
On Active Networking and Congestion

Samrat Bhattacharjee

Kenneth L. Calvert

Ellen W. Zegura

fbobby,calvert,ewzg@cc.gatech.edu

GIT{CC{96/02

Abstract

Active networking o�ers a change in the usual network paradigm: from passive
carrier of bits to a more general computation engine. The implementation of such
a change is likely to enable radical new applications that cannot be foreseen today.
Large-scale deployment, however, involves signi�cant challenges in interoperability
and security. Less clear, perhaps, are the \immediate" bene�ts of such a paradigm
shift, and how they might be used to justify migration towards active networking.

In this paper, we focus on the bene�ts of active networking with respect to a

problem that is unlikely to disappear in the near future: network congestion. In

particular, we consider application-speci�c processing of user data within the net-

work at congested nodes. Given an architecture in which applications can specify

intra-network processing, the bandwidth allocated to each application's packets can

be reduced in a manner that is tailored to the application, rather than being ap-

plied generically. We consider a range of schemes for processing application data

during congestion, including \unit" level dropping (a generalization of packet drop-

ping), media transformation, and multi-stream interaction. We also present some

architectural considerations for a simple approach, in which packets are labeled

to indicate permitted manipulations. Our results suggest that congestion control

makes a good case for active networking, enabling schemes that are not possible

within the conventional view of the network.

College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30332{0280

1 Introduction

1.1 Active Networking and Congestion

Active networking o�ers a change in the usual network paradigm: from passive carrier

of bits to a more general computing engine. In an active network, nodes (routers and

switches) can perform computations on user data as it traverses the network. Further,

applications are provided with a mechanism to select, and even program, the compu-

tation that occurs [20, 23]. In one proposal these two capabilities are integrated in a

capsule entity: a combination of code and data that migrates through the network being

executed at nodes [23].

The following examples have been cited as evidence that active networking technol-

ogy is either needed or already exists in some form [23]:

� Multicast routers, which selectively duplicate packets before forwarding them

on links.

� Video gateways, capable of transcoding video (i.e., changing from one represen-

tation format to another) as it passes from one part of the network to another [4].

� Firewalls, which selectively �lter data passing into and out of an administrative

domain.

In addition to these relatively incremental examples, wide-spread implementation of

active networking is likely to enable radical new applications that cannot be foreseen

today. Large-scale deployment is clearly not without its hurdles, however, with signi�-

cant challenges in interoperability and security.

We assert that more immediate and widely useful bene�ts would help justify a mi-

gration towards active networking. In this paper, we focus on the bene�ts of active

networking with respect to a problem that is unlikely to disappear in the near future:

network congestion. In particular, we consider application-speci�c processing of user

data within the network at congested nodes. Rather than applying congestion reduc-

tion mechanisms generically and broadly, we discuss an architecture that allows each

application to specify how losses to its data should occur in a controlled fashion.

We note that congestion is a prime candidate for active networking, since it is

speci�cally an intra-network event and is potentially far removed from the application.

Further, the time that is required for congestion noti�cation information to propagate

back to the sender limits the speed with which an application can self-regulate to re-

duce congestion, or can ramp up when congestion has cleared. (One can argue quite

legitimately that a gradual increase following congestion |as provided by slow start in

TCP [13]| is good practice; an active network node can similarly implement gradual

increase mechanisms.)

1.2 Characterizing Active Networks

Viewing the network as a computational engine admits a rather large space of possible

approaches. In this section we consider some of the dimensions of this space.

1

As usual, the network is abstracted as a graph of nodes connected by edges. Users

interact with the network by injecting units of data along with addressing information;

the network conveys the data through the graph to the indicated destination. The basic

tenet of active networking is that in addition to addressing information, the data may

have associated information describing a computation to be performed using that data

as some or all of its input. The class of possible computations may be characterized in

several dimensions:

� Computational power. What class of functions can the network compute? Is

the network Turing-complete? How much state is available for each computation?

� Temporal locality. If a computation may have state, how long does that state

persist in the network? Can a computation span multiple data units?

� Spatial locality. Is the computation state local to a particular node, or is it

distributed throughout the network?

As an example, at one extreme an active network might support arbitrary Turing-

computable functions, distributed across the network, using state information that per-

sists forever. At the other extreme, only a �xed, small set of �nite-state computations

can be performed on individual data units, one at a time.

The characteristics of any particular active networking approach with respect to

these dimensions will necessarily be re
ected in the interface between the user and

the network, i.e., the language for specifying the computation to be performed. Many

proposals for moving toward active networking tend toward the more general end of the

scale [12, 23], with programs in a Turing-complete language attached to each packet.

Our approach, described next, is more modest in scope, with the aim of o�ering a useful

and feasible �rst step toward active networking.

1.3 Overview of Our Approach

In our approach, the network de�nes a �nite set of functions that can be computed

at an active network node. Computing these functions may involve state information

that persists at the node, across the handling of multiple data units. Each function

computation is spatially local, in the sense that state information does not move from

node to node (unless it is carried in a data unit).

The interface between the user and the network is very simple: each data unit

carries control information including a number identifying the function to be computed,

plus a set of identi�ers called labels that select the state information to be used (and

possibly updated) in the computation. By assigning these labels to its data units in an

appropriate way, the user can control the processing of its data units. As an example,

the network may support a unit-level drop function: when one packet that speci�es that

function is dropped, for some time thereafter, every packet that matches some subset of

its labels is also dropped. Thus, the de�nition of \unit" depends entirely on the labeling,

and the user can control how much information is aggregated for dropping purposes.

In addition to being well-suited for functions dealing with congestion, this approach

is backward-compatible: packets that don't carry any active processing control infor-

mation are not \actively processed". On the other hand, packets that do carry the

2

information can be switched by non-active nodes, thereby allowing active and non-

active nodes to interoperate in the same network. There are, however, situations where

it is necessary for a switching node to be active-processing-aware; these are discussed

later.

