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Abstract

As the cost of computing power decreases and network tra�c patterns become more complex,

it becomes worthwhile to consider the bene�ts of allowing users to specify policies for managing

their tra�c within the network. Active networking is a new design paradigm in which the

network is architected not merely to forward packets, but also to be dynamically programmed

in order to support per-user services. Active networks export uniform \meta-level" interfaces

that expose network-level resources, policies and mechanisms to its users. In this work, we

present a new scheme for managing network bu�er space, aggregate application level bu�ering, in

which a group of 
ows of similar types are managed by an active node as a single entity. Thus,

resources within the network are provisioned on a \per application" basis rather than a \per

user" basis. We justify this scheme by comparing it to previously accepted bu�ering schemes

such as a single shared bu�er, per 
ow queueing, and an extension to per 
ow queueing which

accommodates application speci�c packet dependencies. Within this work, we justify the bene�ts

of this scheme in terms of required computational processing, information maintained by a node

within a network, goodput achieved per application type, and mean delay. Based on the work

herein, we show that the impact of an aggregate bu�er management scheme can be signi�cant

depending on the interdependencies which may exist within an application's tra�c stream.
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1 Introduction

Packet switched networks are designed and built for e�cient forwarding of user data, and tradi-

tionally have included only the minimal processing necessary for correct forwarding of packets.

However, fueled in large part by the success of the Internet, packet networks continually transport

more and di�erent tra�c types, many of which have requirements beyond just best-e�ort forward-

ing. Additionally, the price-performance ratio of computing power continues to decrease rapidly.

As services required of the network increase in complexity and relative processing cost decreases,

the recent trend has been to introduce more user-speci�c1 processing inside the network. In other

words, as the cost of computing power decreases and network tra�c patterns become more complex,

it becomes worthwhile to consider the bene�ts of allowing users to specify policies for managing

their tra�c within the network.

Consider traditional congestion control schemes. Generally, network losses are magni�ed at the

higher layers as the network discards data without regard to application data units. For instance,

policies such as \Early Packet Discard" and \Partial Packet Discard" are currently imposed on

all 
ows traversing a particular node or interface in order to restrict congestion. While these two

policies may be su�cient to improve goodput of data-oriented connections, they are not enough

to necessarily maintain ideal performance of, for example, video connections. Video connections

require a much more complex packet discard scheme in order to maintain acceptable performance,

one which accounts for the di�erent types of frames in a video connections and their relationships

between one another. Therefore, the use of a congestion control scheme which is tailored to the

video application would have the advantage of maintaining a more acceptable goodput level (than

EPD or PPD) while still restricting congestion. Similarly, recent advances in understanding the

self-similar nature of tra�c [1, 2, 3] indicate that e�ective congestion control is likely to require

methods which account for longer time periods (e.g., source adaptation and admission control, as

opposed to adding bu�er space).

One means of implementing this type of behavior which has been signi�cantly addressed in the

current literature is active networking (e.g., [4, 5, 6]). Active networking is a new design paradigm

in which the network is architected not merely to forward packets, but also to be dynamically

programmed in order to support per-user services. Active networks export uniform \meta-level"

interfaces that expose network-level resources, policies and mechanisms to its users. Using these

uniform interfaces, users can dynamically modify the network's behaviour and \on-the-
y" intro-

1In the ensuing discussion, user refers to any entity that requests network layer services and includes (but is not
restricted to) traditional transport protocols, and higher-level abstractions such as 
ows and processes.
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duce new capabilities inside the network. Therefore, within active networking's paradigm, the

network is no longer viewed as a passive mover of bits, but rather as a more general computation

engine: information injected into the network may be modi�ed, stored, or redirected as it is be-

ing transported. While there are many architectures currently being investigated, given the basic

premise above, it would be possible to adapt an active network architecture to perform functions

such as those suggested. In fact, prototype studies have already pushed into caching and congestion

control as applications for active networks [7, 8].

We have shown the bene�ts of application speci�c congestion control in our previous work

[8, 9]. Per application processing within the network provides maximum goodput to end users

while providing maximum utilization of network resources. However, the use of per application

processing and state within the network may be prohibitively expensive to provision and maintain.

