
Active Reliable Multicast on CANEs: A Case Study
M. Sanders†, M. Keaton‡, S. Bhattacharjee�, K. Calvert�, S. Zabele‡, E. Zegura†

†Georgia Tech, ‡TASC Inc., �Univ. of Maryland, �Univ. of Kentucky

Abstract—This paper presents a case study in im-
plementing a moderately complex, useful service
on an active network platform. The active appli-
cation is reliable multicast with congestion control;
the platform comprises the Bowman Node Oper-
ating System and the Composable Active Network
Elements (CANEs) Execution Environment. The
importance of the work stems from the lessons it
provides about the design and implementation of
active platforms in general and Bowman/CANEs
in particular. For example, our experience shows
that timer-driven active node processing is as im-
portant as packet-arrival-driven processing. Thus,
execution environments cannot focus exclusively on
forwarding, but must also provide efficient timers
and allow timer handlers the same capabilities as
packet-driven computations. Other areas in which
the implementation provides insight include ser-
vice decomposition approaches for active applica-
tions and information sharing among service com-
ponents.

I. Introduction

Active networks provide a platform for network ser-
vices that can be built or customized by injecting code
or other information into the nodes of the network.
For the purposes of this paper, the salient character-
istic of “active networking” is the placement of user-
controllable (for some definition of “user”) computing
capabilities in shared infrastructure of the communi-
cation network, where they can be utilized by appli-
cations that need those capabilities. This paradigm
offers a number of potential advantages, including the
ability to develop and deploy new network protocols
and services quickly, and the ability to customize ser-
vices to meet the needs of different classes of users.

As an example of a desirable network service, con-
sider the problem of multicast applications that need
reliability and desire to share bandwidth coopera-
tively with other applications. The present IP mul-
ticast service makes it difficult for applications to re-
cover from losses in the network, because the needed

This work was supported by DARPA under the CANEs
project contract N66001-97-C-8512 and the PANAMA project
contract N66001-97-C-8513.

information (location of losses) is hidden from users.
Additionally, congestion control in the multicast en-
vironment is challenging due to the feedback implo-
sion problem if all users communicate with the sender
independent of one another. A number of active
multicast projects have realized the value of placing
the functionality where it is needed in the network—
at the multicast branch points. The Active Er-
ror Recovery/Nominee-based Congestion Avoidance
(AER/NCA) protocols realize multicast reliability
and congestion control, taking advantage of active
networking where it is present. The AER/NCA pro-
tocol design is based on current trends in reliable mul-
ticast research, but allows for enhanced performance
when using active networks. Briefly, AER/NCA pro-
vides for rapid recovery from packet losses using pack-
ets cached at repair servers in the network, suppres-
sion of NACKs to avoid feedback implosion, and iden-
tification of the most congested receiver for congestion
control.

AER/NCA was initially implemented in the ANTS
Active Node Transfer System [3], arguably the most
widely used environment for development of active
network applications and services. While ANTS of-
fers a number of advantages for code portability and
rapid prototyping, it is not designed to support high
performance, nor does it offer much explicit support
for structuring complex protocols, beyond the support
generally offered by a structured programming lan-
guage. The AER/NCA service is a reasonably com-
plex service; a significant portion of the processing oc-
curs in the data path (e.g., retransmission of cached
data packets), thus the implementation must provide
reasonable performance.

This case study reports on the implementa-
tion of AER/NCA in an active network platform
that includes the Bowman Node Operating System
(NodeOS) and the CANEs Execution Environment
(EE). Bowman is specifically designed to allow ef-
ficient access to low-level system resources, while
CANEs is designed to provide a framework for struc-
turing complex services. The overall platform at-
tempts to strike a balance between performance and

flexibility.
The importance of this work stems from the lessons

it provides about the design and implementation of
active platforms in general and Bowman/CANEs in
particular. For example:
• Our experience shows that timer-driven active node
processing is as important as packet-arrival-driven
processing. Thus, execution environments cannot fo-
cus exclusively on forwarding, but must also provide
efficient timers and allow timer handlers the same ca-
pabilities as packet-driven computations.
• In the area of structuring complex protocols, we
found that the CANEs composition mechanism pro-
vides a reasonably natural way to structure the
AER/NCA service. Indeed, the service developers
were able to decompose the service using standard
modular programming and protocol techniques to
map the components into the CANEs structure, com-
prised of a generalized forwarding function (GFF) and
AER/NCA specific programs. This lesson may have
bearing on the development of other EEs that fit the
same general class (specifically, those based on cus-
tomization of an underlying framework [8], [1]).
• We found a significant need for efficient packet
duplication with copy-on-write semantics. Because
this copy optimization is most often used on packet
headers it should be possible to design a duplication
method allowing the packet data to be parsed into
pieces aligned with protocol headers, which are then
cloned or physically copied as appropriate.

The next two sections provide an overview of
the Bowman/CANEs platform (Section II) and an
overview of the AER/NCA protocols (Section III),
with an emphasis on providing just enough detail for
the reader to understand the implementation experi-
ence1. The centerpieces of the paper are in Section IV,
which describes design considerations and Section V,
which discusses lessons learned in implementing AER
and NCA on CANEs. In Section VI, we place our
work in the context of related efforts. Section VII
concludes the paper.

II. The Bowman/CANEs Platform

In this section we describe the aspects of the Bow-
man NodeOS and CANEs EE that are relevant for
understanding the implementation of the AER/NCA
protocols. Bowman and CANEs have been imple-
mented at Georgia Tech and the University of Ken-

1Perhaps as a testament to the complexity of the task, a fair
amount of background is necessary to appreciate the implemen-
tation issues.

tucky under the CANEs DARPA contract. More de-
tail on Bowman can be found in [18]. More detail on
CANEs can be found in [5].

