
Directions in Active Networks
�

Kenneth L. Calvert

Department of Computer Science

University of Kentucky

Lexington, KY

calvert@cs.uky.edu

Samrat Bhattacharjee Ellen Zegura

Networking and Telecommunications Group

College of Computing

Georgia Tech, Atlanta, GA

fbobby,ewzg@cc.gatech.edu

James Sterbenz

GTE Laboratories

Waltham, MA

jpgs@acm.org

Abstract

Active networks represent a signi�cant step in the evolution of packet-switched networks,

from traditional packet-forwarding engines to more general functionality supporting dynamic

control and modi�cation of the network behavior. However, the phrase \active network" means

di�erent things to di�erent people. This article introduces a model and nomenclature for talk-

ing about active networks, describes some possible approaches in terms of that nomenclature,

and presents various aspects of the architecture being developed in the DARPA-funded active

networks program. Potential applications of active networks are highlighted, along with some

of the challenges that must be overcome to make them a reality.

1 Introduction

Packet-switched networks enable the sharing of transmission facilities so that packets may be e�-
ciently moved among connected systems. Traditional packet networks perform only the processing
necessary to forward packets toward their destination. Over time, as computing power becomes
cheaper, more and more functionality is being deployed inside the network, in an e�ort to pro-
vide better service to users. Examples of such functionality include admission control (to guarantee
delay and other performance characteristics for certain classes of users), explicit congestion noti�ca-
tion (to enhance the congestion-adaptation of certain applications), packet �ltering (to protect end
systems from attempts to exploit security holes), and TCP \ack spoo�ng" (to improve reliability
over lossy links).

Active networks represent a \quantum step" in this evolution: by providing a programmable

interface in network nodes, they expose the resources, mechanisms, and policies underlying this
increased functionality, and provide mechanisms for constructing or re�ning new services from
those elements. In short, active networks support dynamic modi�cation of the network's behavior
as seen by the user. Such dynamic control is potentially useful on multiple levels:

�Work supported by DARPA. Opinions and views expressed here are those of the authors and are not necessarily

representative of their organizations or sponsors. This article was written while Kenneth L. Calvert was with the

College of Computing, Georgia Tech.

1

� From the point of view of a network service provider, active networks have the potential to
reduce the time required to develop and deploy new network services. The shared infrastruc-
ture of the network presently evolves at a much slower rate than other computing technology.
One consequence of being able to change the behavior of network nodes on the
y is that ser-
vice providers would be able to deploy new services quickly, without going through a lengthy
standardization process.

� At a �ner level of granularity, active networks might enable users or third parties to create
and tailor services to their particular applications and even to current network conditions.
Though it seems likely that most end-users would not write programs for the network |after
all, individual users can, in principle, program their PC's, but how many do?| it is easy
to imagine individuals customizing services by choosing options in code provided by third
parties. Indeed, this prospect should appeal to network providers as well, because it enables
them to charge more for such value-added services.

� Networks are expensive to deploy and administer. For researchers, a dynamically-programmable
network o�ers a platform for experimenting with new network services and features on a re-
alistic scale without disrupting regular network service.

In this paper, we �rst introduce a vocabulary for talking about active networks, and describe a
range of approaches to building an active network. We then present a snapshot of the architecture
being developed in the DARPA active networks program,and discuss some ways in which new
services might be composed from basic building blocks. Finally, we brie
y highlight some of the
research into ways that active networks might be used.

2 Basic Concepts and Nomenclature

An active network is a kind of store-and-forward network. A store-and-forward network consists
of a set of nodes interconnected by transmission links. The purpose of the network is to support
the sharing of these transmission facilities. The basic unit of multiplexing of transmission facilities
is the packet. Nodes receive packets from users and other nodes, perform a computation based on
their internal state and the control information (header) carried in the packet, and as a result of
that computation may forward one or more packets toward other nodes or to users. The nature
of the network service is de�ned by the behavior of the individual nodes of the network, and how
users can control that behavior through coded information placed in their packets.