In this paper, we extend our previous work to include aggregate application level bu�ering, in which

a group of 
ows of similar types are managed by an active node as a single entity. Thus, resources

within the network are provisioned on a \per application" basis rather than a \per user" basis. We

justify our schemes by comparing them to previously accepted bu�ering schemes such as a single

shared bu�er and per 
ow queueing. We present simulations and analyses of the four di�erent

methods for managing a set of connections traversing a network node. Within this work, we justify

the bene�ts of the schemes in terms of the following measures:

1. Computational processing required for each scheme's implementation

2. State information maintained by the node;

3. Goodput achieved per application type; and,

4. Mean delay for traversing 
ows.

We begin the paper by describing the models which are used throughout this paper. We then

present, in Sections 3 through 5, the arguments and analyses justifying the bene�ts and trade-o�s

of each of the tra�c management schemes studied within the paper. Finally, we conclude the paper

in Section 6.
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Figure 1: Experimental Topology

2 Model Description

2.1 Topology

Within our models, a signi�cant number of sources operate concurrently and transmit data which

is routed through a network node. While the sources' data may be destined for several di�erent

outputs, all of data in these experiments is routed over the same output port of an network node,

as shown in Figure 1; therefore, for the purposes of these experiments the tra�c is considered

as having the same single destination. Tra�c throughout this model is assumed to use a packet-

oriented protocol such as IP.

2.2 Source Models

In these experiments, the tra�c sources are classi�ed as either \Video" or \Data" sources2. Our

model for Video tra�c will be based on the MPEG compressed video framing and transmission

scheme. Our Video model uses a variable rate video encoding scheme. It uses three types of

frames (I, P, and B frames) to encode data using relational and temporal compression. I frames

provide periodic updates to the complete frame. P and B frames are compressed representations

to changes in a frame; the compression scheme uses both forward and reverse compression. In

general, B frames are dependent upon the most immediately preceding I or P frames and P frames

2When referring to the speci�c models of sources used in these experiments, the terms \Video" and \Data" will
be capitalized; the generic versions of these terms will be denoted in lower case.
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Table 1: Frame Sizes per Session of Video Tra�c

Frame Type Minimum Value Distribution Type Mean Value Maximum Value

I frame 15,000 bytes Uniform 16,000 bytes 17,000 bytes
P frame 512 bytes Exponential (truncated) 1,900 bytes 17,000 bytes
B frame 128 bytes Exponential (truncated) 500 bytes 17,000 bytes

are dependent upon the most immediately preceding I frame [10].

Our Video model provides for the transmission of these frames according to a �xed, repeating

structure (termed a group of pictures or \GOP"); for these experiments we will use the following

frame ordering: I-B-B-P-B-B-P-B-B. The distributions and key values relating to the frame sizes

are shown in Table 1; notice that the mean amount of tra�c o�ered by one session of the Video

application is approximately 605 kilobytes per second (kBps)3.

The signi�cance of the structure is that a dependency map can be easily formulated to de�ne

the interdependencies of the frames upon one another. Using such a map, it is seen that, if the

data upon which a frame is dependent is lost, the frame cannot be decoded and loses its value to

the executing application. Therefore, a signi�cant goal of this process is to selectively discard data

such that data which has little value (i.e., upon which a minimum of other data is dependent, e.g.,

B frames) is discarded, if necessary, followed by data of gradually increasing value.

In order to determine the behavior of Video's highly correlated data and extremely rigid struc-

ture in a realistic environment, we also introduce a generic \Data" application. Data packets are

all of a �xed (maximum) size, 576 bytes in these experiments, and have no known dependency

structure. Packets are generated with an exponential interarrival time distribution such that they

generate the same amount of o�ered tra�c as the previously described Video application (605

kBps).

2.3 Network Node Models

The network node in Figure 1 may perform bu�ering and discarding of arriving tra�c4 in any of

a number of di�erent ways. The manner in which bu�ering and discarding of arriving tra�c is

3The amount of o�ered tra�c per connection is determined based on the NTSC broadcast standard of 30 frames
per second (fps). The sizes of the frames were determined based on observations of MPEG encoded video at Georgia
Tech and corresponds to data presented in [11], [12], and [13].