1.4 Roadmap

Following a discussion of related work in Section 2, we turn in Section 3 to a detailed

description of our approach, including speci�c examples of active congestion processing.

We have developed an environment for experimenting with active processing using ex-

isting network node technology (speci�cally, an ATM switch) with a workstation acting

as an active processor. We describe this setup in Section 4 and use it in Section 5 to

evaluate a variety of active processing techniques. Our schemes for processing appli-

cation data during congestion include \unit" level dropping (a generalization of packet

dropping), media transformation, and multi-stream interaction. In Section 6 we present

a possible system architecture for an active node, including hardware and protocol ar-

chitectures. We conclude with an assessment of our approach, including open issues and

areas for future work. Our results suggest that congestion control makes a good case

for active networking, enabling schemes that are not possible within the conventional

view of the network.

2 Related Work

Tennenhouse and Wetherall [23] have outlined an architecture and set of issues for active

networking. They propose an integrated approach in which capsules containing data and

programs replace the traditional (passive) network packets. Much of their discussion

focuses on the programming and security aspects of this architecture, including program

scope, cross-platform execution of code, and resource usage. Active messages [24] are

related to active networking in the sense that the messages contain both user data and

information to specify processing at the receiver. (Speci�cally, each message contains

an address of a user-level handler.) However, active messages are intended to optimize

performance for a network of workstations or other relatively closely coupled set of

processors, not a multi-hop, wide-area network.

Examples of processing that could be called \active" can be found in existing con-

gestion control mechanisms. Recognizing the performance degradation caused by frag-

mentation [14], packet-level discard techniques have been explored to improve the per-

formance of TCP/IP over ATM [5, 19]. The Partial Packet Discard strategy drops all

cells in a packet that follow a dropped cell [5]; the Early Packet Discard strategy im-

proves performance by aggressively dropping entire packets when a congestion threshold

is reached [19].

The presence of a cell loss priority bit in the ATM cell header allows the source to

indicate to the network that some cells should be treated di�erently than others under

congestion. Separating tra�c more �nely into classes allows further specialization of

treatment.

3

While dynamic congestion control is not an explicit goal of Amir et al.'s application

level video gateway [4], their techniques for transcoding can have the e�ect of band-

width reduction. Their focus is on accomodating an environment with heterogeneous

transmission and endstation capabilities, by converting video from one representation

format to another. An implementation of a JPEG [2] to H.261 [3] transcoder can re-

duce the bandwidth of a video stream from 6 Mbps to 128 kbps. Amir et al. further

consider some temporal and spatial bandwidth reduction techniques to use in concert

with format conversion.

3 Our Approach

3.1 Motivation

Our approach is motivated by several expectations. First, active networking, in its most

general (and useful) form, will require substantial changes in network architecture. To

move the network in the direction of these changes, active networking must o�er some

bene�ts, even with only a partial implementation of the architecture. (We assume that

functionality will not be added to end systems unless there is some bene�t in doing so,

and similarly that switch manufacturers and network operators will not upgrade their

switches to support active networking unless there is ultimately some bene�t to their

customers.)

Second, transmission bandwidth and computational power will both continue to

increase, but so will application requirements for bandwidth. In particular, we expect

that network node congestion will be due to bandwidth limitations, and that even

congested switches will have considerable processing power (but not unlimited bu�ering)

available.

Third, we expect that there will always be applications that prefer to adapt their

behavior dynamically to match available network bandwidth, as opposed to reserving

bandwidth in advance. This expectation is based on several observations. One is that

there will be times when the network will reject requests for bandwidth and applica-

tions will have no choice. Also, reserved bandwidth is likely to cost more. Finally, as

computing speeds increase, so will a sending application's ability to trade processing for

transmission bandwidth in reaction to congestion in the network.

At the same time, however, it must be noted that the sender-adaptation model [13],

which has worked so well in the Internet, presents a couple of well-known challenges.

The �rst is the time interval required for the sender to detect congestion, adapt to bring

losses under control (e.g. by reducing transmission rate in the case of TCP, or adjusting

coding parameters in the case of continuous media), and have the controlled-loss data

propagate to the receiver. During this interval, the receiver experiences uncontrolled

loss, resulting in a reduction in quality of service that \magni�es" the actual bandwidth

reduction. (E.g., if a portion of each of several application data units is lost, each

entire data unit may become useless to the receiver.) As transmission and application

bandwidths increase, this problem is exacerbated because propagation delays remain

constant.

As an example, consider an application transmitting at the available bandwidth of

4

100 Kbps, with a round-trip delay of 30 milliseconds. If the available bandwidth is

reduced by 20%, and the sender adapts immediately, the amount of uncontrolled loss is

around 75 bytes. However, if the same sender is transmitting at 1 Gbps, the uncontrolled

loss when the bandwidth is reduced by 20% is 750 Kilobytes.

The other well-known challenge of sender adaptation is detecting an increase in

available bandwidth. This problem, which is worse for continuous-media applications,

arises in best-e�ort networks because loss is the only mechanism for determining avail-

able bandwidth. Thus, for example, if a sender adapts to congestion by changing to a

lossier encoding, it must detect the easing of congestion by periodically reducing com-

pression and waiting for feedback from the receiver. In the case of long-lived congestion,

this dooms the receiver to periodic episodes of uncontrolled loss.

In view of the foregoing, we conclude that a useful application of active networking

is to move those adaptations a sender might make into the network itself, in order to

solve both of the problems just noted. The general objective is thus to ensure that, as

far as possible, losses occur in a controlled and application-speci�c manner. In the next

subsection, we consider a computational model that is general enough to support this

kind of processing |as well as many other functions| but simple enough to be feasible.

3.2 Computational Model

A distinctive feature of our approach is a simple but powerful \interface" to the active

network's computational resources, which consists of (i) a set of prede�ned computa-

tions that can be performed by nodes on user packets, and (ii) header information in

each switched packet that speci�es which computation is to be performed on it. We call

this header information the Active Processing Control Information (APCI). Backward

compatibility with existing network protocols is achieved by arranging that non-active

nodes in the network need not recognize APCI in order to switch packets, and by not

requiring APCI in packets switched by active nodes. In other words, APCI and its inter-

pretation are to some extent orthogonal to and compatible with various architectures,

as discussed in Section 6.2.