A. Bowman

Bowman was written out of necessity, to provide
a platform for CANEs. At the time the Bowman
development was beginning (Fall 1998) there were
no NodeOS implementations available; indeed, the
NodeOS specification [10] was still in considerable
flux. For these reasons, Bowman does not implement
the current NodeOS specification precisely, though it
includes elements that are similar to those in the spec-
ification.

There are four elements of Bowman that are of in-
terest; namely, channels, a-flows, timers and the state
store. Channels in Bowman are communication end-
points that support sending and receiving packets via
an extensible set of protocols. Bowman exports a set
of functions enabling EEs to create, destroy, query
and communicate over channels that implement tra-
ditional protocols (e.g., TCP, UDP, IP) in various
configurations. In addition, Bowman channels allow
other forms of processing such as compression and for-
ward error correction to be included.
A-flows are the primary abstraction for computa-

tion in Bowman. Each a-flow consists of at least one
thread and executes on behalf of an identified prin-
cipal. The threads in an a-flow share context, in the
form of variables that all threads can access. Bow-
man provides interfaces to create, destroy and run a-
flows. As will be described later, one of the interest-
ing questions in the implementation of the AER/NCA
protocols is the division of functionality into multiple
a-flows.

Associated with each a-flow is a dedicated input
queue. A-flows request to receive packets that arrive
on a particular channel by subscribing to the channel.
Subscriptions contain a packet filter rule which allows
Bowman’s packet classifier to match the packets which
should be placed in the a-flow’s input queue. Figure 1
illustrates this process.

Bowman provides a system timer thread that a-
flows can use to schedule processing to occur in the
future. The interface to the timer facility allows set-
timer and cancel-timer operations. The AER/NCA
protocol makes extensive use of timers, for example
to do negative acknowledgment (NACK) suppression.

The Bowman state-store provides a mechanism
for a-flows to store and retrieve state indexed by a
unique key. The Bowman state-store interface pro-

...

logical input
 channels

logical output
 channels

inQ

outQpacket
classifi−
cation

cut
through
path

User
Code
Bowman
 System

F F F
1 2 n

a−flow processing

packets
output by
a−flows

packets
input
for a−flow
processing

Fig. 1. Bowman channel subscription

vides functions for creating, storing and retrieving
data from named state-stores. Using the underlying
state store mechanism, Bowman provides an interface
for creating named registries; such registries provide a
mechanism for data sharing between a-flows without
sharing program variables.

B. CANEs

The CANEs EE has two goals: to support the de-
velopment of active applications which require rea-
sonable forwarding performance, and to provide a
framework for the modular construction of services.
To meet these goals, CANEs allows programmability
via customization of a basic packet processing loop.
The programmer is constrained in that customizing
code can only be added to certain locations in the ba-
sic loop; these constraints both encourage modularity
and potentially allow for various hardware optimiza-
tions of the basic processing.

More specifically, the programming model used in
the CANEs EE comprises two parts: a fixed part
(the underlying program) that represents the uniform
processing applied on every packet, and a variable
part (the injected program) that represents customized
functionality on the packets. The specific points in the
underlying program where an injected program may
be executed are called slots. Composition of services
is achieved by selecting an available underlying pro-
gram (e.g., generic forwarding) and then specifying a
set of injected programs for customization. Injected
programs may be node-resident or loaded from a re-
mote site.

canes recv(&pk);

c Ep(cur pkt) = pk;
c Ep(route this packet) = TRUE;
c Ep(do post processing) = TRUE;
// SLOT for Initial Processing
canes raise slot (PreProcess);
do post p = c Ep(do post processing);
route pk = c Ep(route this packet);
pk = c Ep(cur pkt);

if (route pk) {
c Ep(output if list) = NULL;
// SLOT for Determining Output Channels
canes raise slot(LookupRoute);
ch list = c Ep(output if list);
route pk = c Ep(route this packet);

if (ch list && route pk)
// forward on each channel independently.
for (i = 0; i < ch list->num ch; ++i) {
// copy only if the original is needed
if (!do post p &&
(i == (ch list->num ch - 1))) {
pk copy = pk;
pk = NULL;

} else
pk copy = o pkt copy(pk);

c Ep(cur pkt) = pk copy;
c Ep(output if) = ch list->ch id[i];
c Ep(route this packet) = TRUE;
// SLOT for Channel Specific Processing
canes raise slot(Dispatch);
route pk copy = c Ep(route this packet);
chid = c Ep(output if);

if (route pk copy)
canes send(chid, &pk copy, pk copy->size);

else
o pkt free(pk copy);

}
}

if (do post p)
// SLOT for Final Processing
canes raise slot(PostProcess);

if (pk) o pkt free(pk);

Fig. 2. Example CANEs underlying program (GFF).

For example, Figure 2 shows an underlying program
that can forward packets to one or more output chan-
nels. The program contains four slots: a PreProcess
slot, a LookupRoute slot, a Dispatch slot, and a Post-
Process slot. The PreProcess slot is raised for every
incoming packet; the LookupRoute slot is raised once
if the packet is to be routed, and allows customiza-
tion of the routing function; the Dispatch slot is raised
once per output channel, and thus allows per-output
channel processing (e.g., to obtain the address associ-
ated with the interface); the PostProcess slot is raised
after all routing is completed (e.g., to store a copy of
the packet in a cache). We use the term slot context
tree to refer to a computation consisting of an under-
lying program (the root) and set of injected programs.
Because injected programs can raise additional slots,
the tree may have arbitrary depth. When an injected
program terminates, context is returned to the parent
(program) in the tree and execution resumes at the
point following the raise call.

An important issue regarding the CANEs EE is the
design of underlying programs that have broad use.
As conceived, we believed that CANEs might offer
a small number of underlying programs. Our expe-
rience with AER/NCA supports this design decision:
the same underlying program can be used for all of the
parts of the implementation (see Section IV). How-
ever, additional experience with a variety of active
applications is required before a firm conclusion can
be reached.