In today's Internet, for example, routers examine the destination address �eld of the Internet
Protocol header along with internal routing tables to determine to which neighbor they should
forward the IP packet. The extent of user control over the network's behavior is limited to the
range of values that can be placed in that �eld (and a few others) in the IP header; other services
can, however, be envisioned. One example, which has been proposed for the Internetis a \premium"
service in which certain nodes classify packets based on information contained in all of their headers
(TCP or UDP port numbers as well as source and destination IP addresses), and then route and
schedule them for transmission on the basis of that classi�cation.

In this discussion we identify the term user (or end user) with the originators and recipients
of the packets actually carried by the network. Users are, in general, di�erent from node/network

administrations, which control the con�guration and interconnection of network nodes. Often the
relationship between user and network administration is that of service provider and subscriber.

2

What we call the network application programming interface (network API) is made up of those
aspects of behavior that are visible to the end user, viz., the per-node packet processing behavior
and the code through which users control that behavior via the packets they send. We can think
of the network API as de�ning a virtual machine that interprets a speci�c language. The network
API for the Internet Protocol comprises the language de�ned by the syntax and semantics of the
IP header and its e�ect on the routers of the network. In traditional networks the virtual machine
is �xed, and the expressive power of the language is very limited.

Active Networks and Programming Interfaces

One way to think about active networks is that they provide a programmable network API. If we
think of the IP header in the traditional network as the input data to a virtual machine, we can
think of packets in the active network containing programs as well as input data. In the context
of this model, a variety of active networking approaches can be characterized by the following
attributes:

� Language Expressive Power. The degree of programmability of the network API may
range from a simple list of �xed-size parameters that select from prede�ned sets of choices, to a
Turing-complete language capable of describing any e�ective computation (such mechanisms
are discussed further in Section 4). The advantage of a less powerful language is that it
constrains the possible node behaviors and so simpli�es correctness analysis. It is also more
likely to admit fast-path optimization, e.g. through special-purpose hardware.

Many active networking projects, however, have opted for more powerful languages that use
typing and other mechanisms to help ensure correctness.1 Most of these languages feature
some form of restriction on their expressive power, order to guarantee that the e�ect of any
packet sent into the network is bounded. For example, a language may admit only straight-
line programs, without loops or branches.

� Statefulness. Another important characteristic of the network API is the ability to install
state in the interior nodes of the network, and to refer to state installed by other packets.
Some active network APIs provide this capability, while others do not. Where it is present,
the API must include control mechanisms to protect users' state from unauthorized access.

� Granularity of Control. By this we refer to the scope of node behavior that can be modi�ed
by a received packet. One possibility is that a single packet can modify the node behavior
seen by all packets arriving at the node, and this change persists until it is overridden. At the
other extreme, a single packet modi�es the behavior seen only by that one packet. Between
these extremes, modi�cations might apply to a
ow, which we de�ne to be a set of packets
sharing some common characteristic, such as temporal locality and/or a particular source and
destination address in the headers. In general, the active network API must include security
mechanisms that ensure that packets a�ecting the node behavior have localized e�ect and/or
come from authorized users.

The possibility of programming the network API introduces a new role, namely that of service
developer: a third party who provides code that can be loaded into the active network to enhance

1The ability to express powerful computations is, in itself, not particularly interesting. The utility comes from

being able to access node resources (e.g. output queues) from inside a computation. Thus, a key aspect of the

programming language is the set of abstractions of node resources it provides.

3

or customize the service seen by users. Such code might be deployed by users themselves, or by
network service providers.

Examples

We brie
y describe some active networking approaches in terms of the model and attributes intro-
duced above.

The ANTS toolkit [1], developed at MIT, features the notion of a capsule, which is a packet
containing a byte-coded Java program along with a payload of user data. The ANTS Network API
consists of the Java Virtual Machine augmented with the ANTS class, which implements methods
permitting capsules to be decoded and interpreted. ANTS supports stateful computation: capsules
capsules can install state and invoke classes installed by other capsules. The granularity of control
is at the
ow/packet level.

Because the standard JVM does not support access to transmission resources at a su�ciently
low level, implementations of ANTS (or any other active network API based on Java) on stan-
dard platforms cannot support quality-of-service capabilities, and are limited to the basic network
capabilities provided by Java. However, work at the University of Arizona [2] is implementing a
version of the JVM called Joust, which supports lower-level abstractions for real-time scheduling.