The APCI has two components: an Active Processing Function Identi�er (APFI)

and an Association Descriptor. APFI indicates which function the active network should

compute for the data unit to which it is attached. The Association Descriptor consists

of a �xed number of labels, which are simply �xed-size octet strings, and a selector. The

number of label �elds should be large enough to encompass the maximum number of

levels of hierarchy that a single computation on the data unit would ever span. For

example, in TCP/IP four labels should su�ce: one for the connection or application

data unit, one for the transport data unit (e.g. sequence number), one for the IP

datagram, and one for the datagram fragment.

In general, the computation speci�ed by the APFI involves access to state infor-

mation stored in the active processor. The purpose of the Association Descriptor is

to identify state information for the packet. State is stored in an associative memory;

a computation may specify that certain information is to be bound to a tag, which

is computed as some function of the current packet's labels. The selector part of the

Association Descriptor determines which function of the packet's labels are used in com-

5

puting a tag. A computation may also retrieve the information, if any, previously bound

to a given tag. In some cases the only information desired is whether anything has been

bound to a given tag. However, the information bound to a tag could in principle be

anything | even the data unit itself, thus providing a unit reassembly mechanism.

As a simple example of a computation, consider a function that passes only the �rst

packet with a given label pattern, and drops all others:

if anything is bound to the tag consisting of this packet's labels then

drop this packet;

else associate 1 with the tag consisting of this packet's labels;

By assigning labels appropriately, this \gating" function can be applied to individual

packets within a stream, or to multiple streams.

Naturally, the active node will need to reclaim state storage at some point. One

possibility is to age associations, and throw them away when they reach some maximum

age. The assumption is that only functions that exhibit (temporal) locality of reference

will be implemented. Moreover, the functions should be de�ned in terms of soft state,

i.e. if the needed state is missing the function can recover. In all cases, the result of

active processing should be no worse than what would be observed in a passive network.

A general model of what happens to a packet when it arrives at a node might be:

1. The output destination port for the packet is computed as usual.

2. If the packet contains valid APCI, it is sent to an active processor and processing

continues; otherwise, it is transmitted as usual.

3. The function speci�ed in the APCI is computed, using the packet's association

descriptor and user data as inputs.

4. If the result of the function is transformed data (e.g. reduced length), the packet's

network-level header and APCI are recomputed as necessary; the nodes's state is

updated as required by the speci�ed function.

5. The (possibly modi�ed) packet is transmitted to its next-hop node.

If the deployment of active nodes is motivated primarily by congestion control, the

above model is not optimal, because most supported functions will be congestion-control

functions, which need not be invoked unless congestion is present or eminent. In that

case the above model should be modi�ed so that active processing is not performed

except when a node is congested; in Section 6.1 we describe a hardware architecture for

this modi�ed model.

To summarize the features of our approach:

� The label-association mechanism is quite general, and can be used to make com-

putations a�ect multiple streams, data units, or mixtures of both.

� Because the set of functions is �xed, it can be heavily optimized, implemented in

hardware, etc.

6

� Although the set of supported functions is �xed, the functions themselves can be

anything computable.

� The active networking \service" is best-e�ort, and the supported functions should

be designed with this in mind; in the worst case, the service provided with active

processing of packets should be no worse than what would be received without it.

� Because only speci�c network-supported functions can be invoked, security is not

an issue.

3.3 Example Functions

Next we consider some of the functions that might be supported by an active processor

(AP) for the purpose of controlling loss in the face of congestion.

Bu�ering and Rate Control The most direct \translation" of sender-based adap-

tation to active networking is to have the AP monitor the available bandwidth and

rate-control the data, bu�ering it and metering it out at the available rate. The obvious

question to ask about this function is why it isn't better to simply put the additional

bu�ering it requires into the switch instead of the AP. Our answer is that in the AP,

this storage can be much more
exibly used. Many of the other processing functions

discussed below use this basic capability as a building block.

Unit-Level Dropping. Unit-level dropping is a natural extension of packet-level dis-

card [5, 19]. Units that are meaningful to the application are dropped if any portion of

the unit must be dropped. Note that to be most e�ective, this does require bu�ering

at the AP to collect a unit so that it is clear that the \tail" will not be dropped. Thus

some additional latency and bu�ering at the AP are traded for improvements in useful

delivery.

Media Transformation. Active networks can do more than simple intelligent drop-

ping of data when congestion occurs. A particularly powerful capability is the trans-

formation of data at a congestion point, into a form which reduces the bandwidth but

preserves as much useful information as possible. In essence, this may allow the active

node to create the form of the data which the application would have created, had it

known about the bandwidth limitations encountered at the congestion point. In gen-

eral, this reduced-bandwidth form is not obtained by simply dropping units from the

higher-bandwidth form.

The importance of graceful degradation is well recognized, and indeed is supported

by techniques such as layered encoding of images and video [2, 11, 16]. In layered

encoding, the image is coded into successive levels. Reconstruction is possible (albeit at

lower quality) even if one or more lower level components are missing. Layered encoding

provides a fairly coarse level of control over the bandwidth of the stream, based on the

number of levels transmitted.

The media transformations that we have in mind may o�er more �ne-grained con-

trol over bandwidth and image quality than layered encoding. They could work well

7

in conjunction with layered encoding to tailor the transformed stream to the desired

bandwidth. A number of techniques are suitable for on-the-
y transformation of MPEG

and JPEG data, including selective discard of discrete cosine transform (DCT) coe�-

cients [9, 22, 17], and decoding and recoding at higher quantization.

Multi-stream Interaction. As alluded to earlier, active networks are capable of op-

erating on units that have been de�ned to include data from multiple streams. Consider

the following examples of multi-stream interactions:

� Multimedia playout.