The CANEs EE provides a variable sharing mech-
anism that is used by injected programs to communi-
cate with underlying programs. Underlying programs
declare shared variables, allocate space, and export
variables to make them eligible for sharing. Injected
programs declare references to shared variables. Fur-
ther, injected programs import shared variables ex-
ported by underlying programs to create the binding
between the shared variables and the references.

Figure 2 illustrates the use of shared variables from
the underlying program point of view. For exam-
ple, the variables cur pkt, route this packet and
do post processing are all shared. The underlying
program exports and sets them using the c Ep() op-
eration prior to the raise slot function call. Any mod-
ification to the variables is recovered by copying into
local, underlying program variables after the slot pro-
cessing returns.

The instantiation of an underlying program and a
set of injected programs at an active node occurs via
the CANEs signaling protocol. The signaling proto-

col sends a CANEs user interface (CUI) message to
the nodes which are to run the active application. A
CANEs signaling a-flow is resident at any node sup-
porting CANEs; when a CUI message is received, the
underlying and injected program code is fetched and
an a-flow is created.

III. The AER/NCA Protocol

A. Active Support for Reliable Multicast

The AER/NCA protocols are a result of the
PANAMA DARPA contract. AER/NCA is imple-
mented at the multicast sender and receivers, and also
takes advantage of active network elements (active
nodes) by placing repair servers at strategic points in
the multicast distribution tree. A repair server han-
dles both multicast packets from the sender and uni-
cast packets sent to it by its downstream neighbors
in the multicast tree, which may be receivers or other
repair servers. A repair server also has the ability to
“subcast” packets downstream, i.e. send a multicast
packet to a limited portion of the multicast tree that
is downstream of it. Repair servers are not required
for correct operation of the protocols, but they im-
prove scalability by distributing the processing load
throughout the network and performance by respond-
ing to losses sooner.

The AER part of the service deals with reliability.
It uses negative acknowledgments (NACKs) rather
than acknowledgments, to reduce the amount of feed-
back from receivers to the sender. As the data pack-
ets flow down the multicast tree, they are intercepted
by the repair servers. These packets are cached and
used for repairing lost data packets as needed with-
out involving the sender. Losses are detected by both
receivers and repair servers, to allow faster recovery.
Each participant has an upstream neighbor, which is
either the sender or a repair server, whichever is closer.
When loss is detected, NACKs are unicast to the up-
stream neighbor. NACK suppression is performed
using well-known random back-off and subcast tech-
niques [11], [21] to reduce the amount of NACK traf-
fic. Repair servers propagate NACKs upstream as
needed. Retransmissions from either the sender or
a repair server are multicast or subcast downstream,
with downstream repair servers filtering retransmis-
sions so that only those parts of the tree that need
the information will receive it.

The NCA component of the service implements con-
gestion control with a sender-based rate adjustment
algorithm, using packet loss indications from a single

nominee receiver to regulate the transmission rate. It
is designed to be TCP-fair, which informally means
that the AER/NCA session must not receive more
bandwidth than competing TCP sessions on any of
the links in the multicast tree. NCA has two more or
less independent subcomponents: nominee selection
and rate control. Only the former involves the active
nodes; rate control operates between the nominee re-
ceiver and the sender.

The nominee selection process periodically selects
a “worst” receiver (i.e. a receiver to which the path
from the source is most congested) by means of con-
gestion reports sent upstream. Repair servers aggre-
gate these congestion reports and forward only the
“worst” one. The sender receives a small number
of congestion reports and selects the nominee from
among them. Once a nominee receiver has been se-
lected and activated, the NCA rate control protocol
can begin regulating the sender transmission rate.

B. Component Protocols

AER/NCA is implemented as a collection of algo-
rithms and protocols working in concert to support
reliable multicast. In this section, we present details
of some of the component functions, focusing on those
that involve processing (other than forwarding) at ac-
tive nodes. A complete description of the protocol
is available at [4]. The AER/NCA protocols are de-
signed to perform the following general functions:
• Establish and maintain the tree of AER nodes (hi-
erarchy of repair servers) on the multicast path from
source to the receivers, and enable each node to learn
the identity of its parent repair server.
• Support reliability by caching out-bound data pack-
ets and retransmitting them when NACK messages
are received. Also, subcast NACKs back to the por-
tion of the multicast group from which they originate,
and other processing to aid in NACK suppression.
• Estimate various round-trip times for use in the dif-
ferent algorithms. (E.g. before transmitting a NACK
for a lost message, receivers delay a random amount
of time that is a function of round-trip-time.)
• Identify a “nominee” receiver, i.e. the one experi-
encing the greatest loss rate.
In the following subsections, we give an overview of
each of these functions, with an eye toward mapping
the functions into the CANEs model.

B.1 State Establishment and Maintenance

The multicast source periodically sends a source
path message (SPM), which causes soft state to be

established for the AER session at each hop along
the path from source to receivers. The SPM mes-
sage originally carries the source’s address; each active
node replaces the carried address with its own before
forwarding, and uses the old carried address as the
identity of its repair server, as illustrated in Figure 3.
(Note that for some active nodes the repair server will
be the source.)

RS1 RS2

SSPM

SPM SPMRS1 RS2

Sender

Receivers

Receivers

Fig. 3. AER SPM operation.

Several parts of the loss recovery mechanism (see
below) rely on the ability of repair servers to subcast
on the forward path, i.e. to send messages that go to
the portion of the multicast group downstream from
that node. The state information established by this
part of the protocol makes that possible. The state
associated with the session times out and processing
ceases if no SPM is received for some time; this enables
the AER tree to adjust to topology changes.

