
Bowman: A Node OS for Active Networks
S. Merugu

�
S. Bhattacharjee

�
E. Zegura

�
K. Calvert

�

�
College of Computing,

�
Dept. of Computer Science,

�
Dept. of Computer Science,

Georgia Tech., Univ. of Maryland, Univ. of Kentucky,
Atlanta, GA. College Park, MD. Lexington, KY.�

merugu, ewz � @cc.gatech.edu bobby@cs.umd.edu calvert@cs.uky.edu

Abstract—Bowman is an extensible platform for active networking: it
layers active-networking functionality in user-space software over variants
of the System V UNIX operating system. The packet processing path im-
plemented in Bowman incorporates an efficient and flexible packet classifi-
cation algorithm, supports multi-threaded per-flow processing, and utilizes
real-time processor schedulingto achieve deterministicperformance in user-
space. In this paper we describe the design and implementation of Bowman;
discuss the support that Bowman provides for implementing execution en-
vironments for active networking; discuss the network-level architecture
of Bowman that can be used to implement virtual networks; and present
performance data. Bowman is able to sustain 100 Mbps throughput while
forwarding IP packets over fast Ethernets.

I. INTRODUCTION

Active networks provide a programmable user-network inter-
face that supports dynamic modification of the network’s be-
havior. Such dynamic control is potentially useful on multiple
levels:
� For a network provider, active networks have the potential

to reduce the time required to deploy new protocols and
network services.� At a finer level of granularity, active networks might en-
able users or third parties to create and tailor services to
particular applications and current network conditions.� For researchers, a dynamically-programmable network of-
fers a platform for experimenting with new network services
and features on a realistic scale without disrupting regular
network service.

The programming interface supported by the active network
defines the “virtual machine”present at each node of the network.
Depending on its design, such a virtual machine can provide a
generic mechanism such as a language interpreter at each node or
it may just allow the user of the network to choose a service from
a set of services provided at each node. Particular programming
interfaces for active networks are implemented by node-resident
programs called Execution Environments (EEs).

This paper describes the design and implementation of the
Bowman node operating system, a software platform for im-
plementing execution environments within active nodes. Bow-
man was specifically implemented as a platform for the CANEs
EE [1]; however, it provides a general platform over which other
EEs may also be implemented.

The design goals for Bowman are the following:
� Support per-flow processing. Bowman provides system

support for long-lived flows. Flows are classified using an

Work supported by DARPA under contract N66001-97-C-8512.

efficient and flexible packet classification algorithm. Com-
putation on behalf of a flow occurs in its own set of compute
threads. Thus, the internal packet forwarding path of Bow-
man is inherently multi-threaded.� Provide a fast-path. For packets that do not require per-
flow processing, Bowman provides cut-through channels,
i.e., paths through the Bowman packet processing cycle that
do not incur the overheads of multi-threaded processing.� Enable a network-wide architecture. Globally, Bowman
implements a network-wide architecture by providing sys-
tem support for multiple simultaneous abstract topologies,
i.e., overlay network abstractions that can be used to imple-
ment virtual networks.� Maintain reasonable performance. Bowman is multi-
processor capable and provides deterministic performance
in user-space by utilizing POSIX real-time extensions for
processor scheduling [2]. Even though Bowman is imple-
mented entirely in user space, it delivers high performance.
IP forwarding through Bowman saturates 100 Mbps Ether-
net, and the Bowman classifier is able to classify packets at
gigabit rates while matching on multiple fields.

The Bowman software architecture is highly modular and exten-
sible. All the major parts of a Bowman node —communication
protocol implementations, routing protocols and associated data
structures, code-fetch mechanisms, per-flow processing and out-
put queuing mechanisms— are loaded dynamically at run-time.
The Bowman implementation can be ported to UNIX systems
that support the POSIX system call interface [2].

In the next section, we provide an overview of Bowman. We
start with the architectural context for the development; we then
discuss the abstractions supported by Bowman and provide an
overview of the network architecture. In Section III, we present
selected details of the Bowman implementation, with a focus on
the packet processing path and the packet classifier. We present
a set of performance results for Bowman in Section IV including
details of the forwarding performance and individual overheads
in the packet processing path. We also provide a performance
analysis of the Bowman packet classification algorithm and the
effect of real-time processor scheduling. In Section V, we de-
scribe how the CANEs EE is implemented over Bowman. We
present a survey of related work in Section VI, and conclude in
Section VII.

II. OVERVIEW

In this section we provide an overview of the design and
implementation of Bowman.

node resources

ANTS

. . .

CANEs

Node Operating System

execution environments

Active Network User Network Interfaces

IP v4

P P

Processors State Store

(Routing Tables)

Common Objects

IO interfaces

Fig. 1. DARPA active networking architecture

A. Architectural Context

Figure 1 shows the architecture for active network nodes de-
veloped within the DARPA active network research commu-
nity [3]. The primary functional components in the architecture
are the Node Operating System (NodeOS) and the Execution
Environments (EEs). Generally speaking, the NodeOS is re-
sponsible for managing the local resources at a node, while each
EE is responsible for implementing a User-Network interface,
i.e., a service exported to users of the active network. In par-
ticular, each EE defines a “virtual machine” that interprets the
packets delivered to it at each node. Thus an Internet Protocol
implementation might be considered a very simple EE, whose
virtual machine is “programmable” only to the extent of control-
ling where packets are delivered. On the other hand, the ANTS
execution environment [4] uses a virtual machine that interprets
Java bytecodes.