Two streams that are to be played out together (e.g., video and audio, text and

graphics) are carried on separate streams. This would arise if the feeds for the

streams are in di�erent locations, or if the streams are stored in di�erent locations

(e.g., media repositories that can be used to create multimedia presentations). If a

segment is lost from one, it would be helpful if the other is elevated in importance

so that the end user maintains some information.

� Sensors.

Sensors monitoring some critical system (e.g., medical patient condition or home

security) independently report to a central monitoring station. Again, if data is

lost from one sensor, the information from the others increases in importance.

� Video striping.

MPEG compressed video is separated into three streams, one for each type of frame

(I, P, B). This would enable the quality of service speci�cation for each stream

to be tailored to the stream type; since the three frames di�er signi�cantly in

their compression and importance, this could improve overall performance. Since

P frames may depend on certain I frames and B frames may depend on certain

P and I frames, the reconstruction and playout process must have all dependent

frames. Thus, a loss of an I or P frame should trigger loss of any P or B frames

that depend on the lost frame.

In the �rst two examples, a \unit" comprises data from two or more streams, and the

data from one stream is elevated in importance if data from another stream is dropped.

This contrasts with the last example, where the unit is not considered complete unless

all components from all streams have been received.

4 Experimental Setup

4.1 Overview

We have emulated an active node hardware architecture (as described in Section 6.1)

using a Fore ASX-200 ATM switch with four attached Sparcstations. Speci�cally, we

have designated one of the endstations to be an active processing element, while using

the other three endstations to act as sources and destinations of network tra�c. We

have controlled the transmission of data streams to allow selected diversion of streams

8

Fore ASX-200

"AP"

Endstations

Figure 1: Experimental Con�guration

through the active processing element before being forwarded to the proper output.

Figure 1 depicts this setup.

We note that our emulation has one limitation that may not be present in an in-

tegrated implementation of active processing with the network node hardware. This

limitation is on the speed of the pipe into the processing node. In our emulation, the

speed is restricted to the speed of the external link from the ATM switch to the pro-

cessing node. Cells must traverse the output bu�er before being transmitted over the

�ber link to the processing node. In an integrated implementation, the active proces-

sor would likely have direct access to the cells in its bu�er, allowing data transfer to

the active processor at a faster rate than the external link rate. In a bus-based switch

architecture, the active processor could receive data at n times the external link rate.

In order to calibrate/translate our results to those of an integrated implementation,

we intentionally \slow" the links from the source to the switch and from the switch to

the destination. Thus, the link into the active processor appears to be faster, relatively

speaking.

4.2 Details

It is important to understand some of the operational details of the Fore ASX-200

switch [1], as they have constrained and dictated portions of our implementation.

Network Device Characteristics. Each VC is characterized at circuit setup time

by peak and mean data rate, and burst capacity. Using these parameters, the Fore ASX-

200 maintains an internal leaky bucket for the connection, marking or dropping non-

compliant cells, depending on the con�guration. These parameters directly translate to

the amount of bu�ering the switch reserves for a particular VC. The SBA-200e NICs

used in the experiments heed only the peak cell rate per VC, and always transmit all

available data at the peak cell rate.

9

Source Characteristics. Given the network characteristics as de�ned above, it is

possible to model a wide range of sources. In order to model congestion, we set our VCs

with peak cell rate strictly greater than the mean cell rate. As the network interface

always transmits at peak rate, this leads to cells being dropped at the switch.

In order to model interesting source characteristics, we control the source transmis-

sion rate through the use of a pair of parameters, p and MaxWait. After each network

write, sources generate a random number x in the range [0::1]. If x < p, then the source

generates another random number y in the range [0::1], and waits (does not transmit)

for y � MaxWait amount of time. By varying these probability parameters and the

amount of wait time, we can model bursty sources of tra�c.

5 Results

We have studied three forms of active processing: 1) unit-level dropping, where the

units are contiguous data from the same stream, 2) MPEG frame and group-of-picture

dropping, and 3) multi-stream interactions of both conjunctive and disjunctive forms.

We calibrate the performance of these APs by comparing to performance with no AP at

all, and also to a Null AP, which brings data into the active processor and immediately

retransmits it to the receiver 1.

With the exception of the Null AP, all of the APs we have considered conform to

the same generic processing architecture. In the generic architecture, an AP accepts

data from one or more sources. The AP maintains a working bu�er for each source,

used to assemble incoming data into application-speci�c units. The units will often

comprise multiple packets or cells; the working bu�er provides space for the assembly

process. Once a complete unit has been assembled, processing is performed. If the

processing results in any data, the AP transfers this to its output queue and rate controls

the transmission into the switch, sending at the rate which the destination can accept

data. Losses may occur at the AP output queue if the bu�er over
ows; however, the

rate control prevents any losses from occurring in the switch between the AP and the

destination.

5.1 Unit-Level Dropping

The Unit-Level Drop (ULD) AP is an example of the generic architecture, where the

processing is null. The AP provides a bu�er for the data, does unit-level dropping,

and smooths the tra��c to the destination. In addition to source tra�c and congestion

conditions, the performance of this AP will be a�ected by two parameters: the amount

of bu�ering at the AP and the size of the application units. In Figure 2 we vary the

application unit size on the x-axis, and plot the fraction of transmitted application

units that are received intact. (That is, with no piece missing). The di�erent curves

correspond to various amounts of AP bu�ering, expressed as a multiple of the application

unit size. Our base unit size is 4092 bytes; thus a unit size of two corresponds to 8184

bytes. We also plot the performance of no AP, running the application stream directly

through the Fore switch.

1Interestingly, the performance of the Null AP can be better than no AP, since the extra read/write into

the bu�er provides enough delay to allow the switch bu�ers to drain more e�ectively.