B.2 Reliability Mechanism

The AER reliability mechanism is responsible for
detecting lost packets and supplying repair packets
for them in a low-latency, efficient manner. Both
receivers and repair servers are capable of detecting
lost data packets; the sender and repair servers are
all capable of supplying repair packets. Data pack-
ets contain sequence numbers; losses are detected via
gaps in the received sequence. As each data packet
is forwarded by an active node (repair server), a copy
is made and placed in a cache. Repair servers also
monitor the sequence number progression in order to
detect losses early.

Upon detecting a lost packet, a receiver or repair
server waits a random interval for NACK suppression
purposes. If it has not received a NACK for the same
lost packet by the end of the back-off interval, it sends
a NACK containing the sequence number of the miss-
ing packet upstream to its repair server. If it does

NACKNACK

NACK

Subcast

RS

Receivers

RS

Receivers

RS

Receivers

- Suppression Timer

RS - Repair Server

Fig. 4. AER NACK processing.

receive a NACK for the same packet during the back-
off interval, it suppresses its transmission but proceeds
as if it had sent the NACK. A repair server, upon re-
ceiving a NACK, performs one of two things. If the
repair server has the needed repair packet in its cache,
it immediately subcasts it to the receivers, which com-
pletes the repair procedure. However, if the repair
server does not have the needed repair packet in its
cache, it subcasts the NACK back to the receivers for
which it is the repair server to suppress further NACK
packets for the same repair packet. After a random
suppression delay at the repair server, a NACK is uni-
cast upstream to its repair server. This process is
displayed in Figure 4.

Repair data packets and subcast NACKs only travel
down one level in the multicast tree. Repair servers
that receive a NACK from upstream process the
packet (to suppress their own NACKs) but do not for-
ward it. Repair servers that receive a subcast repair
packet cache it and subcast it further only if a NACK
for that packet is pending. Losses in the repair pro-
cess —i.e. lost repair packets or lost NACK packets—
are detected by means of timeouts based on RTT es-
timates. If a NACK was sent and the requested re-
pair packet fails to arrive in the specified time, the
NACK is retransmitted to the node’s repair server
(again using the randomization procedure to suppress
duplicates). The repair server distinguishes duplicate
NACKs from retransmitted NACKs by means of a
counter included in each NACK packet. Each time a
NACK for a particular data packet is retransmitted,
the receiver or repair server sending the NACK incre-
ments the counter. Repair servers keep track of the
highest counter value seen for each sequence number,
and ignore NACKs that contain smaller values.

The use of suppression and aggregation techniques,
and the use of a hierarchy of repair servers ensures
that (i) sender and repair servers are not subject to
implosion; (ii) transmission of unnecessary repair data

packets is minimized; and (iii) repair latency is kept
small.

B.3 Round-Trip-Time Discovery

Detection of lost NACKs and repair packets re-
quires that each node have an estimate of the round-
trip-time (RTT) between itself and its repair server.
In addition, two other RTT values are needed at each
entity: the “maximum peer group RTT”, which is the
maximum RTT over all nodes using the same repair
server, and the sender RTT, which is the round-trip
time between the node and the sender.

These estimates are computed by having each node
periodically send a Get-RTT request packet upstream
to its repair server, containing a locally-generated
time-stamp. Repair servers reply with a Get-RTT re-
sponse packet containing the original time-stamp and
sent to the source of the request packet via unicast.
The round-trip-time for this message is then used in
the RTT estimate.

In addition, each Get-RTT request contains the
originator’s current RTT estimate; the repair server
computes and stores the maximum estimate from all
Get-RTT requests, and returns the current value in
every Get-RTT response. The Get-RTT response also
carries an estimate of the repair server’s RTT to the
sender; the sender sets this to zero. When it receives
the Get-RTT response, a node adds the repair server’s
to-sender RTT to its own (new) to-repair server RTT,
to obtain its own to-Sender estimate.

B.4 Nominee Identification

The NCA protocol implements congestion control
for the multicast session. The basic idea is that the
rate of transmission is governed by the worst loss rate
among receivers; that loss rate causes the sending rate
to be modulated in a manner similar to that of TCP-
NewReno [13]. Thus there are two algorithms: one
for selection of the nominee, and one for modulation
of the transmission rate. The active nodes participate
only in the selection of the nominee; hence we only
describe that algorithm.

NCA attempts to determine the TCP-fair band-
width on the path to the most congested receiver.
NCA uses the TCP throughput equation [20] to deter-
mine the fair rate; the use of the equation requires the
loss probability and the round-trip-time to the most
congested receiver. The protocol operates as follows.
Each receiver maintains an estimate of its loss prob-
ability estimate, p, as well as its round-trip-time to
the sender, T . These values are periodically reported

to its repair server, which aggregates received (p, T)
values and forwards only the worst receiver’s param-
eters upstream to its repair server. This aggregation
continues up to the sender, where the final decision is
made as to which receiver is the nominee. The sender
then uses normal unicast methods of notifying the old
and new nominees.

IV. Implementation Experience

In this section we primarily focus on the design con-
siderations that arose in mapping AER and NCA onto
the CANEs platform. We finish the section with a de-
scription of our test topology.

A. Mapping AER/NCA onto CANEs

AER/NCA accomplishes the four general functions
outlined in the previous section using eight different
packet types. This level of complexity and protocol in-
teraction represents exactly the kind of “composite”
service for which CANEs was intended. It is therefore
crucial to consider the possibilities for structuring the
code bindings to the slots in one or more underly-
ing programs, as well as deciding what slots to raise
within injected programs. As with any structured de-
sign, there is a tradeoff between performance and the
potential for code re-use via modularity.

Recall that in CANEs, the basic unit of functional-
ity at an active node is the a-flow; an a-flow is specified
by an underlying program, a set of injected programs,
and the bindings of injected programs to slots in the
underlying program or other injected programs. We
first consider the a-flow structure.