To understand how Bowman fits into the picture, it may be
useful to consider the purpose of the programming interface
exported by each component, along with its intended “users”:� The NodeOS exports an API that provides access to node

resources including computing, storage, and transmission
bandwidth; its “users” are the Execution Environments, or
more precisely the programmers who implement them. A
functional specification of this API is currently in draft [5].� The Execution Environment provides basic end-to-end ser-
vices and some form of programmability—i.e., some way
of composing or extending basic services to create new
ones. A primary goal of the node architecture is to enable
the network as a whole to provide multiple user-network
interfaces; thus the primary reason for the NodeOS’s exis-
tence as a separate entity is to support multiple EEs, which
may offer different forms and degrees of programmability.
The basic abstractions and form of composition depend on
the EE. The EE’s users are the end-system active appli-
cations whose packets invoke and/or customize the EE’s

basic services (again, the real users of the EE API are the
programmers who create the active applications).� The active applications provide an interface by which end-
users invoke (by sending packets to an EE with appropriate
instructions) and possibly customize (via in-band or out-of-
band signaling) their services.

The ability of EEs to provide interesting and novel services de-
pends greatly on the degree to which the NodeOS exposes lower-
level mechanisms. For example, providing active applications
with fine-grained control over scheduling requires a greater de-
gree of access to output and processor scheduling decisions than
is traditionally provided in general-purpose operating systems.
In designing Bowman we have attempted to provide this kind
of access without re-implementing available components. Thus
Bowman makes use of an underlying Host OS, and attempts to
hide the differences between low-level capabilities (e.g., network
interfaces) across different platforms by providing a consistent
interface.

While the NodeOS/EE interface generally marks the separa-
tion of local and global concerns, the NodeOS cannot totally
ignore end-to-end considerations. For example, the NodeOS
is responsible for seeing that packets transmitted by end users
—including both data and signaling packets— reach the proper
nodes and the proper EE at a node. Bowman provides a packet-
matching mechanism enabling EEs to describe packets they want
to receive. In addition, Bowman makes it possible to group and
identify channels consistently across multiple nodes, so that EEs
can define and use virtual topologies. In addition, the role of the
NodeOS (and Bowman) includes support for common objects
such as routing tables that are likely to be useful to all EEs.

Bowman implements a subset of the emerging DARPA Node
OS interface [5]. The interface exported by Bowman is intended
to be used primarily by EE-implementors, although it can be
used for other purposes as well, such as experimentation with
different network architectures.

B. Bowman Abstractions

Bowman is built around three key abstractions: channels, a-
flows, and state store.� Channels. Channels in Bowman are communication end-

points that support sending and receiving packets via an
extensible set of protocols. Bowman exports a set of func-
tions enabling EEs to create, destroy, query and commu-
nicate over channels that implement traditional protocols
(e.g., TCP, UDP, IP) in various configurations. In addition,
Bowman channels allow other forms of processing such as
compression and forward error correction to be included as
well. Details of the Bowman channels with examples are
presented in Section II-D.� A-Flows. The a-flow1 is the primary abstraction for compu-
tation in Bowman. A-flows encapsulateprocessing contexts
and user state. Each a-flow consists of at least one thread
and executes on behalf of an identified principal (i.e., user
of the system). Bowman provides interfaces to create, de-
stroy and run a-flows. Further, multiple threads may be

1The term “flow” is often used to describe per-user computation state at an
active node [5]. Since these flows are, in a manner, active— they refer to both a
set of packets and some processing— we adopt the use of the term “a-flow”.

active within a Bowman a-flow—the level of concurrency
within an a-flow is user-selected.� State-store. The state-store provides a mechanism for a-
flows to store and retrieve state that is indexed by a unique
key. The Bowman state-store interface provides functions
for creating, storing and retrieving data from named state-
stores. Using the underlying state store mechanism, Bow-
man provides an interface for creating named registries;
such registries provide a mechanism for data sharing be-
tween a-flows without sharing program variables.

C. Bowman Structure

One of the goals of our implementation is for Bowman to be
widely deployable and run on a variety of hardware. To this end,
it is built as an extensible library of C-language function calls;
in this section we describe the parts of the implementation.

C.1 The Host OS

In order to implement the channel, a-flow, and state-store ab-
stractions, Bowman requires interfaces to lower level hardware-
specific mechanisms such as memory management, thread cre-
ation and scheduling, synchronization primitives, and I/O de-
vices. The Bowman implementation is layered on top of a host
operating system that provides these lower level services. The
host operating system implements hardware-specific routines for
device and memory access, synchronization etc.2 Thus, Bow-
man provides a uniform active node OS interface over different
hardware and operating systems. Bowman can be ported to op-
erating systems that support the POSIX system call interface.
The current Bowman implementation has been ported to SunOS
(versions 5.5 and higher) and Linux (kernel versions 2.2.0 and
higher).

C.2 Bowman Extensions

The goal of active networking is to provide enhanced net-
work services to network users. The Bowman channel, a-flow,
and state-store abstractions provide basic capabilities, but more
sophisticated services may be needed. Bowman provides an
extension mechanism that is analogous to loadable modules in
traditional operating systems. Using extensions, the Bowman
interface can be extended, dynamically, to provide support for
additional abstractions such as queuing mechanisms, routing
protocols, user-specific protocols and other network services.
The extension mechanism provides a common underlying foun-
dation for EEs that provide various composition mechanisms.
Bowman extensions are written using Bowman system calls and
calls exported by other extensions. In the latter case, all required
extensions must already be loaded into the system.