10

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45

F
ra

ct
io

n
of

 T
ra

ns
m

itt
ed

 A
U

s
R

ec
ei

ve
d

AU size (in # of base units)

Performance of Unit Level Dropping (Source wait probability = 0.05)

No AP
1 AU Buffer
2 AU Buffer
4 AU Buffer
8 AU Buffer

16 AU Buffer

Figure 2: Performance of Unit-Level Dropping, Source Rate: 32Mbps, Destination Accep-

tance Rate: 20Mbps (mean)

The salient features of this plot include the following. Without an AP, approximately

36% of the units are properly received, regardless of the unit size. The performance with

no AP is actually better than with an AP for the smallest application unit size and small

bu�ers at the AP. This is caused by contention for the limited output queue space and

the AP rate shaping, which will cause data losses when the input is bursty. The ULD

AP is capable of preserving nearly 90% of the application units, provided the amount

of bu�ering is at least four times the application unit size.

5.2 MPEG Streams

MPEG streams present an interesting opportunity to consider a special case of (basic)

unit-level dropping, and a more complex dropping mechanism that re
ects the inherent

dependencies in the data stream. For our purposes, the important feature of an MPEG

stream is that it consists of a sequence of frames of three types: I, P and B. Coding

dependencies exist between the frames, causing P and B-frames to possibly require other

frames in order to be properly decoded. Each I-frame plus the following P and B frames

forms a group of pictures (GOP), which can be decoded independently of the other

frames. We have augmented an existing MPEG decoding tool [15] to delimit frames as

application units. We further mark each frame with its type, I, P or B.

We consider two types of MPEG active processing. Our MPEG Frame Dropping

(MPEG-FD) AP performs frame level dropping of MPEG streams. This is unit-level

dropping with variable length units. To re
ect some of the dependency structure in

11

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
ra

ct
io

n
of

 T
ot

al
 T

ra
ns

m
itt

ed
 F

ra
m

es
 R

ec
ei

ve
d

Buffer Size in Kbytes

Performance of MPEG APs vs. Buffer Size

Drop GOP AP - All Frames
Frame Level Drop AP - All Frames

Null AP - All Frames

Figure 3: MPEG Performance - All Frames, Source Rate: 32Mbps, Destination Acceptance

Rate: 20Mbps (mean)

MPEG, we also have an MPEG Group-of-Pictures Dropping (MPEG-GOP) AP, which

drops an entire GOP if it is not able to transmit the I-frame. (Note that a more

precise dropping scheme is possible, namely one which is aware of the exact dependencies

amongst the frames, and triggers a drop of all (transitively) dependent frames whenever

a frame must be dropped.) Ramanathan et al. explore similar discard mechanisms to

improve video transmission [18].

We evaluate the performance of the MPEGAPs using twometrics. First, we measure

the fraction of transmitted frames that were received, regardless of frame type. These

results are given in Figure 3, and include a curve for a Null AP. The bu�er size is varied

on the x-axis. We note that the frames have an average size of about 8 Kbytes; until the

bu�er size is about twice the average frame size, the Null AP is the best performer. As

bu�er size increases, the MPEG APs approach 100% of the data successfully received,

while the Null AP is constant at about 36%. Interestingly, the Frame dropping AP

outperforms the GOP dropping AP on this metric. This does not necessarily imply a

better perceived quality of service at the receiver, however, because many of the frames

received with the Frame dropping AP are dependent on frames that were not received.

We also evaluate the performance based on the fraction of the I-frames received.

These are the most important frames, since receiving an I-frame will preserve some

portion of its GOP, while losing an I-frame destroys most (and often all) of the GOP.

These results are shown in Figure 4, and indicate that the GOP dropping AP is better

than the frame dropping AP on this metric, particularly if bu�er space is limited.

12

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
ra

ct
io

n
of

 G
O

P
s

R
ec

ei
ve

d

Buffer Size in Kbytes

Performance of MPEG APs vs. Buffer Size

Drop GOP AP - GOPs
Frame Level Drop AP - GOPs

Null AP - All Frames

Figure 4: MPEG Performance - I-Frames, Source Rate: 32Mbps, Destination Acceptance

Rate: 20Mbps (mean)

5.3 Multi-Stream Interactions

We now consider the case of multi-stream interaction, in which a logical application unit

is composed of data from two or more streams. We use the term \mates" to denote a

set of application units that form a logical application unit. We are interested in two

forms of multi-stream interactions:

1. Conjunctive association: Multiple streams are de�ned to be conjunctively associ-

ated if the logical application unit is useful i� all of its components are correctly

received.

2. Disjunctive association: Multiple streams are de�ned to be disjunctively associated

if the logical application unit is useful i� at least one of its components is correctly

received.

We have considered several options for the management of the AP output queue for

multiple streams. One option is to create separate queues, each containing application

units from a single source, with a control algorithm to e�ciently track which multi-

stream sources are completely assembled and ready to send to the destination. We

implemented a second option, in which the sources share a single output queue. This

scheme may cause the AP to transmit complete application units but fragmented logical

application units. Below, we consider several methods for reducing this fragmentation.

13

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

F
ra

ct
io

n
of

 T
ra

nn
sm

itt
ed

 L
og

ic
al

 A
U

s
re

ce
iv

ed

Max. AUs Buffered at AP

Conjunctive Associations between Sources - Fraction of AUs Received

Queue Compression
Synchronization
Unit Level Drop

Buffer Only

Figure 5: Conjunctive Association - Fraction Received, Two Sources: 16Mbps each, Desti-

nation Acceptance Rate: 22Mbps (mean)

5.3.1 Conjunctive Association

We have implemented two AP algorithms exploiting the synchronous nature of conjunc-

tive streams. In our experiments, we limited the number of streams to two and sent

16 Mbytes on each stream. The �rst Sync AP tries to \synchronize" the two streams

within the AP. Speci�cally, it keeps a history list of appplication unit identi�ers which

have been dropped at the AP. When a unit arrives whose mate is in the history list, it

is dropped as well, and the entry is deleted from the history list.