4The terms 
ow, connection, and tra�c are all used interchangeably within this work.
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managed will collectively be referred to as the network node's bu�ering paradigm. The bu�ering

paradigms which are studied within this paper are as follows:

1. Shared Bu�er (SHB): All data from all applications is aggregated into a single bu�er. If

space is not available for an incoming packet, the incoming packet alone is discarded.

2. Per Flow Bu�ering (PFB): Each 
ow is allocated a dedicated bu�er. If space is not

available for an incoming packet in its respective bu�er, the incoming packet alone is discarded.

3. Per Flow Bu�ering with Active Discard (PFB/AD): Each 
ow is allocated a dedicated

bu�er. If space is not available for an incoming packet in its respective bu�er, the incoming

packet and all packets dependent upon the incoming packet are discarded.

4. Active Bu�ering and Discard (ABD): Each application type is allocated a dedicated

bu�er. If space is not available for an incoming packet in its respective bu�er, the incoming

packet is discarded along with (potentially) other packets, depending upon the discard scheme

implemented.

In the case of Data tra�c, there are no dependencies acknowledged; therefore, any discard

of data from these 
ows is always simply individual packets. The dependencies of Video tra�c,

however, make for a more intricate situation. The basic dependency structure of a single Video


ow (the tra�c which traverses the single connection) was outlined in Section 2.2. Based on this

structure, in the case of using \Per Flow Bu�ering with Active Discard", if an I frame is discarded,

all data from that single 
ow until the next I frame is discarded (i.e., the entire single GOP);

similarly, if a P frame is discarded, all ensuing B frames until the next I or P frame are discarded.

However, in the case of using \Active Bu�ering and Discard", if an I frame is discarded, all data

from all Video 
ows which is received is discarded until another I frame is received; equivalently,

if a P frame is discarded, all packets from all Video 
ows which are received are discarded until

either an I or a P frame are received.

The thrust of this work is to justify and demonstrate that the performance of the di�erent

bu�ering paradigms varies signi�cantly and that advantages can be yielded by using active net-

working mechanisms to manage bu�ering at an network node. The performance of several bu�ering

schemes is evaluated in terms of a number of metrics in Table 2. It is seen that, while one bu�ering

paradigm may be extremely e�ective at managing one aspect of performance, it may be accommo-

date other aspects poorly. For instance, while the traditional \Shared Bu�er" scheme does make

very good use of bu�er space, it provides very poor quality of service for real-time applications

under load. This is exactly the reason that \Per Flow Queueing" schemes were introduced; they,
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Table 2: Characteristics of studied bu�ering paradigms
Paradigm Computation State Goodput Delay

SHB Low Low Low High

PFB Medium High Medium Medium

PFB/AD High High High Low

ABD Variable Low High Low

however, su�er from as a much less e�ective bu�er management scheme. It is noted in Table 2 that

the computation requirement for the ABD bu�ering paradigm depends upon several factors; the

details of these factors are highlighted out in Section 3.

3 Computational Processing Requirements

Within this section, we address the issues relating to the amount of data required to operate a node

using one of the previously described bu�ering paradigms.

In the node in Figure 1, we consider three functions which may signi�cantly consume the

processing resources of a routing node as shown in our topology: packet sorting at the entrance to

the output port, packet discard at the entrance to the output port, and output bu�er scheduling.

For the purposes of this study, we will only consider the case in which a packet entering the node

is only intended for a single destination.

In the SHB case, the computational requirements are minimal; since there is only one bu�er

managed at the output port with none of the features of the other schemes, the computational

process should be able to be performed in constant time. In the PFB paradigm, the incoming

packet need only determine the output bu�er (based on its 
ow identi�er or equivalent mechanism)

to which it should be assigned. Since this determination may be either linear or sub-linear in

complexity, the time for performing this operation is listed in Table 3 as tpf�sort, where this value

is given in (1).5

tpf�sort = O(f (0)(# 
ows)) (1)

The PFB/AD case adds an additional level of complexity to the PFB paradigm. The input

5The family of functions denoted by f (�)(�) are arbitrary and unspeci�ed functions which are dependent on the
discard algorithm and other operations implemented for the application type and instance.
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Table 3: Computational characteristics of studied bu�ering paradigms
Paradigm Computational Requirements

SHB O(1)

PFB tpf�sort + tpf�sched
PFB/AD tpf�sort + tapp�discard+ tpf�sched
ABD tapp�sort + tapp�discard+ tpf�sched

packet �ltering operation is equivalent to that in the PFB case; however, the packet discard process

will require additional processing, as shown in (2). This expression denotes a complexity which is

a function of the discard algorithm for the application of every de�ned bu�er and the bu�er itself.