C.3 EEs on Bowman

EEs running on Bowman can choose from at least two mod-
els of operation: the monolithic approach and the multi-a-flow
approach. The code for an EE can be loaded as an extension to

2Operating systems, of course, provide additional services, such as protection
between programs running in different address spaces, and security mechanisms
based on (weak) notions of “principal”. Presently Bowman does not depend on
services other than mentioned above, and would work as well on a Host OS that
does not provide such additional services.

Bowman and typically contains control code for the EE and a set
of routines that implement the user-network interface supported
by the EE. In order for the EE to process packets, the control
code must spawn at least one a-flow. In the monolithic approach,
the EE creates exactly one a-flow and does not expose its inter-
nal processing structure to Bowman. The EE submits a blanket
request for all packets “addressed” to the EE to be delivered to
that a-flow, which may do its own additional demultiplexing.

In the multi-a-flow approach, the EE code spawns one control
a-flow that can be used for the EE signaling and housekeep-
ing. The control a-flow starts a different a-flow for each user’s
packets, and submits a request for only that user’s packets to
be delivered to that a-flow. Note that in each case, third-party
code, loaded on behalf of users of the network, is linked against
the API that is exported by the EE; however, in the multi-a-flow
approach, the user’s computation is scheduled by Bowman (and
not by the EE itself).

D. Bowman Abstract Topologies

Along with the node architecture described above, Bowman
implements a network-wide architecture at the node OS level by
providing support for abstract links and abstract topologies. Ab-
stract links provide connectivity between a set of Bowman nodes
and implement protocol processing as well as data transmission.
Bowman channels are end-points of abstract links. Named sets
of abstract links form named abstract topologies.

Abstract topologies implement user-defined connectivity over
arbitrary physical topologies 3. Abstract topologies have glob-
ally unique names (assigned when the topology is created) and
all packets transmitted and received by a Bowman node traverse
some abstract topology. Abstract topologies in Bowman can be
used to instantiate overlay networks (much like “virtual private
networks” in the Internet) in which each node possesses a set
of specified attributes (e.g., a particular EE is present at each
node). When a packet is received at a Bowman node, it is classi-
fied to determine to which abstract topology it belongs; packets
that belong to no topology are discarded. A-Flows subscribe to
subsets of packets on specific topologies; matching packets are
demultiplexed to proper a-flows. In order to send a packet to
a neighboring node on a particular abstract topology, an a-flow
transmits the packet on a channel that belongs to the topology
and has the required node as the other end-point. By default,
Bowman abstract topologies do not provide any resource guar-
antees at active nodes or isolation of data between topologies;
however, such properties can be added as a matter of policy
during topology instantiation.

We conclude this overview of Bowman with an example il-
lustrating how the Bowman abstract topology capability can be
used to realize a network architecture (Figure 2). In Figure 2, we
show a network of five nodes (���	�
���) and their physical connec-
tivity. The next step in realizing an abstract topology is to create
a set of abstract links between the nodes. Note that abstract links
can be defined using MAC protocols such as Ethernet or net-

3Obviously, abstract topologies cannot provide connectivity that is not sup-
ported by the transitive closure of the underlying physical adjacency relation.
However, by using abstract links that implement protocols such as IP, abstract
topologies may provide logical adjacency between nodes that have more than
one physical hop between them.

Physical Ethernet UDP

Physical
0

Topology 0

Topology 1

2
�

Logical
Topologies

1a b
�

c

d
�

e

With abstract
�
links
configured

Fig. 2. The Bowman network-wide architecture: abstract links that incorporate
protocol processing are overlaid on the physical topology. An abstract
topology is a named collection of abstract links.

endpoint
 c

endpoint
 d

physical

endpoint
 b

eth eth
udp
 ip
 eth

channels:
 ends of
 abstract
 links

Packets recd.
on Topology 1

Packets recd.
on Topology 0

wire wire wire

Fig. 3. Details of links and channels at node � due to the creation of abstract
links and abstract topologies as shown in previous figure

work/transport protocols such as IP and UDP. Abstract links that
implement protocols such as UDP are akin to UDP tunnels. In
the last step, abstract topologies are created by identifying sets
of abstract links. When an abstract link with a Bowman node
as the end-point is created, a corresponding channel is set up
at the Bowman node. Figure 3 shows the channels created at
the Bowman node � due to the creation of the abstract links in
Figure 2. Physically, node � is connected to nodes � , � , and�

. In the example, three abstract (point-to-point) links are cre-
ated with node � as the endpoint. As shown in Figure 3, each
link results in one channel being created at node � . As abstract
topologies are configured in the network, the channels at each
node are associated with particular topologies. This information
is used by routing protocols to send data to particular nodes over
particular topologies.

We have designed the ALP (Abstract Link Protocol) and the
ATP (Abstract Topology Protocol) protocols to create abstract
links and disburse abstract topology information. These two
protocols have been implemented as a-flows in Bowman.

III. BOWMAN: IMPLEMENTATION DETAILS

In this section, we present selected details from the imple-
mentation of Bowman. Specifically, we present details of the
Bowman packet processing path, packet classification algorithm,
a-flow scheduling and Bowman timers.

...

logical input
 channels

logical output
 channels

inQ

outQpacket
classifi−
cation

cut
through
path

User
Code
Bowman
 System

F F F
1 2 n

a−flow processing

packets
output by
a−flows

packets
input
for a−flow
processing

Fig. 4. Bowman packet processing path.

A. Packet Processing Path

Figure 4 shows a schematic of the Bowman packet process-
ing path. The figure shows the demarcation between Bowman
system code and user code that runs within particular a-flows.
Within the underlying Bowman system, there are (at least) three
processing threads active at all times: a packet input processing
thread, a packet output processing thread and a system timer
thread. Depending on the input and output scheduling algo-
rithms, it is possible for multiple input and output threads to
be active within the Bowman. The semantics and implementa-
tion of Bowman timers are detailed in the next section; in the
rest of this section, we provide an overview of the input/output
processing within Bowman.

