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Active Networking: What

• Programmable user-network interface(s)

• Control via:
– mobile code in packets (capsules)

– mobile code fetched from code repositories,
based on packet header values

– programmable signaling protocols

– selection from set of fixed behaviors

→ Multiple execution environments
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Active Networking: Why

• Faster deployment of new protocols and services

• Platform for research

• Services that exploit app and network knowledge
– reliable multicast

– application-specific congestion control, e.g., MPEG

– network caching

– network monitoring

→ High performance, access to low-level resources
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DARPA Node Architecture

ANTS PLAN CANEs

AN UNIs

Execution
Environments

Node OS memoryCPUIO ifs
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Bowman (and CANEs)

CANEs

AN UNI

Execution
Environments

Node OS Bowman

HostOS (POSIX compliant)
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Bowman Design Goals

• Support per-flow processing

• Provide a fast path

• Enable a network-wide architecture

• Maintain reasonable performance

• Provide modularity and extensibility

• Leverage existing Host OS
n
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Primary Bowman Abstractions

• Channels
– communication endpoints

– include protocol processing

• A-flows
– computation

• State store
– indexed by a unique key

– includes named registries for
data sharing between a-flows

state store

a-flows

channels
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Additional Components

• Dynamic extension mechanism

• Efficient packet classifier
– match arbitrary number of header fields

– returns first, all, or best match (with costs
associated with each field)

– dynamically extensible to different protocols

• Timers

• Network architecture via abstract topologies
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Packet Processing Path

EE code
Bowman

code

a-flow processing

input queues

output queuespacket
classifiers

input channels output channels

cut-through
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Bowman Network Architecture

• Configure abstract links: endpoints plus protocol
processing over physical topology (ALP)

• Select set of abstract links for virtual topology
(ATP)

physical topo abstract links virtual topo

Ethernet UDP
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Performance Testing

Sun Ultra-5, 300 MHz
SunOS 5.7

Bowman Node
Sun Ultra-2, 168 MHz

2 processors

Sun Ultra-5, 300 MHz
SunOS 5.7

100 Mbps 100 Mbps

Compare to:
    •  Solaris kernel forwarding
    •  C gateway -- socket read/write of UDP segments
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Forwarding Performance
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Packet Processing Overheads
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Effect of Real-time Scheduling
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Configuration for AN

• Monolithic approach
– EE creates exactly one a-flow that subscribes to

all packets addressed to EE

– EE manages own resources

• Multi-a-flow approach (CANEs)
– EE creates one control a-flow used for EE

signaling and management

– New a-flow for each user’s packets

– Bowman schedules user computation
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Selected Related Work

• Router plug-ins (WashU)
– integrated EE (customizable IP) and NodeOS

– NetBSD kernel modifications

• Janos (Utah)
– Java-based NodeOS

• Extensible routers (Princeton)
– Scout-based NodeOS
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Future Work

• Security mechanism

• Resource management

• More complex output queueing disciplines

• Scalable topology instantiation

• EE-developers toolkit to run over DARPA
NodeOS implementations?
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Bowman
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a-flow processing
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output queuespacket
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cut-through