Notice that the term \application(bu�er)" is intended to return the application corresponding to

the tra�c which traverses the given bu�er.

tapp�discard = O(
X

8bu�ers

f
(1)
discard(application(bu�er); bu�er)) (2)

For the ABD paradigm, packet sorting is performed on a \per application" basis. Therefore,

the complexity of this operation is re
ected in (3).

tapp�sort = O(f (2)(# applications)) (3)

Finally, for nodes which support a bu�er scheduling process, scheduling will require an amount

of processing corresponding to tpf�sched, as shown in (4). This type of process will vary from

a \weighted round robin" scheme which actually performs a scheduling process to an arbitrary

function which may be provided by the user.

tpf�sched = O(f (3)(# bu�ers)) (4)

This reasoning leads to the information given in Table 3.

4 State Information Requirements

Within this section, we address the issues relating to the amount of data required to operate a

node using one of the previously described bu�ering paradigms. First, we argue that there exists a
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Table 4: State characteristics of studied bu�ering paradigms
Paradigm # Bu�ers State Requirements

SHB 1 O(1)

PFB # 
ows sbu�er
PFB/AD # 
ows sbu�er + sdiscard
ABD # applications (� # 
ows) sbu�er + sdiscard

minimal amount of data required for the operation of the node; therefore, this amount of memory is

O(1) and cannot be signi�cantly a�ected regardless of the bu�ering paradigm implemented. This

data would include information such as the number of separate bu�ers which are managed, the

number of packets which are enqueued, the data which would be included as part of a standard

MIB (or similar statistic database), etc.

Second, we argue that there is a separate set of information which is maintained on a \per

bu�er" basis. This information would include the number of packets enqueued to the bu�er, any

sorting or selection criteria for the bu�er, and other similar information. We expect the same

information to be stored on a \per bu�er" basis regardless of the bu�ering paradigm; therefore, the

cost of maintaining this information within memory is equal to sbu�er as de�ned in (5).

sbu�er = O(# bu�ers) (5)

Finally, consider, for example, the currently discussed Video application type. In processing

the active discard algorithm for Video tra�c, state information related to what types of packets

are being accepted/discarded must be maintained (in our implementation, 2 bits were necessary to

indicate if the most recent I or P frame had been discarded). Extrapolating this notion to other

applications, we contend that the state information required for this functionality is encountered

on a \per bu�er" basis and may be expressed as sdiscard, as de�ned in (6)6.

sdiscard =
X

8bu�ers

gdiscard(application(bu�er); bu�er) (6)

Based on this analysis, the information given in Table 4 is justi�ed.

6gdiscard(�) is an arbitrary function with the same constraints as those previously mentioned applying to f (�)(�).
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5 Goodput, Bu�er Space, and Delay Requirements

Given the complex structure of Video tra�c, it would be extremely di�cult to provide an intuitive

explanation for the 
ow's bu�er space requirements or delay. Therefore, a simulation was used

to determine and evaluate these requirements. In order to assure some sense of comparability

between situations, we used application-level quality of service as a criteria for determining when

two scenarios provided \equivalent" performance. For every case, 20 replications of each scenario

were run and aggregated in order to ensure that the results are representative; each replication

had a duration of 35 seconds with the �rst 5 seconds being considered a transient period (during

which statistics were not accumulated). Also, during each of the replications, the exact time at

which the Video connections commenced was randomly varied between the starting instant of the

simulation (at time \0.0") and exactly one-third of a second later. This \staggering" of the sources

was performed to prevent the regular structures of the Video streams from causing unrealistic bu�er

sizing (as a result of, e.g., several I frames arriving to the node sequentially); the implications of

not considering this point are shown later in this work.

The bu�er service policy generally used within these experiments is a \weighted round robin"

scheme; the amount of service that a bu�er receives is weighted according to the percentage of tra�c

o�ered to the node which is subsequently routed to the given bu�er. The results which are presented

in this work without annotation use this \weighted round robin" service policy. However, during

the course of our experiments, some interesting behavior was noticed when the service weights were

set equal to one another. As warranted, we present the results of implementing this \equal weights"

policy and denoted the results by su�xing the relevant bu�ering paradigm by \WEQ".