The performance of the Sync AP can be improved in certain cases. Consider the

case in which the individual sources are naturally relatively synchronized. In this case,

when an application unit is dropped, there is a fairly high probability that its mate

is still in the AP output queue. With the synchronization algorithm, the mate would

be sent, although the logical application unit is known to be corrupted. The Queue

Compression AP remedies this by checking the output queue for mates of units that it

is about to drop. If it �nds a mate, the mate is dropped as well.

Multi-stream APs are evaluated in two ways. First, we consider the fraction of

logical application units which were received intact. Figure 5 shows this fraction for

the conjunctive streams and the two APs. For reference, we also include the unit-level

dropping AP, and a Bu�er Only AP. The Bu�er Only AP provides bu�ering and rate

control, but it does not assemble the incoming data into units. The results using this

AP give an indication of the improvement that could be obtained by simply adding

more bu�ering to a network node, and foregoing any sort of processing. As the �gure

indicates, more bu�ering is helpful, however the APs that do some data processing can

double the fraction of logical application units received.

To compare the processing APs, we note that these two source streams are natu-

rally relatively synchronized, thus the unit-level dropping AP has performance which

14

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

F
ra

ct
io

n
of

 T
ra

ns
m

itt
ed

 L
og

ic
al

 A
U

s
re

ce
iv

ed

Max. AUs Buffered at AP

Conjunctive Associations between Staggered Sources (offset 1 sec.)

Queue Compression
Synchronization
Unit Level Drop

Buffer Only

Figure 6: Conjunctive Association - Fraction Received, Two Sources: 16Mbps each, Desti-

nation Acceptance Rate: 22Mbps (mean)

is comparable to the Sync AP; the mates nearly always arrive at the AP close to one

another, and thus tend to see congestion at similar times. The Queue Compression AP

achieves a 10 to 15% better success rate for logical units.

To examine the e�ect ofthe relative synchronization, we repeated the experiment

with the sources staggered, one o�set from the other by one second. These results are

shown in Figure 6, and indicate that the Bu�er Only AP performs worse under staggered

sources, while the other schemes perform about the same or better.

In the case of conjunctive streams, the switch has the possibility of wasting band-

width by sending a unit whose mate either has been or will eventually be dropped.

Given our (strict) de�nition of the usefulness of the data, any such unit simply wastes

network bandwidth. Our second metric determines the fraction of data sent which is

wasted data. As illustrated in Figure 7, the value of the Queue Compression scheme

is more clear based on this metric, achieving no wasted bandwidth once the bu�er size

exceeds 15 kbytes.

5.3.2 Disjunctive Association

Upon re
ection, there is a trivial algorithm that is always optimal (with respect to the

network bandwidth usage) in cases of disjunctive association between multiple streams

{ the AP should drop all but the stream that consumes the least bandwidth. However,

this algorithm may not be the most satisfactory upon the evaluation of the resulting

stream at the destination. Instead, we have designed an algorithm that tries to send all

the application units that are possible, except in cases when a unit was dropped due

to bu�er over
ow. Upon bu�er over
ow, the algorithm tries to exploit the disjunctive

nature of the stream and send the mate of the dropped unit.

When an application unit u cannot be sent, the Dynamic Priority Elevation (DPE)

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30

F
ra

ct
io

n
of

 U
se

d
B

W
 w

as
te

d
by

 A
P

Max. AUs Buffered at AP

Conjunctive Associations between Sources - BW Wasted by AP

Queue Compression
Synchronization
Unit Level Drop

Buffer Only

Figure 7: Conjunctive Association - Bandwidth Wasted, Two Sources: 16Mbps each, Des-

tination Acceptance Rate: 22Mbps (mean)

AP searches a history list of units that have been dropped. If the mate of u is not in the

history list, then the unit identi�er is added to the list and u is dropped. If the mate is

in the history list, then the AP elevates the priority of u, by attempting to send it at

the expense of another unit. Speci�cally, it searches the units in the (full) output queue

and attempts to �nd one which is not in the history list. If such a unit can be found,

it is removed from the output queue, dropped, and its identi�er is added to the history

list. The output queue now has space for u.

Figure 8 shows the performance of the DPE AP compared to unit-level dropping

and the Bu�er Only AP. The close comparison of the DPE and unit-level dropping

schemes is an indication of the processing requirements of the DPE algorithm. Since

this algorithm must do signi�cant searching and matching of unit identi�ers, we cannot

run the DPE AP experiments at a source rate that would cause the ULD AP to perform

poorly. It should be noted that in all cases the DPE AP lost both units of a logical AU,

it was becuase the DPE AP could not service its input queues at the minimum required

rate. Thus, the DPE AP could not deliver the AUs becuase it never received them.

6 System Architecture

6.1 Hardware Architecture

The hardware architecture of an active network node will need to provide substantial

processing capabilities and easy access between processing functions and node inputs

and outputs. Figure 9 depicts an active node architecture with a routing core, connecting

node inputs and outputs and active processing elements. Data entering the node can

be sent directly to the proper output or, in the case of a congested output link, to the

appropriate (�rst) active processor. A Congestion Toggle (CT) receives information

16

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

F
ra

ct
io

n
of

 T
ra

ns
m

itt
ed

 L
og

ic
al

 A
U

s
R

ec
ei

ve
d

Max. AUs Buffered at AP

Disjuctive Association of Sources

Buffer Only
Unit Level Dropping

Dynamic Priority Elevation

Figure 8: Disjunctive Association, Two Sources: 16Mbps each, Destination Acceptance

Rate: 22Mbps (mean)

AP

AP

CoreRouting

Unit
Reassembly

Processing

Segmentation Lookup
Next stop

ID Output AP

Port Processors Active Processors

No

IPP

OPP

Yes

Congestion
Toggle

CT

Figure 9: Hardware Architecture

17

from congestion monitors, and maintains a table indicating where to send data during

normal and congested states. The \Yes" path in the diagram indicates data
ow during

congestion, while the \No" path is the normal route.