Packets received on a physical interface undergo a classifi-
cation step that identifies a set of channels on which the re-
ceived packet should be processed. In this manner, incoming
packets are demultiplexed to specific channel(s) where they un-
dergo channel-specific processing. Once channel input process-
ing completes, the packet is considered to have “arrived” on
the abstract link associated with the channel. At this stage, the
packet undergoes a second classification step that identifies the
further processing needed by the packet. Such processing is one
of three types:� A-Flow processing. The packet can be assigned to an

a-flow for flow-specific processing. The system thread en-
queues the packet into the a-flow input queue (assuming
the input queue is not full—otherwise the packet is dis-
carded). The a-flow processing thread eventually dequeues
the packet and processes it.� Cut-through forwarding. As shown in Figure 4, pack-
ets may be enqueued directly on an output queue, without
undergoing any a-flow processing. This processing corre-
sponds to cut-through paths through the Bowman node.� Channel input. Specifiedpackets received on a channel can
be routed as input to other channels. For example, packets
received on an IP channel with the IP protocol number

equal to 17 (UDP) may be input to an UDP channel. In
this manner, Bowman supports hierarchical protocol graphs
similar to the � -kernel [6]. Bowman protocol graphs are
run-time configurable.

A-flow processing is determined by the code specified when
the a-flow is created. Using the Bowman extension mechanism,
a-flow code can be dynamically introduced into a node; this
mechanism is also used for dynamic code loading (as is required
for some active network execution environments). A-flows can
transmit packets on particular topologies: the tuple (topology,
routing metric, destination) identifies a channel on which the
packet must be sent.

The output queuing mechanism employed within Bowman is
dynamically loaded at boot time. This provides the flexibil-
ity to configure a Bowman node with a wide range of output
queuing and scheduling algorithms. Our Bowman implemen-
tation provides the requisite primitives (such as system threads
and fine-grained timers) for the output schedulers to support dif-
ferent services such as per-flow queues, fair sharing of output
bandwidth, etc.

B. Bowman packet classifier

Efficient packet classification to identify flows is an essen-
tial part of flow-specific processing. The complexity of packet
classification algorithms([7], [8], [9]) depend on (1) the type
of matching required (first match, longest prefix match, or best
match based on attributes of matched fields), and (2) the number
of fields and types of headers being matched.

As a part of the Bowman, we have implemented a packet
classifier that can match on an arbitrary number of fields in the
packet header. The classifier can be configured (as a matter of
node-wide policy) to operate in one of the three modes: return
the first match, return all matches, and return the best match(es)
according to a cost associated with each field in the classification
rule-base.

The Bowman packet classifier implements a trie-based search
algorithm. The nodes in the trie are constructed from a set of
packet filter rules; each node in the trie corresponds to a field to
be matched on the packet header. Each node in the classification
trie contains an unique field match — packet filters with common
prefixes share nodes in the classification trie. Within Bowman, a
packet classifier is allocated for each channel. Subscriptions to
the channel are specified as packet filter rules and are stored as
up-calls inside the trie nodes that terminate the filter rule. When
a packet arrives on the channel, the classifier trie is traversed. It
is possible for incoming packets to match more than one filter
in the trie; the values returned by the packet classifier depend on
how it is configured (return first, best or all matches).

The Bowman packet classification algorithm is not dependent
on matching particular protocols, instead, using a small lan-
guage, protocols can be dynamically taught to the classifier at
run-time. An example of this language that teaches a packet
classifier the Ethernet header is given below.

(protocol ethernet (hdr_len 14)
(field dst offset 0 length 6)
(field src offset 6 length 6)
(field proto offset 12 length 2))

The packet filter rules themselves are specified in ASCII text
and specify a set of headers and fields to be matched. The
following example shows a filter expression that matches IP
packets over an ethernet link; further, the IP datagram must
be from a source with DNS name Discovery.Space.Net
and be destined to Earth.Space.Net. Further, the IP pro-
tocol must be UDP, and the UDP destination port number
must be 2001: [ethernet (proto = ETHERTYPE IP)
| ip (src = Discovery.Space.Net)(dst =
Earth.Space.Net) (proto = IPPROTO UDP) |
udp (dport = 2001)| *].

The Bowman classifiers export calls to create and destroy
classifiers, teach new protocols to an existing classifier, add filter
rules to a classifier, and to match a buffer against a set of rules.

C. A-Flow scheduling and timers

The Bowman packet processing path incorporates multiple
threads and queues; thus, the Bowman implementation has to
context-switch between threads in order to process each packet.
Further, asynchrony due to the queues on the packet processing
path introduces delays for each packet. Two specific features of
Bowman help in minimizing these overheads. First, the Bowman
implementation is multi-processor capable; on multi-processor
machines, Bowman threads may execute concurrently and some
thread context-switch times are eliminated. Second, on the So-
laris platform, Bowman can be configured to run in real-time
mode using the Solaris Real-Time Extensions.4 As we will see
in the performance figures in the next section, with real time ex-
tensions, Bowman can deliver high throughput and low delay for
packets traversing through a-flows. To leverage the performance
advantages of a multi-processor multi-threaded implementation,
we have implemented the a-flow input and output queues so
that, for single-reader single-writer queues, there is no locking
(or blocking) unless the queue is empty.

