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Abstract

In parallel with active networks research, efforts have been underway to define
and standardize an architectural framework. The framework divides the function-
ality of an active network node into two components: an Execution Environment
(EE) defines a programming interface that allows users to control the active net-
work, a NodeOS defines a set of basic functions to access and manage the resources
of the active node. EEs use the abstractions provided by the NodeOS to build a
virtual machine made available to users. Feedback from implementation efforts is
critical for refining the standards being developed.

We are building an active network comprised of the CANEs execution envi-
ronment and the Bowman NodeOS. Bowman is constructed by layering active-
network-specific operating system functionality on top of a standard host operat-
ing system. The host operating system provides low level mechanisms; Bowman
provides a channel communication abstraction, an a-flow computation abstraction
and a state-store memory abstraction, along with an extension mechanism to enrich
the functionality. The CANEs EE provides a composition framework for active ser-
vices based on customizing a generic underlying program by injecting code to run
in specific points called slots. This paper reports on our experience in implement-
ing Bowman, instantiating CANEs on top of Bowman, and developing applications

within CANEs.

1 Introduction

In parallel with research experience in active networks, efforts have been underway to
define and standardize an architectural framework [3, 2]. In the draft framework, the
functionality of an active network node is divided between Execution Environments (EEs)
and the Node Operating System (NodeOS) [4] as shown in Figure 1. An EE defines a
programming interface that allows users to control the active network; a NodeOS defines
a set of basic functions to access and manage the resources of the active node. EEs use
the abstractions provided by the NodeOS to build a virtual machine made available to
users.

The early development of EEs (e.g., ANTS [9], PLAN [5]) occurred prior to standard-
ization and development efforts for a NodeOS, thus the early EEs made use of traditional
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Figure 1: Components of an active network node.

machine operating systems for resource access and management. Experience in devel-
oping EEs on top of NodeOS’s is, of course, critical for refining the standards being
developed. NodeOS projects (e.g., Janos [6], Joust [7]) are developing implementations
that complement our experience. In particular, these projects have largely focused on
supporting Java and ANTS, while leveraging existing efforts in high-performance oper-
ating systems.

We are building an active network comprised of the CANEs execution environment
and the Bowman NodeOS. Bowman is constructed by layering active-network-specific
operating system functionality on top of a standard host operating system. The host
operating system provides low level mechanisms; Bowman provides a channel commu-
nication abstraction, an a-flow computation abstraction and a state-store memory ab-
straction, along with an extension mechanism to enrich the functionality. The CANEs
EE provides a composition framework for active services based on customizing a generic
underlying program by injecting code to run in specific points called slots. This paper
reports on our experience in implementing Bowman (Section 2, instantiating CANEs on
top of Bowman (Section 3), and developing applications within CANEs (Section 4). We
conclude in Section 5 with a discussion of lessons learned and open problems.

2 Bowman

Bowman provides three basic abstractions to support active network functionality: chan-
nels, a-flows and state-store. In addition to these three abstractions, Bowman has an
extension mechanism that is similar to loadable modules in traditional operating sys-
tems. Using the extension mechanism, additional components of a Bowman node can
be loaded dynamically at run-time. This section discusses the basic abstractions, related
extensions, packet processing path and Bowman performance.

Channels Channels represent the communication resource exported by Bowman. They
are communication end-points that support sending and receiving packets via an exten-
sible set of protocols. Bowman exports a set of functions enabling users (i.e. EEs) to
create, destroy, query and communicate over channels that implement traditional proto-
cols (TCP, UDP, IP, etc.) in various configurations. In addition, channels in Bowman



can include other forms of processing such as compression, forward error correction on
the packets.

For packets that do not require per-flow processing, Bowman provides cut-through
channels, i.e., paths through the Bowman packet processing cycle that do not incur the
overhead of multi-threaded processing.

Globally, Bowman implements a network-wide architecture by providing system sup-
port for multiple simultaneous abstract topologies, 1.e., overlay network abstractions that
can be used to implement virtual networks. Abstract topologies are built from links,
which are an association of two of more channels.

A-flows The a-flow is a primary abstraction for computation in Bowman. A-flows
encapsulate processing contexts and user state. Fach a-flow consists of at least one
thread and executes on behalf of an identified principal. Bowman provides a set of
functions to create, destroy and run a-flows.

Efficient packet classification to identify flows is an essential part of flow-specific
processing. The complexity of packet classification algorithms depend on (1) the type of
matching required (first match, longest prefix match, or best match based on attributes
of matched fields), and (2) the number of fields and types of headers being matched.