The active processing elements may be specialized hardware, tailored to perform

particular active node processing, or they may be general purpose processors. An indi-

vidual processing element may consist of multiple processors and/or pipelining to enable

fast computation. This computation power is a shared resource, accessible by the data

from any user connection that passes through this network node, thus greater resources

may be justi�ed than in a non-shared location. A data unit that enters the network

node may pass through multiple processing elements before being routed to one or more

network outputs. The routing core allows data to move between processing elements at

high speed.

We can get a rough estimate on the (general-purpose) processing capability required

by an active processor by noting that the aggregate input bandwidth limits the rate at

which data must be processed. Consider a 16 by 16 switch with 155 Mbps links, and

assume all input tra�c from 15 of the links is bound for the same output. Thus the

o�ered load from those links must be reduced by a factor of 15. Assume that this can

be achieved by transforming the data, at a cost of i instructions per input bit. Then

an upper bound on the aggregate processing bandwidth required (ignoring overhead)

is 2:325i Giga-instructions per second. Note that data transformations are likely to be

the most processing-intensive form of bandwidth-reduction method.

6.2 Protocol Architecture

In our approach, the AP only processes packets containing Active Processing Control

Information; this header, when present, is always provided by the originating end-

system. In this section we consider the placement of APCI in packets. The two main

questions are where to put it, and how to get it there.

6.2.1 Location of the Active Processing Control Header

The obvious place to put the APCI is in the same header used to switch the packet.

This is unacceptable, however, for at least two reasons. First, it doesn't work for ATM

or any other technology where the switched unit is too small to accomodate additional

the overhead of the APCI. And second, it is not backward-compatible, requiring that all

network protocols become \active-aware". On the other hand, it does not seem possible

to completely isolate the active networking architecture from the network protocol, for

reasons that will be discussed below.

An alternative to placing APCI in the network header itself is to de�ne a \generic"

location for the APCI function, su�ciently high in the protocol stack that the additional

overhead is not prohibitive, but su�ciently low to allow its location by switching nodes

without too much knowledge of higher-level protocols. In particular, we propose to place

the APCI function just above the �rst relay layer whose data units are large enough to

handle the additional overhead. For example, in a network in which ATM is used as the

end-to-end transport, the APCI function would be atop the ATM Adaptation Layer,

so that the APCI itself would immediately follow the AAL header in an AAL Protocol

18

Data Unit. This implies that an ATM-AP must �rst reassemble AAL Data Units before

it can examine the label header. While this adds latency, recall that it does not occur

for every data unit. (This is the approach we implemented in our experimental setup.)

If the Internet Protocol (version 4 or version 6) is being used as the end-to-end

switching layer, we recommend that the APCI be treated as a \sublayer" or optional

header, as is done for example with the headers used to implement the IP security

architecture [6, 7]. At a node where active processing takes place, the switch examines

packets for APCI and processes those in which it is present.

A very likely scenario is one in which IP is used with subnet technologies that include

ATM, but not all tra�c on the ATM network is IP tra�c. In this scenario, ATM switches

handle a mixture of tra�c, of which some carries an IP header while the rest is VBR

or CBR tra�c such as voice or video that stays on the ATM network. IP switches, on

the other hand, deal only with IP datagrams, some of which are transmitted over ATM

subnets. In such a scenario, the optimal solution is for IP datagrams to have the APCI

following the IP header, and ATM-only tra�c to have it following the AAL header.

Thus, ATM APs have to look in two places for APCI information: following the AAL

header in non-IP tra�c, and following the IP header for IP tra�c. This implies that

ATM APs need to know enough about the IP header format to be able to �nd the APCI.

This requirement is reasonable provided the ATM-AP does not have to do reassembly

of the IP datagram as well as the AAL data unit i.e. there is one IP datagram (or

fragment) per AAL-PDU.2

Although the network layer processing in switches can for the most part remain

ignorant of active processing, there is one case where it must know about and interpret

the APCI. If anything (e.g. fragmentation) causes a restructuring of the packet while

it is in transit through the network, the network layer must adjust the APCI so it

remains consistent. However, fragmentation has been avoided as much as possible for

some time [14], and the philosophy of Application Layer Framing [8] has gained wide

acceptance. Where ALF prevails, the network tries to preserve the structure of the data

units created by the application, and the network layer can be mostly independent of

active networking.

6.2.2 Attaching the APCI

The Active Processing control information may depend on multiple protocol layers.

For example, the APCI might include labels that correspond to a block number in

a �le, a TCP sequence number, and an IP datagram identi�er. The question arises

how to aggregate this information in a single location in a packet, especially within a

layered encapsulation model. We �rst observe that ideally the APCI will originate with

the application itself, because it can best determine which, if any, active processing

functions are appropriate for its data. To allow for this, the user interface must be

extended to enable the application to pass APCI in to the protocol stack on a per-

application-data-unit basis, presumably as a parameter to the \send" primitive. Along

with the APFI, the application can also pass one or more values to be placed in speci�c

label �elds in the APCI.
2The same approach would apply to any other switched technology used as a subnet by IP, e.g. XTP [21].

Similarly, when some other network layer tunnels through IP, the argument would apply with IP in the role

of ATM.

19

TCP

IP

App A

ATM Adapt. Layer

ATM Adapt. Layer

user data

A
P

C
I

A
A

L

ATM

user data

T
C

P user
data T

C
P user

data

APFI
Label

i
u

T
C

P user
data T

C
P user

dataIPIP

T
C

P

A
P

C
I

IPA
A

L user
data T

C
P

A
P

C
I

IPA
A

L user
data

APFI
Label

i
u

u
n

i

u
n

i

k

u
i

m

u
n

i

x

App B

user data

Figure 10: Attachment of APCI in sending end system

20

Note, however, that it is not necessary that the application make this determination

explicitly; for certain applications and certain AP functions, the underlying protocol

stack might select the function and attach the appropriate APCI. For example, TCP

might attach an APCI that marks the TCP segment and selects the ULD function. In

this way applications can get some of the bene�ts of active networking without having

to be modi�ed.