The SwitchWare project, at the University of Pennsylvania [3] uses a language called PLAN
(Programming Language for Active Networks) as the network API. PLAN is a scripting language
that supports some basic primitives, sequential composition, and the invocation of switchlets.
PLAN does not permit packets to install state in network nodes. Switchlets are API components
(programs) that are installed via a separate di�erent network API. The granularity of control of
PLAN is per-packet for PLAN; installation of a switchlet, however, makes it globally available at
the node.

The Smart Packets project at BBN [4] is applying active network technology to assist with
the growing problem of managing networks. Two programming languages have been developed:
Sprocket, which is a high-level language with built-in features to support network management (e.g.
built-in types for accessing management data); and Spanner, which is a CISC assembly language
into which Sprocket is compiled. Thus the Network API is implemented by the Spanner virtual
machine implemented by a daemon running in an active node. A design goal of the project is to
be able to encode meaningful and useful network management programs in less than a kilobyte;
thus Spanner provides very compact representations that �t into single packets.

A group of researchers at Columbia University and elsewhere are investigating architectures for
Open Signaling, focusing on connection management and support for quality of service in ATM
networks. The xbind implementation [5] is based on a node programming interface comprising a
high-level language such as C, plus a set of hardware control primitives provided by the ATM switch
manufacturer. Xbind exports an object-oriented, CORBA-based network API, which enables users
to modify switch state. The granularity of control is the ATM virtual circuit.

3 Architecture Overview

In this section we present an overview of the architecture under development in the DARPA
active networks program. (The reader is cautioned that this is a snapshot, and some aspects of
the architecture may still change.) The active network architecture deals with global matters like
addressing and end-to-end services, which are intended to be programmable (not �xed) in an active

4

Execution
Environments

Node OS

channels store

EE
Mgmt

EE 1 EE 2 IPv6

policy DB

security
enforcemt
engine

Figure 1: Components

network. The general approach has therefore been to specify a node architecture that de�nes a
common base functionality, including how packets are processed, what resources are available at
the node, and how they are accessed. Thus, the architecture de�nes the basic functionality of
the active node programming interface, although it does not specify any particular language or
encoding for that interface. This approach has the pleasant e�ect of minimizing the amount of
global agreement and standardization required to implement an active network.

The node architecture is explicitly designed to support multiple network APIs simultaneously.
Several factors motivate this requirement. First, current active network prototypes occupy dis-
parate points in the taxonomy described earlier, and given our lack of experience it seems desirable
to let them be used and compared side-by-side to enhance our understanding. Second, this approach
supports the goal of fast-path processing for those packets that just want \plain old forwarding
service". A third and related factor is that it provides a built-in evolutionary path, not only for
new and existing APIs, but also for backward-compatibility: IPv4 or IPv6 functionality can be
provided as simply another network API.

The functionality of the active network node is divided between the Execution Environments

(EEs) and the Node Operating System (NodeOS). The general organization of these components is
shown in Figure 1. In terms of the discussion in Section 1, the EE is responsible for implementing
the network API, while the NodeOS manages access to local node resources by EEs.

Execution Environments

Each execution environment is analogous to a \shell" program in a general-purpose computing
system, providing an interface through which end-to-end network services are provided to users.
As noted above, the architecture allows for multiple di�erent EEs to be present on a single active
node.2 All user access to node resources (including transmission bandwidth) is provided through
an EE. An EE may provide a very simple service that can be statelessly controlled through user-
provided parameters, or it may implement an interpreter for a powerful, stateful programming
language, or something in between.

2Development of an EE is a nontrivial activity; therefore the total number of EEs is not expected to be large|
probably no larger than the number of di�erent shell programs in UNIX.

5

IP UDP

TCP

ANEPIP

ANEP

IP

IP

UDP

TCP IP

IP

IP UDP ANEP

IP

ANEP IP

UDP IP

ANEP

UDP

IP

UDP IP

input channel
processing

EE processing output channel
processing

scheduling &
transmission

packet
classifi−
cation

EE 2

EE 1

EE 0

Figure 2: Packet
ow through an active node

Node Operating System

The NodeOS provides the basic functions from which EEs build the abstractions that make up net
APIs. It manages the resources of the active node and mediates the demand for those resources,
including transmission, computing and storage. The NodeOS isolates EEs from details of resource
management and the existence of other EEs. The EEs, in turn, hide most (but not all) of the
details of interaction with the end user from the NodeOS.

