.3 Addition of Background Traffic

The addition of background traffic leads to further congestion of the output
link at the router. Under this scenario, with choice enabled, the GOP level

*The MTU for our experiments was 4096 bytes. The losses due to individual frame frag-
mentation would be greater if the MTU had been 1500 or 576 bytes.
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discard and EMD mechanisms are able to maintain an average SNR of 19—22
dB (Figure 6). Under the same circumstances, the average SNR maintained
by PPD varies between 10—17 dB. The GOP discard and EMD mechanisms
are able to transmit 70—80% of the I frames, while 5—50% of the I frames
are transmitted using PPD (not shown). Between 30 and 95% of the data
transmitted by PPD is discarded at the receiver. Interestingly, a larger fraction
of data transmitted by the Frame level discard algorithm is discarded in this
case (with background traffic) than without (not shown). This is due to the
smaller amount of buffering available to the MPEG stream (because of the
background traffic). Thus, the choice policy has fewer frames to work with,
and in many cases P and B frames are transmitted, as discarding them would
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not create enough space to transmit another I frame. Note that in these cases,
the GOP level discard and the EMD mechanisms do not transmit the P and
B frames, and thus conserve network resources.

5.4 Multi-Node Experiments

We extend the topology to include one additional router. Figure 7 shows the
fraction of I frames received after the MPEG stream encounters two congested
routers. The output link of the first router is restricted to 4 Mbps, and the
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output link of the second router is restricted to 2 Mbps. As expected, 30—50%
more | frames were received using GOP level discard, and EMD. A similar
increase was noted for the received signal level. The drop in fraction of I
frames transmitted (and SNR) is more gradual for the GOP level discard,
and EMD mechanisms. It should be noted that between 70—80% of the data
transmitted by the Frame level discard, and PPD mechanisms were eventually
discarded by the receiver.

When we add the choice policy to the same scenario (Figure 8), the mech-
anisms other than PPD transmit a higher fraction of the I frames. A similar
increase is noted in the received signal level as well. The greatest impact is
on the Frame level discard algorithm — which in some cases, can transmit
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over 80% more useful data using the queue manipulation techniques. Also,
less than 10% of data transmitted by the Frame level discard algorithm is
eventually discarded at the receiver.

In Figure 9 we consider a multi-node experiment, with destination feedback,
with the choice policy enabled. Within favorable feedback intervals (feedback
per 4-12 frames), the mechanisms other than PPD sustain an average SNR of
18-19 dB. Using the same feedback mechanism, the average SNR maintained
by the PPD mechanism varies between 7—14 dB. Once again, more than 80%
of the data transmitted by PPD is discarded at the receiver.

5.5 Detailed Evaluation of Transmitted Streams

(a) Time varying SNR

In Figure 10, we consider a specific example, and evaluate the received data
on a frame-by-frame basis. The destination provides feedback (as described
in section 4.3) every 10 frames, and the stream passes through two routers.
The plots above the x-axis represent the SNR of the received frames. The
points below the x-axis represent indices of complete frames received. Under
GOP discard, 163 of 220 total frames are received, while under PPD, 148
total frames were received. However, the GOP discard mechanism was able to
transmit 22 of the possible 23 T Frames, while PPD was able to transmit only
12 T Frames. From Figure 10, it 1s clear that PPD is susceptible to periods
of catastrophic losses (as seen in indices [60-120], and [160-230]). During the
same period, GOP discard experiences heavy frame losses as well; but is able
to transmit the crucial T frames (except for frame index 100), thus preserving
some picture quality. This leads to a visibly graceful degradation of the signal
(indices [90-110]) — and recovery from signal loss is much quicker than PPD
(e.g indices [190-210]).



Frame Sequence Number

Time varying SNR -- Dest. Feedback every 10 frames, Multi-AN Hops
T T T

T
40 Original MPEG SNR
GOP Discard - SNR
PPD - SNR -+
35 |- GOP Discard - Frames Received o
PPD - Frames Received +
30
25 )
@ 20 | !
z ' i
o P
15 | P
10 AN
5L
++0+ AR
L L L L
50 100 50 200
Frame Index
Figure 10 Per Frame SNR of received stream
440 T T T T T
I
420 - | .
400 |- :
380 |-
360 |- // PPD
GOP Discard -+---
340 - -
320 |- -
300 |- -
280 +  TTTTTTTTT -
260 |- -
240 = L L L L L
900000 le+06 1.1 +06 1.4e+06

(b)

e+06 1.2e+06 1.3e
Time since first frame received (Microseconds)

Figure 11 Fixed Rate Source: Timing of received datagrams

Transmission Latency

In Figure 11, we consider the delay added by the processing. The source rate
is set to 8 Mbps. Considerable detail about the system behavior over time
is represented by Figure 11 which plots the time elapsed (in microseconds)
since the first datagram is received for datagrams with sequence numbers
from 240 to 440. Note that one can easily discern the points at which GOPs
are discarded, corresponding to a (nearly) vertical line segment indicating a

range

of unreceived datagram sequence numbers. PPD contains periods of

discard that occur more frequently, but tend to last for a shorter period of
time. An important point to note i1s that the mechanisms do not introduce
any additional buffering delay (compared to PPD). As IP packets are pro-

1.5e+06



cessed, an O(1) check is made whether this packet can be transmitted, or
not. Frames, or GOPs, are not reassembled in the routers; this would have
introduced buffering delays. Delays, if any, are introduced during the compu-
tation phase of the packet acceptance algorithm. Under the choice policy, this
computation time may include time taken to search the queue. The search
time is O(Output Queue Size/Packet Size). However, the only packets that
encounter this delay are packets that would otherwise been discarded. This is
because the choice is only activated when a packet — specifically an I frame
— cannot be accommodated in the output queue.

6 CONCLUSIONS

The premise of active networking is that users can benefit from enhanced
network functionality. We have presented a simple approach to AN in packet-
switched networks, in which users can control the application of a set of sup-
ported network-based functions to their data. Our approach permits new func-
tions to be developed and deployed over time, and is backward compatible in
that not all users need be aware of the active functionality in the network,
and not all nodes need support the same set of functions.
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