One possibility is to implement the entire service
as a single a-flow, which examines each packet via a
PreProcess slot to determine its type, and then sim-
ply invokes the appropriate function for that type.
The primary advantage of this method is a reduction
in the overhead of crossing “module” (in this case a-
flow) boundaries when interaction between the differ-
ent functions is required. The primary disadvantage is
the classical one of reduced flexibility: no component
can be changed without rebuilding the entire package,
and individual pieces cannot be re-used. For example,
the tree-establishment and maintenance portion of the
protocol might be useful for media-thinning or other
applications that need to perform processing hop-by-
hop.

The approach we used was to consider the pro-
cessing of each distinct packet type as a “micro-
protocol” [19], with one a-flow per packet type. This
choice was to some extent motivated by restrictions on

U
N

A
C

K

D
at

a

M
N

A
C

K

C
S

M

CANEs EE

N
P

M

R
T

T

C
C

M

Bowman NodeOS

SPM

Fig. 5. AER/NCA a-flows.

the capabilities of individual threads within an a-flow
in Bowman. However, it does leverage the demulti-
plexing capability of the NodeOS, and makes re-use
of any component protocol straightforward.

Figure 5 shows the a-flows associated with the
AER/NCA protocol; each is labeled with the packet
type it handles. The blow-up of the SPM a-flow re-
veals the existence of a dedicated underlying program
thread and a timer thread; each a-flow has this same
structure. Table I gives a brief description of the
function of each a-flow, including whether it processes
unicast or multicast messages going upstream, down-
stream or in both directions.

a-flow Function Direction
SPM source path maintenance down/multi
Data data forward/cache down/multi
UNACK NACK transmission up/uni
MNACK NACK suppression down/multi
RTT round-trip-time both/uni
CSM nominee selection up/uni
CCM nominee feedback up/uni
NPM nominee path (not used) up/uni

TABLE I
AER/NCA packet types.

Figure 6 shows the decomposition of the SPM and
Data micro-protocols and the resulting context trees
of bindings between raised slots and injected pro-
grams. The root of each tree is the underlying for-
warding function. As shown in Figure 2, the GFF
has four slots that can be raised. In the case of the
SPM a-flow, three of the slots are used; the Data a-
flow uses two. Notice that both the spm_ppp and
the data_ppp injected programs also have slots, to
which the routines that handle all of AER’s inter-
action with a packet cache (e.g., PktCacheGet) are
bound. This allows different instances of AER to use

different caching mechanisms and/or policies while
running on the same node.

gff()

ip_lookup() spm_ppp()fixaddr()

rm_cache() init_cache()

Di
sp

at
ch

DestroyPktCache

In
itP

kt
Ca

ch
e

Po
st

Pr
oc

es
sin

g

LookupRoute

gff()

ip_lookup()

LookupRoute

cache_put() cache_get()

Pk
tC

ac
he

G
et

data_ppp()

Po
st

Pr
oc

es
si

ng

PktCachePut

Fig. 6. SPM(left) & DATA(right) slot context trees.

Both the SPM and Data a-flows are arranged so
that most of the non-forwarding work occurs in the
PostProcessing slot. This allows packets to be for-
warded first, so that active processing occurs con-
currently with queuing, propagation, and other out-
bound delays. Of course, if the outgoing packet differs
from the incoming packet, it is not possible to do all
processing after forwarding. For example, the SPM
micro-protocol has to replace the “previous hop” value
in the received packet with its own address before for-
warding the packet, because it defines its downstream
neighbors’ next hop on the upstream path toward the
source. This replacement is done in the Dispatch slot,
which the GFF raises once for each outgoing interface.
The fixaddr() injected program is thus able to place
the address of the particular outgoing interface in the
packet, as it should.

Table II shows the total number of different injected
programs bound to each of the four slots in the GFF
shown in Figure 2. The Other row reveals the bind-
ings made to slots raised by the AER/NCA specific
injected programs. One a-flow, the CCM packet pro-
cessing, uses just one of the slots; all others use two
or more slots.

Slot Number I.P.’s Bound
PreProcess 5

LookupRoute 8
Dispatch 2

PostProcess 2
Other (User-defined) 5

TABLE II
AER/NCA use of program slots.

B. Implementation evaluation setup

Following the initial protocol development effort, we
developed a topology and test scenarios for evaluating
and improving our work. Our primary goal was to
design a setup capable of performance and stability
testing of the protocol and the platform. Secondarily
we desired a topology which allowed confirmation and
demonstration of the advantages of the AER/NCA
protocol.

A1 A2

S1

S2

R1

R2

WE1

WE2

WE3

Fig. 7. Experimental Topology.

The topology in Figure 7 contains NISTNet [2]
WAN-emulators (WE1, WE2, and WE3) which al-
low delays, drops, and bandwidth limitations to be
introduced on a link. This capability is necessary if
the active protocols are to be useful. The topology
contains two MPEG-2 video sources S1 and S2 at-
tached to active router A1 via WAN-emulators WE1
and WE2 respectively. Two receivers R1 and R2 are
attached to active router A2. The active routers are
connected to one another via WE3. The receivers con-
tain streaming MPEG-2 hardware decoders; the ac-
tive routers have dual processors. The video sources
transmit MPEG-2 video in the half-D1 (360 x 480)
format at a full 30 frames per second. The data rate
for a single video flow averages 2 Mbps with frequent
bursts of up to 6 Mbps.

The active routers are able to easily route multiple
multicast video streams from either source simulta-
neously to both clients while running the AER/NCA
active applications. We are able to demonstrate an
obviously noticeable video quality difference between
an active receiver that gets repairs from A1 or A2,
and a non-active one that only communicates with
the source. We also have a test server and receiver
application that uses the AER/NCA protocol to com-
municate. This test application allows rate and timing
adjustments to be made for more thorough exercising
of the code and the protocol. It is important to note
that this isolated topology not only provides the abil-
ity to run reproducible experiments at rates sufficient
for streaming video; but also provides fine-tuning of
link properties which is necessary for localization and
debugging the limiting factors of an implementation.