Users and other entities in the network are represented by an abstraction called the principal.
Security policies are de�ned in terms of principals; the NodeOS is responsible for enforcement of
such policies. When an EE requests a service from the NodeOS, the request is accompanied by an
identi�er (and possibly a credential) for the principal in whose behalf the request is made. This
principal may be the EE itself, or another party (e.g., a user) in whose behalf the EE is acting.
The NodeOS presents this information to an enforcement engine, which veri�es its authenticity and
checks that the node's security policy database (see Figure 1) authorizes the principal to receive
the requested service or perform the requested operation. EEs may implement their own policies
to augment those of the node, but they may not override the NodeOS policies.

The NodeOS implements communication channels, over which EEs send and receive packets.
These channels consist of physical transmission links (e.g., Ethernet, ATM), plus the protocol
processing associated with higher level protocols (e.g., TCP, UDP, IP). The logical
ow of packets
through an active node is shown in Figure 2. When an active node receives a packet over a
physical link, it classi�es the packet based on the packet's contents (i.e. headers); each packet is
either assigned to an existing channel or discarded.

The mapping of incoming packets to channels is controlled by a pattern speci�ed by the EE
when it creates the channel. In the typical case, an EE requests creation of a channel for packets

6

matching a certain pattern of headers, e.g. a certain Ethernet type or combination of IP protocol
and TCP port numbers. It is the responsibility of the security engine to ensure that a given
principal is allowed to create a channel with a particular pattern.

To provide for quality of service, the NodeOS has scheduling mechanisms that control access
to the computation and transmission resources of the node. These mechanisms isolate user tra�c
to some degree from the e�ects of other users' tra�c, so that each appears to have its own virtual
machine and/or virtual link. When channels are created, the requesting EE speci�es the desired
treatment by the scheduler(s). Such treatment may include reservation of a speci�c amount of
bandwidth for tra�c on the channel, or isolation from other tra�c and \fair sharing" of available
bandwidth with other channels. Input channels are scheduled only for computation, while output
channels must be scheduled for both computation and transmission.

Active Network Encapsulation Protocol

So far we have not speci�ed how users can have their packets routed to a particular EE at a node.
The Active Network Encapsulation Protocol [6] provides this capability. The ANEP header includes
a \Type Identi�er" �eld; well-known Type IDs are assigned to speci�c execution environments.
(Presently this assignment is handled by the Active Network Assigned Number Authority.) If a
particular EE is present at a node, packets containing a valid ANEP header with the appropriate
Type ID (encapsulated in a supported protocol stack) will be routed to the appropriate EE.

A packet need not contain an ANEP header for it to be processed by an EE. EEs may also
process \legacy" tra�c |originated by end systems that are not active-aware| by setting up
the appropriate channels. An example of this kind of functionality would be a TCP performance-
enhancement service implemented at the border between two regions of the network with di�erent
bandwidth/error characteristics.

Interfaces and Standardization

The primary interfaces in this architecture are the user-EE interface (the network API) and the
EE-NodeOS interface. The architecture is indi�erent to the form of the net API de�ned by any
EE, and thus it may change at any time. (It does, however, need to be carefully designed and
speci�ed.)

The EE-NodeOS interface need not be identical from node to node; all that is required is for
each node to provide a standard set of basic services to EEs.3 The de�nition of this basic set of
services is analogous to standardization of the UNIX operating system calls. Work is ongoing in
the active network community to gain the experience needed to develop a speci�cation.

Beyond the NodeOS-EE interface, there are only a few facets of the architecture that require
standardization; these mainly involve encodings that must be understood by both the end user
and the NodeOS. Examples include ANEP, the syntax and semantics of principal identi�ers and
security credentials, and the units of measure for resource allocation.

3It is not di�cult to imagine node vendors competing to o�er enhanced NodeOS capabilities, and EE-implementors

porting their EEs to di�erent node platforms.

