Tera-Op Networking: Local Adaptation to Congestion

Ken Calvert Ellen Zegura Samrat Bhattacharjee

Networking and Telecommunications Group Georgia Institute of Technology, Atlanta

The Case

Assumption: \$/MIP continues to decrease

Problems that won't go away:

- propagation delay (i.e., round-trip-time)
- ongestion
- applications that don't know what they want (or aren't willing to pay for it up front...)

Result: Periods of uncontrolled loss

Active Networking

Objective: put the *adaptation* where the problem is

It is already happening:

- TCP snooping
- ack dropping
- o packet-level dropping
- o video transcoding gateway

[Katz et. al.] [Karn and others] [Floyd & Romanow] [Amir et al.]

Observation: a more general capability might be interesting

An Approach to Active Networking

- Network supports set of predefined computations.
- Computations may involve state.
- Packets labels identify
 - (i) computation (ii) state.
- State eventually evaporates.

Interface

- Language to describe computation.
- Namespace and invocation mechanism.

Active Networking Architecture

Hardware:

Advantages:

- Motivated by a real problem (adaptation to congestion).
- Incremental deployment.
- Separates mechanism and policy.
- Allows for evolution, addition of new computations.

What We've Done

Active Node Processing

- Generalized Unit-level drop.
- Rate-control.
- MPEG transformation (selective frame dropping).