Since the identification of a packet is solely based on the pattern of bits contained
(possibly, at any location) in the packet, we have implemented a packet classifier that
can match on (1) an arbitray number of fields, and (2) each field at an arbitrary offset in
the packet. The classifier can be configured (as a matter of node-wide policy) to operate
in one of the three modes: return the first match, return all matches, and return the best
match(es) according to a cost associated with each field in the classification rule-base.

The Bowman packet classification algorithm does not depend on the protocols used
to frame the contents of the packet. But in order to specify a meaningful (readable)
pattern of bits to be used to match incoming packets, we can first teach the classifier
about a protocol (e.g., Ethernet) and its keywords (e.g., src, dst, proto) using a small
language. We can then use these keywords to encode a pattern that will be used to match
the packets.

Bowman also provides a fast timeout routine that supports multiple timers per-a-
flow. Using the Bowman timeout routine, we have implemented a Bowman extension for
threaded per-a-flow timers. Each a-flow contains one timer thread that executes call-back
functions when specific timers expire. The resolution of the timers and the number of
outstanding timers are configurable parameters.

State-store The state-store provides a mechanism for a-flows to store and retrieve state
that is indexed by a unique key. The Bowman state-store interface provides functions
for creating, storing and retrieving data from named state-stores. Using the underlying
state store mechanism, Bowman provides an interface for creating named registries; such
registries provide a mechanism for sharing data between a-flows without sharing program
variables.

Packet processing path Figure 2 shows a schematic of the Bowman packet processing
path. The figure shows the demarcation between Bowman system code and user code
that runs within particular a-flows. Within the underlying Bowman system, there are
(at least) three processing threads active at all times: a packet input processing thread,
a packet output processing thread and a system timer thread. Depending on the input
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Figure 2: Bowman packet processing path.

and output scheduling algorithms, it is possible for multiple input and output threads to
be active within the Bowman.

Packets received on a physical interface undergo a classification step that identifies
a set of channels on which the received packet should be processed. In this manner,
incoming packets are demultiplexed to specific channel(s) where they undergo channel-
specific processing. Once channel input processing completes, the packet is considered
to have “arrived” on the abstract link associated with the channel. At this stage, the
packet undergoes a second classification step that identifies the further processing (a-flow
or cut-through) needed by the packet.

A-flow processing is determined by the code specified when the a-flow is created.
Using the Bowman extension mechanism, a-flow code can be dynamically introduced
into a node; this mechanism is also used for dynamic code loading (as is required for
some active network execution environments).

Bowman performance Our goal in developing Bowman is to leverage the facilities
available in traditional operating systems and concentrate on the active-network-specific
aspects of a NodeOS. However, we also want to maintain reasonable performance. Bow-
man has several performance-enhancement features. First, the Bowman implementation
is multi-processor capable; on multi-processor machines, Bowman threads may execute
concurrently and some thread context-switch times are eliminated. Second, on the So-
laris platform, Bowman can be configured to run in real-time mode using the Solaris
Real-Time Extensions.! With real time extensions, Bowman can deliver high through-
put and low delay for packets traversing through a-flows. To leverage the performance
advantages of a multi-processor multi-threaded implementation, we have implemented
the a-flow input and output queues so that, for single-reader single writer queues, there
is no locking (or blocking) unless the queue is empty.

1See the priocnt1(2) system call on SunOS 5.54. An effort is underway to port Bowman real-time
extensions to RT-Linux.
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We have evaluated the performance of Bowman in a variety of configurations. We
include an example result of base forwarding performance here; more detail can be found
in [8]. These experiments were performed on a three-node testbed configured in a straight
line topology. The interior node executed Bowman. The edge nodes were directly con-
nected to separate 100 Mbps interfaces to the Bowman node. We compare the perfor-
mance of the Bowman packet processing path with that of the forwarding performance
of the Solaris kernel and a gateway program written in C. The single threaded C gateway
program uses socket calls to read and immediately write out UDP segments. In each
case, the sending node transmits UDP segments of a specified size to the destination node.
The routing table of one of the edge nodes was configured to use the Bowman node as its
next hop to the other edge node in our testbed. The Bowman topology was configured
with two bidirectional UDP channels — from the edge nodes to the interior node. (For
the C gateway and Bowman forwarding experiments, the Solaris kernel forwarding was
turned off).