V. Lessons Learned

In this section we highlight the lessons learned in
the implementation and propose additional CANEs
features and modifications. Some of these proposed
changes have been made; others require additional
thought or implementation effort.

A. Timer-driven processing

Prior to the implementation experience, we had not
fully appreciated the importance of timer-driven pro-
cessing. We suspect others in the active network com-
munity have similarly focused on packet arrivals as
the primary event of interest. The AER/NCA proto-
cols require that timer events be processed efficiently
and have similar capabilities to those of packet arrival
events. For example, in the NACK suppression and
retransmission cases require randomly delayed actions
as well as the ability to generate and forward pack-
ets. While packet arrival does trigger these actions, a
timer facility is necessary if NACK implosion is to be
avoided. AER/NCA makes significant use of the timer
facility provided, two per-flow timers are used along
with per-message or per- sequence number timers for
NACK, CSM, and RTT processing.

The original CANEs timer facility was inefficient
because there was a single system thread that exe-
cuted all timer handlers. This meant that timer han-
dlers could not block or execute for long periods of
time without delaying other handlers. Because much
of AER/NCA’s functionality is timer-driven, we were
led to develop a “heavyweight timer” facility, which
is executed in a separate thread associated with the
a-flow which set the timer. The system timer thread
signals the heavyweight timer thread, which executes
the handler.

Perhaps more subtle, and somewhat more specific
to CANEs, we found that the newly created heavy-
weight timer facility is of limited use without the abil-
ity to raise slots within timer handlers. For example,
NACK packets can be sent upstream as a result of
either packet arrival or timeout. Ideally we would like
to raise a slot to lookup and forward the timer-driven
NACK packets in the timer handler; however, that
is not possible because the handler executes on the
timer thread, which has no slot context. Rather than
specifying a function name as a timer handler, the so-
lution to this problem is to allow a timer handler to
be specified with the name of a context tree, where
the root of the context tree is executed as the timer
handler.

Providing the ability to execute named context
trees in timer handlers requires support that we have
not fully designed and implemented, including decid-
ing on a name space. There are also implications for
code loading, and signaling, as these affect when and
how the code for the timer handler is loaded into the
appropriate nodes.

B. CANEs use of a-flows

We intended the a-flow to be a conceptual group-
ing of related threads for the purposes of security, ac-
counting, and scheduling. The use of a separate a-flow
for each sub-protocol, combined with the timer thread
per-a-flow described above, violated the a-flow seman-
tic by distributing macro-protocol functionality across
multiple flows. In addition, thread density lead to
significant contention for protocol state between con-
currently running threads. We discuss each of these
challenges in the two paragraphs below.

To achieve the desired conceptual grouping, future
CANEs a-flows should allow the specification of an ar-
bitrary collection of threads. Slot context should be
specifiable for each thread, and packet arrival threads
should each have an I/O specifier, potentially giving
each thread it’s own input queue. Allocation of zero
or more of these threads for the purposes of timer han-
dling should be supported. For example, the alloca-
tion of timer threads might be based on issues of con-
currency and contention for shared variables. Thread
pooling in the form of packet handlers or timer han-
dlers should be supported as well.

The NACK state associated with an AER/NCA
flow demonstrates the contention issue; this state is
referenced by four of the micro-protocols. When we
account for timer threads, as many as six threads
can be competing for NACK state at the same time.
These threads may also require access to other state
information, for example the packet cache, which can
lead to additional race conditions as well as state-store
lookups. In the case of AER/NCA we were able to
find effective state objects and lock scope by basing
object granularity on both the reference frequency and
the possibility of sub-protocol contention. Addition-
ally, the overhead of multiple state-store lookups per
event was avoided by storing related state references
within all objects associated with the flow. For exam-
ple, the resulting state object for NACK state is lock-
able and hash-able on a per sequence number basis
and contains a pointer to the AER/NCA state object
for the flow. This in turn allows access to all other
state for the AER/NCA flow without the need for an

additional state-store operation.

C. Packet duplication

Platforms which support parallel execution of active
applications or allow the caching of packets, will re-
quire a duplication semantic which minimizes the copy
operation overhead while allowing flexibility in packet
modification. In the case of CANEs, the injected
programs that run in different a-flows need to share
packet contents with one another as well as the system
threads responsible for forwarding. For example, the
SPM message rewrites the previous hop field for each
outgoing interface. However, the CANEs duplication
facility currently provides only monolithic “reference
count” semantics, i.e., there is one actual copy of the
data, which is shared by all programs. This makes du-
plication fast, but also means that any modification
applies to all copies. Obviously this causes problems
if an SPM message is still queued for output on one
interface when the address is rewritten for another.

To get around this problem, the CANEs duplication
method was modified to copy the entire packet. How-
ever, a better solution is a copy-on-write duplication
method that allows sharing of copies at the granular-
ity of individual headers, so that only the parts of the
packet being modified are copied. Because this copy
optimization is most often used on packet headers it
should be possible to design a duplication method al-
lowing the packet to be parsed into pieces aligned with
protocol headers, which are then cloned or physically
copied as appropriate. The portion of the packet of in-
terest to the caller could be defined using the Bowman
packet filter’s header definition language. The kind of
active processing discussed here is further evidence of
the need for previously proposed buffer manipulation
ideas such as fbufs[9].

D. Interoperability with non-active end-points

Active network platforms will need to facilitate
communication with non-active end-points in order
to support incremental deployment and transparent
inclusion of active network functionality. In imple-
menting the AER/NCA protocols we were ultimately
interested in demonstrating the service using a video
server and receivers. Due to the complexity of the
video components, it was considered a necessity to
use an existing video application without modifica-
tion. Packets sent from the end-points needed to tra-
verse the CANEs/Bowman active network with their
UDP and IP headers intact so that they could be de-
multiplexed correctly by the receiving application.