Bowman provides a fast timeout routine that supports multi-
ple timers per-a-flow. Using the Bowman timeout routine, we
have implemented a Bowman extension for threaded per-a-flow
timers. Each a-flow contains one timer thread that executes call-
back functions when specific timers expire. The resolution of
the timers and the number of outstanding timers are configurable
parameters.

IV. BOWMAN PERFORMANCE

In this section, we present a set of Bowman performance re-
sults, beginning with base forwarding performance. Note that
this base performance represents an upper bound on the through-
put achievable by a single flow through a Bowman node; actual
throughputs for user flows will certainly depend on the flow-
specific processing at each node. Thus, the goal of this section
is to quantify the overheads incurred due to Bowman itself. To
that end, in Section IV-A.1, we analyze the performance of each
component of the packet processing path. In Section IV-B, we
provide results of the performance of the Bowman packet clas-
sifier. Because the classifier can handle packets faster than the
test network can transmit packets, we present results that are in-

4See the priocntl(2) system call on SunOS 5.5+. An effort is underway
to port Bowman real-time extensions to RT-Linux.

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t a

t r
ec

ei
ve

r
(M

bp
s)

�

Packet Size (Bytes)

Solaris kernel
C gateway

Bowman Aflow

Fig. 5. Sustained throughput

dependent of the network, and depend only on the test machine
processor.

We conclude the section with an analysis of the effects of
real-time scheduling for a-flows.

A. Forwarding performance

The forwarding performance experiments were performed on
a three-node testbed configured in a straight line topology. The
interior node executed Bowman. The edge nodes were Sun
Ultra-5 300 MHz machines connected via 100 Mbps Ethernet
to the Bowman node. The Bowman node was a Sun Ultra-2 2-
processor machine with each processor rated at 168 MHz. The
edge nodes ran the SunOS 5.7 operating system while the inte-
rior node executed SunOS 5.5.1. The edge nodes were directly
connected to separate 100 Mbps interfaces to the Bowman node.

We compare the performance of the Bowman packet process-
ing path with that of the forwarding performance of the Solaris
kernel and a gateway program written in C. The single threaded
C gateway program uses socket calls to read and immediately
write out UDP segments. For this experiment, both the read and
the write socket buffer sizes for the C gateway were set to 256
Kbytes. In each case, the sending node transmits UDP segments
of a specified size to the destination node. The routing table
of one of the edge nodes was configured to use the Bowman
node as its next hop to the other edge node in our testbed. The
Bowman topology was configured with two bidirectional UDP
channels — from the edge nodes to the interior node. (For the
C gateway and Bowman forwarding experiments, the Solaris
kernel forwarding was turned off). All the times reported were
gathered using the Solaris high (nanosecond) resolution timer5.

Figure 5 shows the sustained lossless throughput through
Bowman, the C gateway, and the Solaris kernel as measured
at the receiver. Each data point is an average of 30 samples
where each sample measured the time to receive 1000 pack-
ets of the given size. Figure 6 shows the raw packet rate (in
packets/second) at the receiver for the same experiment.

Compared to kernel forwarding, Bowman incurs four extra
overheads: (1) overhead for at least two context switches for
data read and write, (2) overhead for data copies in and out of
user space, (3) overhead for dispatching system calls, and (4)

5Please see gethrtime(3c)manual page on SunOS 5.5+.

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

200 400 600 800 1000 1200 1400

R
ec

ei
ve

d
pa

ck
et

s
pe

r
se

co
nd

 a
t r

ec
ei

ve
r

�

Packet Size (Bytes)

Solaris kernel
C gateway

Bowman Aflow

Fig. 6. Sustained packet processing rate

overheads due to the queues in the Bowman packet processing
path. The C gateway incurs the first three overheads as well6.

It is clear from the figures that the system call, context switch
and data copy overheads for small packet sizes precludes both
the C gateway and Bowman from sustaining high throughput.
However, as packet sizes increase, the context switch and system
call dispatch overheads are amortized as more data traverses the
system and user space boundary for each system call. Bowman
is able to saturate the 100 Mbps ethernet for packet sizes of 1400
bytes or more; Bowman performance is within 5% of kernel
forwarding for packet sizes greater than 1200 bytes. We should
note that the Bowman performance results shown here are for
a path that includes an a-flow; Bowman cut-through processing
results are similar to the C gateway results 7.

A.1 Overheads on the Packet Processing Path

0

50

100

150

200

250

200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

T
im

e
(m

ic
ro

se
co

nd
s)

�

Packet size (bytes)

System Write
A-flow processing

A-flow dequeue
A-flow enqueue

Channel processing
System read

Fig. 7. Overhead of Bowman components

In this section, we quantify the overhead of Bowman multi-
threaded processing, context switches and internal queues. In

6Note that, in general, Bowman multiplexes multiple input/output channels
and may incur an extra overhead due to a poll(2) system call (called by
select(3c)) not present in the read-write loop for the C gateway. In our
implementation, Bowman is optimized not to call poll unless there is no data
available on its last input descriptor.

7All the user-space results (Bowman and the C gateway) presented here are
for a 32-bit executables; we are in the process of porting Bowman for a native
64-bit platform. At the very least, this will alleviate some of the system copy
overheads seen in these results.

order to quantify this overhead, we augmented the Bowman
packet processing path with several high resolution timers that
allowed us to record precise measurements of the time consumed
by each component of the Bowman packet processing path. Aug-
menting the packet processing path with these timers degraded
the performance of the system by about 5%.