5.1 Comparing Aggregate Goodput to a Given Level

Goodput is a term which has evolved in recent years to capture the notion of the fraction of data

that contributes to the quality of service of a transmission. Within these experiments, we de�ne

\goodput" for a single connection as the percentage of tra�c sent to a destination which can be used

during an application level decoding process (i.e., for which all data upon which a received portion

of data is dependent are also received). We then average and determine the con�dence interval

for several connections' measures; these values are used in the following manner to establish if a

goodput level has been met.

The �rst criteria for meeting a speci�c desired goodput level is that the lower end of the

con�dence interval found in the previous set is at least a given level; in our experiments this level
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varied from 70% to 90% (i.e., fair to very good quality or, equivalently, 21 to 27 fps). The second

criteria for determining convergence is that the minimum goodput of any single connection is at

least 90% of the level used in the previous test (i.e., 63% to 81%); this criteria was imposed to

prevent, for example, one connection achieving near-ideal performance at the expense of another

connection's inordinately poor performance. Only if both criteria were met, the aggregate goodput

level was deemed to have been met.

5.2 DeterminingBu�er Space Requirements Given Fixed Goodput, Utilization,

and Link Size

The �rst set of experiments were used to determine the minimal bu�er space required to satisfy a

number of connections while still meeting a \minimal" required quality of service for the end-users.

The bu�er size required to accommodate the given goodput is found only when both of the criteria

given in the previous subsection are met.

A 20 Mbps link was used in these experiments. The range of values for the total number of

connections used for an experiment was 26, 30, and 32; this range was chosen in order to determine

the impact of loading on the e�ectiveness of the bu�ering schemes. Notice that 26, 30, and 32

o�ered connections correspond approximately to a utilities of 80%, 90%, and 95% of the 20 Mbps

link. The connections were a mixture of Video and Data; the number of Video connections were

varied from 2 to the maximum number of connections used in a particular experiment (with the

remaining connections being used as Data connections).

We present in Figures 2 and 4 the resulting bu�er space required per Video connection operating

over the 20 Mbps link with 90% utilization; the �gures corresponding to 80% and 95% are not

presented for the purpose of brevity and since their results were similar. In these �gures, in the

cases of the SHB and ABD bu�ering paradigms, the bu�er space per connection is computed

based on the size of the entire bu�er. Since our simulation converged based on actual bu�er sizes,

con�dence intervals on the bu�er sizes for these bu�ering paradigms are not presented in these

�gures. Instead, the (extremely tight) con�dence intervals for only these cases are shown in the

plots of total bu�er space allocated to Video in Figures 3 and 5.

Intuitively, one would expect that, as the o�ered tra�c (and, correspondingly, the output

link's utilization) is increased or as the required goodput is increased, the required total bu�er

space would increase. Further, as the percentage of o�ered tra�c which is Video tra�c (with its

intricate interdependencies) increases, we see that the bu�er space required to achieve the given

goodput level increases. This behavior is exactly what is seen in Figures 2 and 3. The PFB
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and PFB/AD bu�ering paradigms increase (approximately) linearly as they is not able to bene�t

from any statistical multiplexing. In Figure 2 a dramatic jump is seen when the number of Video

connections is increased from 14 to 15 (when the percentage of tra�c o�ered by Video connections

is 50% of capacity) under the ABD/WEQ bu�ering paradigm; this phenomena is due to the equal

weightings of the two (Video and Data) bu�ers in the bu�er servicing scheme. It should be noted

that the SHB paradigm performed well when the majority of incoming tra�c was Data (without

any dependencies imposed by the tra�c stream), but its requirements increased dramatically with

increasing amounts of Video. The remaining paradigms were able to take increasing advantage of

the multiplexing with several other connections. Similar behavior is seen in Figure 4.

The only aberration to these explanations is seen in Figure 4, when 26 Video connections are

simulated. At this point, the bu�er size required per Video connection actually decreases from its

value at 22 Video connections. However, based on the shown con�dence interval, it appears that

this value is a combination of the high utilization of the output link given these connection as well

as statistical variation.

