
Bowman: A Node OS for
Active Networks

College of Computing; Georgia Tech

Department of Computer Science; U. of Maryland

Department of Computer Science, U. of Kentucky

Infocom 2000, Tel Aviv, Israel

S. Merugu S. Bhattacharjee E. Zegura K. Calvert

2

Outline

• Background - Active Networking

• Bowman System Design

• Performance Measurements

• Configuration for Active Networking

• Concluding Remarks

3

Active Networking: What

• Programmable user-network interface(s)

• Control via:
– mobile code in packets (capsules)

– mobile code fetched from code repositories,
based on packet header values

– programmable signaling protocols

– selection from set of fixed behaviors

→ Multiple execution environments

4

Active Networking: Why

• Faster deployment of new protocols and services

• Platform for research

• Services that exploit app and network knowledge
– reliable multicast

– application-specific congestion control, e.g., MPEG

– network caching

– network monitoring

→ High performance, access to low-level resources

5

DARPA Node Architecture

ANTS PLAN CANEs

AN UNIs

Execution
Environments

Node OS memoryCPUIO ifs

6

Bowman (and CANEs)

CANEs

AN UNI

Execution
Environments

Node OS Bowman

HostOS (POSIX compliant)

7

Bowman Design Goals

• Support per-flow processing

• Provide a fast path

• Enable a network-wide architecture

• Maintain reasonable performance

• Provide modularity and extensibility

• Leverage existing Host OS
n

8

Primary Bowman Abstractions

• Channels
– communication endpoints

– include protocol processing

• A-flows
– computation

• State store
– indexed by a unique key

– includes named registries for
data sharing between a-flows

state store

a-flows

channels

9

Additional Components

• Dynamic extension mechanism

• Efficient packet classifier
– match arbitrary number of header fields

– returns first, all, or best match (with costs
associated with each field)

– dynamically extensible to different protocols

• Timers

• Network architecture via abstract topologies

10

Packet Processing Path

EE code
Bowman

code

a-flow processing

input queues

output queuespacket
classifiers

input channels output channels

cut-through

11

Bowman Network Architecture

• Configure abstract links: endpoints plus protocol
processing over physical topology (ALP)

• Select set of abstract links for virtual topology
(ATP)

physical topo abstract links virtual topo

Ethernet UDP

12

Performance Testing

Sun Ultra-5, 300 MHz
SunOS 5.7

Bowman Node
Sun Ultra-2, 168 MHz

2 processors

Sun Ultra-5, 300 MHz
SunOS 5.7

100 Mbps 100 Mbps

Compare to:
 • Solaris kernel forwarding
 • C gateway -- socket read/write of UDP segments

13

Forwarding Performance

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000 1200 1400 1600

Packet Size (Bytes)

T
hr

ou
gh

pu
t

at
 r

ec
ei

ve
r

(M
bp

s)

Solaris Kernel

C Gateway

Bowman Aflow

Saturates 100 Mbps Ethernet for packets over 1400 bytes

14

Packet Processing Overheads

0

50

100

150

200

250

200 400 600 800 1000 1200 1400

Packet Size (bytes)

C
um

ul
at

iv
e

T
im

e
(m

ic
ro

se
co

nd
s)

System write
A-flow processing

A-flow dequeue
A-flow enqueue

Channel processing
System read

Bowman overhead relatively constant (~25 usec)
System read and write calls dominate processing time

15

Effect of Real-time Scheduling

10

100

1000

2000 2200 2400 2600 2800 3000

Packet Index

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

Input Queue (TS)
Output Queue (TS)
Input Queue (RT)
Output Queue (RT)

Comparison of time-sharing (TS) to real-time (RT) mode
Three kernel threads: input, a-flow, output

16

Configuration for AN

• Monolithic approach
– EE creates exactly one a-flow that subscribes to

all packets addressed to EE

– EE manages own resources

• Multi-a-flow approach (CANEs)
– EE creates one control a-flow used for EE

signaling and management

– New a-flow for each user’s packets

– Bowman schedules user computation

17

Selected Related Work

• Router plug-ins (WashU)
– integrated EE (customizable IP) and NodeOS

– NetBSD kernel modifications

• Janos (Utah)
– Java-based NodeOS

• Extensible routers (Princeton)
– Scout-based NodeOS

18

Future Work

• Security mechanism

• Resource management

• More complex output queueing disciplines

• Scalable topology instantiation

• EE-developers toolkit to run over DARPA
NodeOS implementations?

EE code
Bowman

code

a-flow processing

input queues

output queuespacket
classifiers

input channels output channels

cut-through