Below the user (application) interface, each layer must be modi�ed to add the ap-

propriate label value to the APCI it receives from the layer above. The question then

becomes when to attach the aggregated APCI information to the packet. If this is done

by the �rst appropriate layer (e.g. IP or AAL) that receives it from the layer above,

the rule stated in the previous subsection will be satisi�ed, i.e. the APCI will follow

the header of the highest-level end-to-end relay layer. Figure 10 shows an example, in

which two types of tra�c are generated. Application A uses the TCP/IP stack, while B

runs directly atop an ATM Adaptation Layer. Data units from application A have the

APCI attached by IP; the AAL receives no APCI from IP. B's data units have APCI

attached by the AAL.

As the data unit progresses down through the stack, each layer adds its label to the

APCI; this information can be used to encode the structure of the data at all levels, as

described in Feldmeier's \chunk" labeling scheme [10].

At the receiver, the APCI must be recognized by the appropriate layer. In the

simplest case, it is discarded. For example, with IPv6, it might be treated as an un-

recognized option header. In the case of IPv4 or an AAL, however, it will need to

be treated as an explicit (but trivial) sublayer. Another possibility is to pass the set

of labels to each receiving protocol entity on the way up through the stack. As with

\chunks", this information may facilitate processing at the receiver, especially when

units are reordered in transit.

7 Conclusions

Viewing the network as a general computation engine enables an exciting set of capa-

bilities and applications. Implementation and deployment of this view clearly involves

challenges along many fronts, from security to interoperability to performance. We have

taken a modest step towards understanding the capabilities that an active network might

provide with regard to controlling congestion. In particular, we have explored mech-

anisms that would allow bandwidth reduction to occur in a manner that preserves as

much application-level useful data as possible. We have outlined a possible hardware

architecture for an active network node, and we have described a protocol architecture

to allow applications to specify computation to occur in the network. Using existing net-

working technology, we have implemented a range of active mechanisms and evaluated

their performance.

A number of issues require further consideration. If the applications or end-system

protocols include congestion control or adaptation, then these mechanisms will inter-

act with active processing in ways that we have yet to fully explore. In the face of

long term congestion, source adaptation will likely be required, otherwise uncontrolled

loss may still occur. For shorter term congestion, mechanisms in the network will be

21

better able to quickly adapt and recover. We have also not yet considered fairness is-

sues regarding the service and performance received by various connections. Since our

bandwidth reduction techniques are more extreme than arbitrary cell or packet drops,

applications may experience unequal short-term performance degradation. Provisions

will be required over the long term to ensure fair service.

In future work, we plan to augment our existing mechanisms, in particular to include

media transformation and additional multi-stream interactions. We also plan to exper-

iment with a wider-area setup, allowing more complex multi-active-node processing.

References

[1] ForeRunner ASX-200, software version 3.4.x edition.

[2] ISO DIS 10918-1 Digital compression and coding of continuous-tone still images

(JPEG). CCITT Recommendation T.81.

[3] Video codec for audiovisual services at p*64kb/s. ITU-T Recommendation H.261.

[4] E. Amir, W. McCanne, and H. Zhang. An application level video gateway. In ACM

Multimedia '95, 1995.

[5] G. Armitage and K. Adans. Packet reassembly during cell loss. IEEE Network

Magazine, September 1993.

[6] Ran Atkinson. Ip authentication header. RFC 1826, August 1995.

[7] Ran Atkinson. Ip encapsulating security payload. RFC 1827, August 1995.

[8] D. Clark and D. Tennenhouse. Architectural considerations for a new generation

of protocols. In ACM SIGCOMM '90, 1990.

[9] A. Eleftheriadis and D. Anastassiou. Constained and general dynamic rate shaping

of compressed digital video. In IEEE International Conference on Image Process-

ing, Washington, D.C., October 1995.

[10] D. Feldmeier. A data-labelling technique for high-performance protocol processing

and its consequences. In ACM SIGCOMM '93, 1993.

[11] International Organisation for Standardisation. Generic coding of moving pictures

and associated audio. ISO/IEC/JTC1/SC29/WG-11, March 1993.

[12] J. Gosling and H. McGilton. The Java language environment: A White paper. Sun

Microsystems, 1995.

[13] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM '88, 1988.

[14] C. Kent and J. Mogul. Fragmentation considered harmful. In ACM SIGCOMM

'87, August 1987.

[15] Philip Lougher. Mpegutil, 1995.

22

[16] S. McCanne and M. Vetterli. Joint source/channel coding for multicast packet

video. In IEEE International Conference on Image Processing, October 1995.

[17] D. G. Morrison, M. E. Nilsson, and M. Ghanbari. Reduction of the bit-rate of

compressed video in its coded form. In Sixth International Workshop on Packet

Video, Portland, OR, September 1994.

[18] S. Ramanathan, P. Rangan, and H. Vin. Frame-induced packet discarding: an

e�cient strategy for video networking. In Workshop on Network and Operating

System Support for Digital Audio and Video (NOSSDAV), November 1993.

[19] A. Romanow and S. Floyd. Dynamics of TCP tra�c over ATM networks. IEEE

Journal on Selected Areas in Communications, May 1995.

[20] W. David Sincoskie. Development of the U.S. national information infrastructure.

Keynote address, International Conference on Computer Communications and Net-

works (ICCCN'95), September 1995.

[21] W. T. Strayer, B. F. Dempsey, and A. C. Weaver. XTP: The Xpress Transfer

Protocol. Addison-Wesley, 1992.

[22] H. Sun, W. Kwok, and J. Zdepski. Architectures for MPEG compressed bitstream

scaling. In IEEE International Conference on Image Processing,Washington, D.C.,

October 1995.

[23] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture.

In Multimedia Computing and Networking '96, January 1996.

[24] T. von Eicken et al. Active messages: A mechanism for integrated communication

and computation. In 19th International Symposium on Computer Architecture,

1992.

23