In CANEs/Bowman, application-level demultiplex-
ing of packets to a-flows is separated from channel pro-
cessing. That is, the application specifies the packet
filter for the packets that emerge from the Bowman
input channel, independent of the type of that chan-
nel. This means that the same filter expression can
be used with all channels regardless of their type.

Because the active nodes’ point of view is that pack-
ets from the end-points are transmitted directly over
Ethernet, we solve the problem with channels defined
by the Ethernet MAC addresses of both the end-point
and the interface on the active node. We also modify
the routing tables on the end-points so that packets
destined for all other end-points and active nodes in
the topology are routed through the adjacent active
node. As a result, no other knowledge of the active
network is necessary on the end-points.

E. Flexible run-time control

In development and testing we encountered the
need for a significant diversity of experimental setups.
We were able to exert considerable run-time control
over the setup via the CUI signaling interface. This
not only saves time otherwise spent compiling, but
also allows policy-oriented design decisions to be made
at run-time rather than design time.

For example, one of the earliest design decisions we
faced was whether to limit a particular AER/NCA
protocol instantiation on a node to use by a single ap-
plication flow. Because the flow classification section
of the CUI message allows for either very specific (e.g.,
source and multicast addresses) or very general (e.g.,
all AER packets) filters to be specified, we opted not
to restrict the application to a single flow. As a result,
we built our active applications to work independent
of this policy decision; a single instantiation of the
protocol can either support multiple flows simultane-
ously or only one specific flow, by simple alteration of
the signal at run-time.

The run-time specification of the slot bindings also
allows flexibility as to which of the sub-protocols
were activated, and which injected programs were
used. In one case, we added a slot for a light-
weight/low-frequency flow-authorization mechanism
in the SPM packet handler to demonstrate security
capabilities. The use of this mechanism could be com-
pletely avoided at run-time by simply not binding the
injected program to the slot added to the SPM han-
dler.

F. Evolving a generalized forwarding function

Our original CANEs GFF turned out to be over-
simplified. We found that refining a generalized for-
warding function was a difficult task due to the trade-
offs between efficiency and flexibility.

The original GFF contained only two slots, one
for pre-processing and another for route lookup.
AER/NCA required a number of changes, including
support for multicast, the ability to process packets
after they have been forwarded, and the ability to
process channel-specific copies of packets being for-
warded. This lead to the development of the GFF
in Figure 2. Multicast support was interesting since
we wanted to make the forwarding function general
enough to handle multicast, while minimizing any un-
necessary operations in the case of unicast.

VI. Related Work

Most closely related to this work are other efforts to
develop moderately complex active applications and
services. Of particular interest are those that involve
programmability on the data path and have some per-
formance requirement. Efforts in this area have been
limited for two main reasons. First, there have been
relatively few active network platforms available that
emphasize performance. Second, quite a bit of ac-
tive service and application effort has concentrated on
adding programmability to the control plane, rather
than the data plane.

We mention several projects that have produced (or
are working on) moderately complex applications and
services. This discussion is by no means exhaustive,
but simply reflects the more substantial efforts that
we are aware of.

The Router Plugins project at Washington Univer-
sity involves the development of an in-kernel execution
environment that allows limited customization of IP
forwarding [8]. The execution environment has been
implemented in FreeBSD and offers a relatively high
performance platform for data path programmabil-
ity. The platform has been used to implement con-
gestion control mechanisms for best-effort multicast
video distribution [16]. These mechanisms work in
concert with a wavelet encoding scheme to preserve
as much quality as possible under congested condi-
tions. This work demonstrates the potential for data
path programmability to substantially improve end-
user performance.

The Active ARP project at ISI is investigating the
use of active networking to customize resource reser-

vation, thus the focus is on programmability in the
control plane. As part of this project, an EE is be-
ing developed specifically for this “application”. This
work certainly meets the test of significant complexity
in the service; indeed, this is one of the most ambi-
tious service development efforts currently underway
in the active and programmable networks community.
The lessons learned from the project will be of great
interest.

The ANTS execution environment has provided the
platform for quite a variety of application and service
development efforts [23], including PIM-style multi-
cast and Web cache routing [24]. At least one of the
lessons from these implementation efforts is consistent
with our findings, namely that the active processing
tends to be quite efficient, with a very modest slow
down over null active processing.

Although the main contribution of this paper is not
reliable multicast, we briefly mention related work
in this area. A number protocols have attempted
to achieve multicast reliability and congestion control
without additional support from the shared nodes of
the network, that is, using only unicast and multi-
cast communication among the end systems [11], [12].
However, they all have a number of inefficiencies when
dealing with large numbers of receivers, due to the
need for feedback from the receivers to the sender. As
the group gets large this feedback can overwhelm the
sender, a condition known as implosion. Second, as
the number of receivers grows, the number of retrans-
missions grows [6], which can lead to congested links
and degradation of receiver performance. Develop-
ing a congestion control algorithm allowing multicast
traffic to share bandwidth with existing unicast appli-
cations over an entire multicast tree turns out to be
a complex problem [22], [14], [7], [25], [15], [17]. Thus
end-system-only approaches either don’t scale or end
up constructing an “overlay” topology, because the
actual multicast tree topology used by the IP multi-
cast service is hidden.

VII. Conclusions

In this paper we have described an implementa-
tion of the AER/NCA reliable multicast scheme over
the CANEs/Bowman active network platform. Dur-
ing the implementation, we gained valuable insights
about structuring non-trivial protocols over active
platforms. Our effort demonstrates the feasibility of
implementing real protocols over active networks.