Figure 7 shows the cumulative processing time taken by each
step in the Bowman packet processing path. The Bowman pro-
cessing is quantified in the following steps: (1) channel process-
ing: this includes allocation for packet memory from a dedicated
packet ring, a trivial packet classification (the packet classifier is
called with a filter that matches all packets) and the subsequent
demultiplex that calls the a-flow enqueue function; (2) the a-
flow enqueue; (3) the a-flow dequeue (by the a-flow processing
thread); (4) null a-flow processing; and (5) the Bowman channel
dispatch on write and deallocation of packet memory. Since
Bowman does not internally copy packets, the Bowman over-
head is relatively constant at about 25 � -seconds for all packet
sizes. Of this, about 5 � -seconds are incurred due to the timers.
The processing time is, in fact, dominated by the system read
and write calls. For small packet sizes (200 bytes), the system
read and write calls take approximately 24 � -seconds and 90 � -
seconds, respectively, and the overhead due to Bowman is around
15%. However, for large packet sizes (1514 bytes), the system
read and write calls take 95 and 125 � -seconds respectively and
the Bowman overhead reduces to approximately 10%.

B. Packet classifier performance

Number of Avg. Classification Time
Filter Rules (nanoseconds)

1 2578
2 2853
4 3325
8 3628

16 3909
32 5192
64 6806
128 6720
256 7477
512 8187
1024 9952

TABLE I

VARIATION OF AVERAGE PACKET CLASSIFICATION TIME VS. NUMBER OF FILTER

RULES

In this section, we present the results of two experiments that
analyze the performance of the Bowman packet classifier algo-
rithm. In the first experiment, we report the packet classification
time as the number of rules in the classifier is varied. These
results were generated on a 300 MHz Ultra-5 SunOS 5.7 ma-
chine with 32-bit executables. The filter rules were generated
for a packet with Ethernet, IP, UDP, and an application-level
header. All four protocols (including the application-specific
protocol) were taught to the packet classifier. The filter rules
were created using a program that generates fields and values for

the fields uniformly at random using the 48-bit UNIX pseudo-
random number generator8. On average, each filter rule had
approximately six fields and the classifier was configured to find
all the matches. The average classification time as the number
of rules were varied is shown in Table I. Note that in Bowman,
packets are classified on the ends of channels — as such we do
not expect a large number of rules to be added to a classifier (as
each rule can result in an a-flow at the node). Nonetheless, the
Bowman packet classifier performs well with a relatively large
number of rules, e.g., with 256 rules, each match takes about
7.4 � -seconds. This corresponds to a classification rate of over
1 � 3 � 105 packets per second (or a throughput of about 1.5 Gbps
assuming 1514 byte packets).

Number of Avg. Classification Time
Fields (nanoseconds)

1 3174
2 3809
3 4095
4 4788
5 5117
6 5417
7 5687
8 6189
9 6486

10 6730
11 7017

TABLE II

CHANGE IN CLASSIFICATION TIME VS. NUMBER OF FIELDS IN THE BEST

MATCHING FILTER RULE.

Table II shows the variation in packet classification time as
the number of fields in the best matching rule is increased. In
each case, the classification trie consists of exactly 32 filter rules;
however, the number of fields in the best matching filter rule is
varied. Further, the experiment with � fields in the best matching
filter rule includes the previous ��� � 1 ! best matching filter
rules in its set of 32 filter rules, e.g., if the best matching filter
is [ip (src = alpha) (dst = beta) | *] then the
rule [ip (src = alpha) | *] is also included in the rule
set. We report the results for the case when the classifier finds
all matching rules in the rule set; thus, in case the best matching
rule has � fields, the classifier outputs � matching rules. In
Table II, we see that there is an approximately linear increase in
the classification time as the number of fields is increased. This is
because common fields share the same node in the classification
trie and each new field adds a new node to the trie. The extra
time in consecutive measurements is due to the traversal of this
new node (and the corresponding time it takes to access the new
field in the matched packet’s header).

C. Effect of real-time scheduling

In Figure 8, we present a snapshot of the queue lengths in a run-
ning Bowman system to show the effect of real-time scheduling.

8Please see the drand48(3c)manual page.

10

100

1000

2000 2200 2400 2600 2800 3000

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

�

Packet Index

Input Queue (TS)
Input Queue (RT)

Fig. 8. Effect of real-time scheduling on system and a-flow queue sizes. The
dots under each curve correspond to the sizes of the output queues.

The two curves in the figure correspond to a-flow input queue
sizes when the system scheduler is run in time-sharing mode (TS)
versus real-time (RT) mode. Under each curve is a set of dots that
show the size of the output queues for the corresponding time
period. There are three different kernel threads active: the Bow-
man input thread enqueues packets into the a-flow input queue.
The a-flow input queue is drained by the a-flow thread which
then enqueues the packet in the a-flow output queue; the a-flow
output queue is drained by the Bowman output thread. Under
time-shared scheduling, these threads are scheduled on far too
coarse a quantum; as such, the queue sizes fluctuate wildly and
the average queue size is over 300 packets. (Note that larger and
widely varying queue sizes also imply longer delays and more
jitter through the node.) In the real-time case, we run each kernel
thread with the same real-time priority and give each thread a
time quantum of 1000 nanoseconds. Due to the deterministic
and fine grained scheduling, the queue sizes are smaller by an
order of magnitude and the system is far more stable. For this
experiment, the priority of each thread was static; in subsequent
work, we will investigate dynamic processor priority scheduling
schemes for Bowman threads.

V. CONFIGURATION OF BOWMAN FOR ACTIVE NETWORKING

In this section, we give an overview of how Bowman is being
used for active networking. Specifically, we discuss:
� loading of the EE and user code into Bowman as extensions;� structuring the EE and user computations across multiple

a-flows;� using extensions for accessing node-wide state such as rout-
ing tables; and� the set of support protocols and extensions required to con-
figure a working active node.