Figure 3 shows the sustained lossless throughput through Bowman, the C gateway,
and the Solaris kernel as measured at the receiver. Figure 4 shows the raw packet rate (in
packets/second) at the receiver for the same experiment. It is clear from the figures that
the system call, context switch and data copy overheads for small packet sizes precludes
both the C gateway and Bowman from sustaining high throughput. However, as packet
sizes increase, the context switch and system call dispatch overheads are amortized as
more data traverses the system and user space boundary for each system call. Bowman
is able to saturate the 100 Mbps ethernet for packet sizes of 1400 bytes or more; Bowman
performance is within 5% of kernel forwarding for packet sizes greater than 1200 bytes.

3 CANEs

We have used the Bowman NodeOS as the platform for implementing the CANEs execu-
tion environment. This section gives an overview of CANEs, then describes key aspects
of the implementation.

Overview The slot processing model used in CANEs EE comprises two parts: a fixed
part (underlying program) that represents the uniform processing applied on every packet,
and a variable part (injected program) that represents user-specific functionality on the



packets. The specific points in the underlying program where the injected program
may be executed are called slots. Composition of services in a CANEs computation is
achieved in two steps. First, an underlying program that provides a basic service (e.g.
forwarding) can be selected from amongst those offered by an active node. In the second
step of composition, a set of injected programs are selected to customize the underlying
program. These injected programs can be available at the active node, or can potentially
be downloaded from a remote site. Fach injected program is bound to one or more
processing slots.

Figure 5 illustrates a generalized forwarding function (GFF) underlying program for
CANEs that supports forwarding to a small number of destination addresses. The GFF
has four parameters. Two are required: a source address S, a list of addresses A. Two
are optional: a forwarding table identifier R and a selection function M used to match
addresses with forwarding table entries. If the optional parameters are not supplied,
defaults will be used. The GFF also exports slots where the user may bind injected
programs. Each slot has a default behavior, indicated in the square brackets and used
if the user does not supply an alternative. For example, Slot 2 is reached if the list of
output interfaces turns out to be null. By default, no error message is generated; the
user may choose, for example, to send an error message to the source. The other slots
provide opportunities to control action taken upon packet receipt and further processing
(e.g., sending notification, incoming and outgoing topology information to the source,
application of per-interface policy, flow-specific congestion control etc.).

Implementation Figure 6 shows a thread-level abstraction of our CANEs implementa-
tion over Bowman. Upon startup, the CANEs EE spawns the control a-flow that contains
a thread for handling signaling messages. Fach user’s computation is executed in its own
a-flow and can spawn multiple independent threads that share an address space. The
CANEs EE itself provides a library that implements the CANEs API and resides in the
system as a single EE a-flow that contains a set of threads to handle housekeeping chores
(like signaling and timers).

The CANEs signaling messages are written in the CANEs User Interface (CUI) lan-
guage and are sent to a well-known port. This message consists of two parts: computation
and communication. The computation part defines a directed acyclic graph (DAG). The
root of the DAG is an underlying program. Fach child node corresponds to an injected
program bound to a slot in its parent. The arcs in the DAG identify the slot to which
the child is bound. Each node contains enough information for the CANEs EE to fetch
the code required to execute the computation DAG. The communication part of the CUI
message identifies a routing schema for the user. Further, the user can specify a set of
packet classifier rules that are used to select incoming packets that the flow acts on. This
communication part provides enough information for the CANEs EE to establish the
input and output channels required for the user’s computation.

When the underlying program is dynamically loaded, the default entry function
“_entry” is executed. This function publicizes the slots exported by the underlying pro-
gram. Binding of injected programs to the slots is done while parsing the computation
part of the CUI signaling message. Invoking a slot is analogous to raising a named event.
In this metaphor, all injected programs bound to a slot are handlers for the named event
and are executed concurrently when the event is raised.

The CANEs EE provides a variable sharing mechanism that is used by injected pro-
grams to communicate with underlying programs. Underlying programs declare shared



while (Read next packet) {
Parse packet to obtain S, A, [R, M|
(Slot 0:[null])
; Packet Arrival Slot; Possible uses: route trace, caching
Outputlist := L
; Initialize the outgoing set of interfaces to null
For each address a in A: {
Let interface i := Lookup(a, R, M)
; Look up the interface for each address a
(Slot 1:[Add i to Outputlist])
; Code bound to this slot may implement policy
; to reject certain interfaces
}
if Outputlist = ()
then (Slot 2:[null]); abort;
; When no output interfaces were found, the code
; bound to slot 2 can send errors to source
For each unique ¢ in Outputlist:{
; Packet will be dispatched on each outgoing interface
Create a copy D of the packet,
with A’ = {a : (¢, a) € Outputlist}
; The new destination address set contains only addresses
; that can be reached via interface i
if ¢ is congested
then (Slot 3:[discard])
; Congestion control algorithms may be bound to slot 3. ..
else (Slot 4:[null])
; ...alternate schedule policies to slot j
enqueue D for 7.
; Fventually, the packet is transmitted on interface i