This implementation effort has enhanced our un-
derstanding of both the CANEs/Bowman platform

and of AER/NCA. None of the earlier active ser-
vices (e.g. a “smart” firewall) implemented in CANEs
stressed the timer handling routines as rigorously as
AER/NCA. The AER/NCA implementation exposed
the inevitable bugs in our timer routines, but more
importantly, forced us to re-design timer support in
CANEs. As mentioned before, this led to the addi-
tion of a multi-threaded “heavy-weight” timer facility
in CANEs. Of course, in retrospect, it is clear that
any moderately complex protocol will require substan-
tial timer support from the environment, but it is in-
structive to note that when the port of AER/NCA to
CANEs was started many EEs did not provide any
timer support. Our experience with the timers is also
a perfect example of the application requirement–EE
feature feedback loop2 that had to be set up in order
to implement AER/NCA over CANEs/Bowman.

AER/NCA consists of eight co-operating micro-
protocols. Our implementation effort taught us valu-
able lessons about the features CANEs (and other
EEs) must support in order to provide a natural envi-
ronment for protocol (de-)composition. The CANEs
notion of an underlying program and slots into which
micro-protocols can be inserted as injected programs
proved to be relatively natural and useful in decom-
posing AER/NCA. The current CANEs model (as
described in [5]) is very good at decomposing pro-
tocols into different execution threads, but the struc-
ture would have been better had we not used an a-
flow per micro-protocol. Instead, the real requirement
is for CANEs to be able to support complete multi-
threading with the ability to raise slots within each
thread. In this way, individual threads can be used
to decompose the protocol while the usual synchro-
nization primitives, e.g. semaphores and condition
variables, can still be used for synchrony.

References
[1] ASP EE in the ABone.

http://www.isi.edu/abone/ASP EE.html.
[2] Nistnet. http://snad.ncsl.nist.gov/itg/nistnet/index.html.
[3] Active Node Transfer System Version 1.3, April 2000.

http://www.cs.washington.edu/research/networking/ants/.
[4] AER/NCA Use Cases, April 2000.

http://www.tascnets.com/newtascnets/Software/AERNCA/.
[5] S. Bhattacharjee. Active Networking: Architecture, Com-

position, and Applications. PhD thesis, Georgia Institute
of Technology, Aug. 1999.

[6] S. Bhattacharyya, J. Kurose, and D. Towsley. The Loss
Path Multiplicity Problem in Multicast Congestion Con-
trol. In Proceedings of IEEE INFOCOM, March 1999.

2Our thanks go to Doug Maughan at DARPA for encouraging
and facilitating this collaboration.

[7] D. Chiu. Congestion Control using Dynamic Rate and
Window. Technical report, Presented at the Meeting of
the Internet Reliable Multicast Research Group, Arling-
ton, VA, December 1998.

[8] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner.
Router Plugins: A Software Architecture for Next Genera-
tion Routers. In Proceedings of SIGCOMM ’98, Vancouver,
CA, Sept 1998.

[9] P. Druschel and L. Peterson. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. In Proceedings of the Four-
teenth ACM Symposium on Operating Systems Principles
(SOSP), pages 189–202, December 1993.

[10] L. Peterson (Editor). NodeOS Interface Specification.
DARPA AN NodeOS Working Group Draft, 1999.

[11] S. Floyd et al. A Reliable Multicast Framework for
Light-Weight Sessions and Application Level Framing. In
IEEE/ACM Trans. Net., vol. 5, no. 6, pages 784–803, De-
cember 1997.

[12] S. Paul et al. RMTP: A Reliable Multicast Transport Pro-
tocol. In IEEE JSAC vol. 15, no. 3, pages 407–421, April
1997.

[13] S. Floyd and T. Henderson. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 2582, experimental,
April 1999.

[14] S. Golestani and K. Sabnani. Fundamental Observations
on Multicast Congestion Control in the Internet. In IEEE
Infocom’99, March 1999.

[15] M. Handley and S. Floyd. Strawman Specification for
TCP Friendly (Reliable) Multicast Congestion Control
(TFMCC). Technical report, Presented at the Meeting of
the Internet Reliable Multicast Research Group, Arlington,
VA, December 1998.

[16] R. Keller, S. Choi, D. Decasper, M. Dasen, G. Fankhauser,
and B. Plattner. An Active Router Architecture for Mul-
ticast Video Distribution. In Proceedings of Infocom 2000,
April 2000, Tel Aviv.

[17] M. Luby, L. Vicisano, and T. Speakman. Heterogeneous
Multicast Congestion Control based on Router Packet Fil-
tering. RMT working group, June 1999.

[18] S. Merugu, S. Bhattacharjee, E. Zegura, and K. Calvert.
Bowman: A Node OS for Active Networks. In Proceedings
of Infocom 2000, April 2000, Tel Aviv.

[19] S. W. O’Malley and L. L. Peterson. A Dynamic Network
Architecture. ACM Transactions on Computer Systems,
10(2):110–143, May 1992.

[20] T. Ott, J. Kemperman, and M. Mathis. The Stationary Be-
havior of Ideal TCP Congestion Avoidance. August 1996.

[21] C. Papadopoulos, G. Parulkar, and G. Varghese. An Error
Control Scheme for Large-Scale Multicast Applications. In
Proceedings of Infocom 1998.

[22] L. Rizzo, L. Vicisano, and J. Crowcroft. TCP-like Conges-
tion Control for Layered Multicast Data Transfer. In IEEE
Infocom’98, April 1998.

[23] D. Wetherall. Active Network Vision and Reality: Lessons
From A Capsule-Based System. In 17th ACM Sympo-
sium on Operating System Principles (SOSP’99), Decem-
ber 1999.

[24] D. Wetherall. Service Introduction in an Active Network.
PhD thesis, MIT, February 1999.

[25] B. Whetten and J. Conlan. A Rate Based Congestion Con-
trol Scheme for Reliable Multicast. Technical report, Pre-
sented at the Meeting of the Internet Reliable Multicast
Research Group, Arlington, VA, December 1998.