CANEs over Bowman

The CANEs[1] execution environment allows network pro-
grammability on a per-flow basis and has been implemented us-
ing the system call interface exported by Bowman. The CANEs
EE is loaded as an extension to Bowman. Initially, the EE cre-
ates a signaling a-flow; the signaling a-flow creates a signaling
channel on a well-known UDP port and subscribes to all mes-
sages that arrive on that channel. A CANEs signaling message

consists of three parts: a computation part that specifies a set of
code modules required by the flow, a data part that is fed as input
to the computation, and an input/output part that specifies the set
of packets to be input to the computation. When the signaling
a-flow receives a valid user request, it downloads the requested
code modules from a code server; the code server(s) are spec-
ified as part of the signaling message. The protocol to fetch
code is loaded as an extension into Bowman and is a generic
service provide by the node to the EE. The code fetch protocol
exports a well-known interface that is used by the CANEs EE
to download the code required by per-flow computations. The
downloaded code modules for CANEs are in the form of shared
objects that are linked into the Bowman node using the Bowman
extension mechanism. In case of flow-specific code, however,
the newly linked symbols are not exported (as is the case for reg-
ular Bowman extensions) as system calls; instead, the CANEs
signaling thread extracts specific functions from the linked-in
shared object using names supplied as part of the signaling mes-
sage. When all the code modules required for a flow are retrieved
and linked into the Bowman node, the signaling thread spawns a
new a-flow. The new a-flow subscribes to the packets specified
in the signaling message (possibly creating new channels in the
process) and then executes the flow-specific computation.

Routing Extensions

Typically, flow-specific computations do not implement their
own routing protocols; instead a set of routing protocols are
linked into the node as extensions and execute within their own
a-flows. These routing protocols use the Bowman state-store
mechanism to export routing tables for different abstract topolo-
gies (and different routing metrics). The routing protocols also
export well-known methods to access these routing tables. Un-
less an user flow implements a routing protocol, it uses the
generic routing services exported by the routing protocols to
forward its data.

Support Protocols

Along with the code fetch and routing protocols, a number of
other extensions are also routinely initialized as part of a Bow-
man node. These include extensions for output queue schedul-
ing; specific protocol implementations such as Ethernet, IP, UDP,
and TCP that are required to implement channels of specific
types; protocols that provide name service such as DNS and
ARP; multi-threaded timers that can be used by per-flow com-
putations; protocols for creating and managing abstract links and
topologies. Lastly, a login shell for Bowman called Hal, is also
loaded as an extension: Hal provides an extensible command
interpreter that can be used to query the state of various objects
—such as network interfaces, channels, and a-flows— that are
present in a Bowman node.

VI. RELATED WORK

In this section, we provide a survey of work related to Bow-
man: this includes the areas of system support for flow-specific
processing at routers and development of new operating systems.

A software architecture for flow-specific processing has been
developed as part of the Router Plugins project [10] at Wash-
ington University. This work has adapted a NetBSD kernel to

incorporate user-processing at specific points (gates) on the IP
forwarding" path with about 8% overhead. The major feature
of Bowman that is missing from Router Plugins is the general
set of communication abstractions —channels, abstract links
and topologies— that is supported by Bowman; this reflects the
IP-based focus of the Router Plugins project. Router plugins
classify incoming packets to specific flows using a packet clas-
sification scheme similar to Bowman: the packet classification
step identifies the function that is bound to a packet at each pro-
cessing gate. As the packet processing path in Router Plugins
is integrated with the flow-specific processing, Router Plugins
do not incur the thread-switching and queuing overheads of the
multi-threaded multi-queue packet processing path of Bowman.
Architecturally however, Router Plugins merge Node OS and EE
functionality and thus, unlike Bowman, Router Plugins do not
export a node OS interface over which different EEs can be built9.
This architectural difference between Bowman and Router Plu-
gins clearly exposes the performance versus generality tradeoff
inherent in the design of extensible router platforms.

The aim of Practical Active Network (PAN) [12] project at
MIT is to build a high performance capsule-based active node
that is based on the ANTS [4] framework. Experiments have
shown that the forwarding performance of capsules containing
Java [13] byte-code is dominated by overhead incurred due to
execution within the Java virtual machine. PAN in-kernel per-
formance is comparable to Bowman user-space performance;
in their experiments with 1500 byte capsules containing native
code, executed in-kernel, they were able to saturate a 100 Mbps
Ethernet. Unlike PAN, Bowman does not mandate that code
be transported in band; instead the code transport and execution
mechanism is implemented by EEs that execute over Bowman.
Architecturally, PAN is an in-kernel implementation of an EE
using Linux as the node OS.

Another effort based on ANTS is the development of a new
operating system called Janos [14] at the University of Utah.
Janos implements a special Java Virtual Machine and Java run-
time for executing Java byte code. Janos includes a modified
version of ANTS that supports resource management. Their
main design goal is to provide a strong protection and separation
mechanism between different user code executed at the active
node. While execution of user code within a virtual machine
(like Java) provides a high degree safety of execution, it also has
associated performance costs. Unlike Janos, Bowman does not
enforce safety constraints on loaded code at run time. During
the signaling phase in Bowman, the code-fetching mechanism
must decide, based on credentials provided by the user and the
node security policy, whether it trusts the requested code; if
not, the request is denied. This is the time-honored approach
of relying on the code supplier for safety in order to obtain
better performance. The choice of “C” programming language to
implement the Bowman system call interface has given us good
performance, but probably sacrifices some flexibility (code can
only come from a priori-trusted parties) compared to Java-based
approaches.