The most signi�cant point to note in these �gures, though, is that the ABD bu�ering paradigm

is able to provide the bene�ts of statistically multiplexing a signi�cant number of connections within

a relatively small bu�er space while controlling each connection's goodput levels.

The mean packet delay for the previous experiments are shown in Figures 6 and 7. Delay may

not be a signi�cant factor in the Data connections used within these experiments, but it de�nitely

is signi�cant for Video connections; frames must be received by a destination within 33 milliseconds
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(mS). In these plots, the mean delays do not reach unacceptable levels in any of our experiments.

Also, we generally see consistantly increasing mean delays as the number of Video connections

increase. In the case of the SHB bufering paradigm, this phenomena is due to the fact that, as

the number of Video connections increases, more of the tra�c is developing a deterministic pattern

and less of the tra�c is arriving with exponential interarrival times. In the case of the PFB and

PFB/AD cases, the sets of bu�ers are essentially polled and service irrespective of the arrival times

of the packets; in comparing these two curves, however, the impact of the Active Discard scheme

should be noted.

Most dramatically, in both Figures 6 and 7, the ABD/WEQ bu�ering paradigm7 shows a

dramatic increase in packet delay about the point at which 15 out of 30 connections are Video

tra�c. This point is due to the observation that, in this paradigm, each of the two queues will

receive either (a) enough service to keep the bu�er's occupancy relatively low (when the bu�er

does not receive enough tra�c to consume 50% of the service time), or (b) the 50% to which the

bu�er is entitled plus any unused service time made available by its counterpart. In the �rst case,

a packet's delay will be relatively small (i.e., on the order of a single packet transmission time since

the bu�er's occupancy will be kept small and the assignment of service periods is performed on a

\per packet" basis). In the latter case, the input bu�er will grow due to the fact that the server

will periodically not be available to service the heavily loaded bu�er (in order to service the more

lightly loaded bu�er).

7Recall that, in the ABD/WEQ bu�ering paradigm, the bu�ers corresponding to Video and Data tra�c each have
priority over exactly 50% of the service time
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Finally, though, it is seen that, while using the ABD bu�ering paradigm, the mean packet delay

experienced a certain amount of volatility at lower numbers of connections, but, as the overall

tra�c became dominated by Video, the mean delay stabilized in both �gures. This stabilization

can be attributed to the combined e�ects of the statistical multiplexing of the Video connections

and the Active Discard scheme. As a result, the ABD scheme was able to not only control the

goodput of the Video connections (thereby maintaining the quality of the connections), but also

controlled the delay of the connections.

5.3 Determining Bu�er Space Requirements Given Fixed Goodput and Uti-

lization

In order to determine the impact of the link's capacity being �xed and fairly large in comparison to

a connection's size, we next �xed the required goodput level and the utilization of a variably sized

output link. The link's size was varied with the number of connections o�ered to the node. Then,

as in the previous experiments, the minimal bu�er size per connection was determined. Since the

PFB and PFB/AD bu�ering paradigms required signi�cantly more bu�er space to implement in

the previous experiments, and the tra�c traversing these paradigms incurred substantially larger

mean delays, these paradigms have been excluded from this experiment.

These experiments were performed for 80%, 90%, and 95% utility of links of sizes varying from

approximately T1 to OC3 rates. Goodput was similarly varied from 70% to 90%. Presented in

Figures 8 and 9 are representative results obtained at 90% utilization and 70% and 90% goodput,
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respectively.

As one would expect, the ABD bu�ering paradigm performed signi�cantly better than the SHB

paradigm. In fact, the ABD bu�ering paradigm is able to manage its bu�er space signi�cantly more

e�ciently than the SHB bu�er paradigm as the link rates and number of sources are varied. It is

seen in both �gures that the SHB paradigm's bu�er requirements essentially increased consistantly

as the o�ered load increased. While it appears that the ABD paradigm's bu�er requirement is

essentially stagnant at the higher values of o�ered load in Figure 9, the same paradigm requires less

space at higher values in Figure 8. This point would seem to be due to a combination of the e�ects

of multiplexing the increasing number of Video connections and the Active Discard algorithm's

ability to optimally take advantage of the space available while still meeting the required goodput

level.