Figure 5: Example CANEs underlying program.
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variables and export them (make them eligible for sharing). Injected programs declare
references to shared variables (the space for the actual data for references must be de-
clared by the underlying program). Further, injected programs import shared variables
exported by underlying programs (this finally creates the binding between the shared
and the references variables).

4 Applications

We are in the process of accumulating experience with implementation of applications in
CANEs. In this section we describe two moderately complex applications.

Active error recovery

Active Error Recovery(AER) [1] is a joint effort between TASC and the University of
Massachusetts to develop a reliable multicast framework using active processing. We
have worked with researchers from TASC and University of Massachusetts on an imple-
mentation of AER in CANEs.

AER makes use of a repair server, residing within the network, to cache packets,
respond to retransmission requests, suppress redundant NAKs from receivers, and detect
gaps in sequence numbers (indicating lost packets). AER also includes protocols to
calculate round trip times and dynamically select a worst receiver to handle sliding-
window-based flow control.



We have implemented AER in CANEs using two underlying programs, a multicast for-
warding function for sending data, NAKs and source path messages, and the generalized
forwarding function for calculating the round trip time and monitoring the congestion
status. We make considerable use of the system timers to retransmit and suppress NAKs,
to uninstall stale state associated with a flow, and to calculate round trip times.

Iterative gather-compute-scatter

The Iterative Gather-Compute-Scatter (IGCS) distributed computation model provides
a mechanism to query and synthesize network state [10]. Such a mechanism is potentially
useful for a range of applications that are sensitive to network topology (e.g., placement
of an AER repair server). IGCS programs repeat a gather, compute, scatter cycle until
a given condition is satisfied. During an iteration, a set of messages are collected during
the gather phase. Once a specific set of messages have been collected, the compute phase
commences. The inputs to the computation are the set of collected messages, the node
and link attributes, and the state store for this computation. The compute phase can
produce a single message (of a fixed IGCS message type) that is then “scattered”, i.e.
transmitted to a set of destinations. IGCS programs can retain state at a node while
they are active. All state is lost after the last iteration of the IGCS computation.

The implementation of IGCS consists of an IGCS daemon, an IGCS underlying pro-
gram and a set of injected programs. The daemon (implemented as a Bowman extension)
receives signaling messages and initiates new computations at network nodes. During the
initiation of a computation, the underlying and compute slot programs are loaded onto
the local node via the Bowman code loading mechanism. The compute slot programs
are bound to the proper compute phases. The data part of the signaling message is
stored into the local state-store so that the information can be retrieved by the 1GCS
computation.
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Figure 7 shows the running time of an IGCS application to find the minimum band-
width on a path. We compare the IGCS implementation to a centralized scheme that
must query each node on the path sequentially. In the plot on the left, we vary the
length of the path while keeping link delay constant at 5 msec. In the plot on the right,
we fix the path length at 10 hops and vary the link delay. For the IGCS algorithm, we
show results for both cold-start (i.e., code must be loaded) and warm-start (i.e., code is
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resident in the cache). This experiment has two salient points. First, the IGCS scheme
has a significant performance advantage over a non-active scheme when the number of
hops exceeds two. Second, the overhead of code-loading in this example is modest; the
cold-start overhead is about 35 msec, while the warm-start overhead is about 5 msec.

5 Discussion

We briefly comment on lessons learned in implementation and on current areas of work.
Bowman is intended to be a “shim” layer over a traditional operating system. However,
providing useful active networking functionality requires access to low level resources,
thus Bowman cannot be insulated from low level details of the OS. Said another way,
the “active” part of an active OS (especially one with decent performance) must be
reasonably OS-savvy.

We originally designed CANEs so that all slots were raised due to packet arrivals.
However, AER (and likely other protocols) require activity that is driven by timers,
rather than packet arrivals. We added the ability to raise slots in timer handlers as a
result of experience with AER implementation.

We are currently adding to our implementation. Areas of near-term work include
better security and protection mechanisms, more sophisticated output queueing schemes,
and scalable protocols for virtual topology instantiation.
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