With an aim to push functionality from end devices into
the network, the Extensible Routers project [15] at Prince-

9An extension to Router Plugins for active networking, “Active Router Plug-
ins” [11] has been designed.

ton University has designed an open, general purpose comput-
ing/communications system. They share the same design goals
as Bowman: support complex forwarding logic and high perfor-
mance while reusing available building blocks. The architecture
for Extensible Routers is based on ideas of I/O paths from the
Scout [16] operating system and I/O optimizations developed for
the SHRIMP [17] multi-computer.

VII. CONCLUSIONS

We have designed and implemented Bowman, a node OS for
active networks. The software architecture of Bowman is highly
modular and dynamically configurable at run-time. The Bow-
man design and implementation is decoupled from any particular
network protocol or routing scheme. Bowman provides system-
level support for abstract topologies that can be used to create
virtual networks. The Bowman multi-threaded packet process-
ing path is an example of how to structure system software for
routers that may support significant per-flow processing. Fur-
ther, we have shown how real-time processor scheduling can
be used to provide deterministic packet forwarding performance
even in user-space. Our user-space implementation is portable
to systems that support the POSIX system call interface, though
of course specific Bowman capabilities that use capabilities of
the underlying system beyond POSIX may not be available on
all platforms.

Our results show that Bowman packet forwarding perfor-
mance is relatively high: Bowman is able to saturate 100 Mbps
ethernet with only 1400 byte packets. The Bowman packet
classifier implements a protocol-independent algorithm that can
classify packets at gigabit rates in software.

Our work on Bowman has been motivated by the need for a
node OS for the CANEs EE. In future, we hope to port other EEs
to execute over Bowman. Bowman provides a flexible platform
for experimentation with a number of major open issues in active
networking, including algorithms for integrated processor and
link scheduling; algorithms for allocation of resources to flows
within active nodes; and policies for instantiation and isolation
of different abstract topologies. We hope to use Bowman as a
research vehicle to investigate some of these open problems.

VIII. ACKNOWLEDGMENTS

We are grateful to Matt Sanders for helping us at vari-
ous stages of software development. He has also provided
us extensive and insightful comments on a draft of this pa-
per. We would also like to thank Youngsu Chae for his con-
tributions on the Bowman abstract topologies and their im-
plementation. This work is supported by Defense Advanced
Research Projects Agency under contract N66001-97-C-8512.
Information about the Bowman software can be found at:
<http://www.cc.gatech.edu/projects/canes/software.html>

REFERENCES

[1] K. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz, “Directions in
active networks,” IEEE Communications Magazine, 1998.

[2] System Application Program Interface (API) [C Language], Information
technology—Portable Operating System Interface (POSIX). IEEE Com-
puter Society, 345 E. 47th St, New York, NY 10017, USA, 1990.

[3] Kenneth L. Calvert (Editor), “Architectural Framework for Active Net-
works,” DARPA AN Working Group Draft, 1998.

[4] D. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit for
building# and dynamically deploying network protocols,” in IEEE OPE-
NARCH’98, San Francisco, CA, April 1998.

[5] Larry Peterson (Editor), “NodeOS Interface Specification,” DARPA AN
NodeOS Working Group Draft, 1999.

[6] Norman C. Hutchinson and Larry L. Peterson, “Design of the x-kernel,”
in Proceedings of the SIGCOMM ’88 Symposium, Stanford, California,
16–19 August 1988, pp. 65–75, ACM Press.

[7] Mary L. Bailey, Burra Gopal, Micheal A. Pagels, and Larry L. Peterson,
“PATHFINDER: A pattern-based packet classifier.,” in Proceedings of the
first USENIX Symposium on Operating Systems Design and Implementa-
tion, Nov 1994.

[8] V.Srinivasan, S.Suri, and G.Varghese, “Packet Classification using Tuple
Space Search,” in Proceedings of ACM SIGCOMM, Sept 1999.

[9] Pankaj Gupta and Nick McKeown, “Packet Classification on Multiple
Fields,” in Proceedings of ACM SIGCOMM, Sept 1999.

[10] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner, “Router
Plugins: A Software Architecture for Next Generation Routers,” in Pro-
ceedings of SIGCOMM ’98, Vancouver, CA, Sept 1998.

[11] Dan Decasper, A Software Architecture for Next GenerationRouters, Ph.D.
thesis, Washington University, 1999.

[12] Erik L. Nygren, Stephen J. Garland, and M. Frans Kaashoek, “PAN:
A High-Performance Active Network Node Supporting Multiple Mobile
Code Systems,” in Proceedings of IEEE OpenArch ’99, March 1999, pp.
78–89.

[13] Ken Arnold and James Gosling, The Java Programming Language, Addi-
son Wesley, Reading, Massachusetts, 1996.

[14] “Janos: A Java-based Active Network Operating System,”
http://www.cs.utah.edu/projects/flux/janos/summary.html.

[15] Larry Peterson, Scott Karlin, and Kai Li, “OS Support for General-Purpose
Routers,” in HotOS Workshop, March 1999.

[16] A. Montz, D. Mosberger, S. O’Malley, L. Peterson, T. Proebsting, and
J. Hartman, “Scout: A communications-oriented operationg system,” Tech.
Rep. 94-20, Department of Computer Science, The University of Arizona,
1994.

[17] “SHRIMP: Scalable High-performance Really Inexpensive Multi-
Processor,” http://www.cs.princeton.edu/shrimp/.