5.4 Determining Goodput Given Bu�er Space

In the next set of experiments, the number of connections o�ered to the network node was �xed at

10 Data and 20 Video connections and the output link size was �xed at 20 Mbps. The bu�er size

per connection was gradually increased and the aggregate goodput for each application type were

recorded in Figures 10 and 11. Recall that the goodput for Data connections is simply the fraction

of tra�c which is not discarded in transit.

By comparing Figures 10 and 11, it is seen that, as expected, Data 
ows overall had higher

goodput levels than Video 
ows given equal bu�er space. Similarly, both the PFB and PFB/AD

14
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paradigms performed signi�cantly poorer than SHB and ABD paradigms in cases of both tra�c

types. ABD was obviously more bene�cial to the Video connections than the Data connections.

However, by comparing Figures 12 and 13, the bene�ts of the di�erent bu�ering paradigms can

be seen under changing o�ered loads. The goodput of both types of tra�c degenerated under load

with all of the paradigms. It should be noted that the degeneration was fairly uniform for the Data

tra�c, with it bene�tting the least from the PFB/AD paradigm. This point is reasonable since,

as the number of maintained connections increases under PFB/AD, more time would elapse while

serving individual bu�ers between service attempts for a given 
ow; therefore, the queues would

be most likely to build within a given period.

However, to see why the Data tra�c bene�tted the most from the ABD paradigm, even more

than the SHB paradigm, we must observe the degeneration of the Video tra�c curves in Figure

13. Video was much more sensitive to the increase in o�ered load due to the interdependencies

between its frames. Recall that, if an I frame is lost, all ensuing frames preceding another I frame

lose their value; similarly if a P frame is lost, all ensuing frames preceding another P or I frame lose

their value. The ABD and PFB/AD paradigms was able to discard frames which were no longer

valuable (due to a preceding frame already being discarded) and maintain a higher goodput level

under load. The performance of the PFB and SHB paradigms were signi�cantly worse.

In the previous sections, it was shown that the ABD bu�ering paradigm is able to e�ectively

multiplex connections within an allocated bu�er space. This set of experiments illustrates that,

while the ABD paradigm is able to utilize the bu�ers in an e�ective manner, it also provides higher

15
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goodput while controlling the bu�ered packets' mean delay.

5.5 The Impact of Non-Staggered Tra�c Sources

As previously mentioned, the repeating nature of Video tra�c can have a signi�cant impact on

bu�er sizing (see [14]). In order to determine the impact of the source staggering scheme, we

compared the previously described situation to one in which the 30 video connections simultaneously

at 0.0. The bu�er size required per connection in order to yield 90% goodput are shown.

Both Figures 14 and 15 show approximately linear increase with the number of Video sources

o�ered. This point is due to the fact that the arrival of the I frames, the largest frames in the Video

streams, between all sources are synchronized. Therefore, the bu�er space will be constrained by

the sizes of the I frames (which cannot be discarded and still yield a non-zero goodput level) which

are bu�ered.

The point of this experiment is that the exact synchronization of Video sources could signi�-

cantly impact the bu�er requirement or quality of provided service. However, in an actual system,

it is not expected that a signi�cant number of sources (in comparison to the total number of

connections supported) will be synchronized such that I frames arrive virtually concurrently.
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6 Conclusions and Future Work

This paper has shown the value of providing aggregate application level bu�ering. This scheme is

made possible by using active networking concepts in order to allow a node within the interior of a

network to manage groups of similar 
ows as single entities. This type of scheme has two signi�cant

aspects. One is the bene�ts obtained by statistically multiplexing similar 
ows within a bu�er, the

size of which may be dynamically managed as new connections are accepted. The second is the

advantage realized in the aggregate 
ow's goodput which is achieved by expending a minor amount

of computational resources to determine the value of data before bu�ering it.

We expect this type of scheme to be a signi�cant advantage to active networking. Additionally,

the reduced use of network resources should make for a more scalable implementation of active

nodes. One signi�cant area of future work in this area would be determining criteria for gauging

the \similarity" of application types (e.g., determining if 24 fps video is close enough to 30 fps video

to be managed according to the same bu�ering paradigm). We expect that area, as well as that of

designing e�ective discard algorithms, will be realized within the near future.
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