7

4 Composite Network Services

Ultimately, the goal of active networking is to ease the deployment of new network services. This
implies that an active network should do more than simply make it possible to install new services.
Rather, explicit support should be provided for the process of service creation. An important
support feature of a network API is the ability to compose services from building blocks. In what
follows, we refer to the building blocks for network services as components. A network API contains
a composition mechanism used to create a composite service from components. Composition of
network services has the usual positive properties of modular design: services need not be built from
scratch each time and robust components can be developed incrementally. Further, a composition
mechanism may also be used to constrain the set of composite services that can be created, possibly
making it easier to reason about the correctness of the overall service and interactions between
individual components.

Composite services can take on a variety of forms. A service may execute in its entirety at
a single active network node, or it may perform a distributed computation across a set of active
nodes. The form of the network API directly a�ects the sophistication achievable through service
composition. For example, if the network API supports only selection of a speci�c service from a
�xed set of choices, then these constitute all of the available \composite" services. At the other
extreme, if the network API is a Turing-complete language, an essentially in�nite set of composite
services can be formed from an available set of service components, using the sequence control
constructs of the programming language. In the following section, we outline with examples a set
of possible composition mechanisms for active networks.

Composition Mechanisms

A composition mechanism provides a means to specify a composite service constructed from com-
ponents. Possible approaches to service speci�cation include:

� Choice from a set of options

In this case, the network API supports speci�cation of a scalar argument that selects a pre-
de�ned computation at the network node. This idea can be generalized to a �xed number of
scalar arguments, each of which selects a particular pre-de�ned computation, executed in a
pre-de�ned order. This scheme can be e�ciently implemented, and proving the correctness
of the composite service is not more di�cult than proving the correctness for each of the
components. However, in terms of service composition, scalar selection does not provide
much
exibility to the end-users. Examples of this scheme are IPv4 and IPv6 in which the
user interface to the network is limited to the �elds in the IP headers. Correspondingly, the

exibility a�orded to users is limited.

� Turing-complete programming language

At the other extreme in expressive power, a Turing-complete programming language forms
a generic composition mechanism for statements of the language. The structure of the com-
position depends entirely upon the statements in the program, and thus the constraints on
structure are extremely weak. This is the approach advocated by the ANTS project [1], in
which components can be installed in the active node as Java subroutines, and the composite
service is a Java program that calls components. Correctness and properties like termination
of the composite are typically di�cult to prove since the interface is Turing complete.

8

� Special-purpose language for composition

A restricted language speci�cally designed for service creation can be used to compose network
services. These languages can be designed such that all the composite services created have
certain desirable properties, e.g. termination and preservation of the active node's safety.
This approach is taken by the Switchware [3] and the Netscript [7] projects, with the languages
PLAN and Netscript, respectively. In case of PLAN, the structure of the language guarantees
termination of all composite services provided that each of the components terminate as well;
Netscript features a data
ow computation model.

� Event-based framework

Dynamic behavior can be incorporated into composition by structuring the composition as
an event-driven computation and \binding" code modules to speci�c events. This approach
has been used in other protocol composition frameworks, in particular to compose micro-

protocols in the x-kernel [8]. The Language-Independent Active Networking Environment
(liane) composition model (described next) is an example of such event-based composition.

Service Composition in liane

We provide an example of an approach to service composition that falls into the event-driven
framework category. Composition in liane has two parts. First, the user selects an underlying

program from amongst those o�ered by an active node. There will typically be a small number of
underlying programs, and these are installed by the node provider (possibly using a priviledged
network API). The underlying program provides a basic service (e.g., forwarding) and includes a
set of processing slots to be used for customization (e.g., to replace the default forwarding table
with a customized forwarding table). Each processing slot is associated with a speci�c execution
point in the underlying program.

In the second part of composition, the user selects or provides a set of injected programs used
to customize the underlying program. The injected programs can either be supplied by the user,
or provided by component developers. Each injected program is \bound" to one or more process-
ing slots. The injected program is \eligible" for execution when the appropriate slot is reached
(\raised"). More than one injected program may be bound to the same slot; the order of execution
of instructions belonging to di�erent injected programs bound to the same slot is non-deterministic.
This style of composition has advantages with respect to proving properties about the compos-
ite service based on properties of the underlying program and preservation of properties by the
injection process. A similar approach to service composition is being developed in the Active
Reservation Protocol project at USC/ISI.

Figure 3 illustrates a basic forwarding service that supports forwarding to a small number of
destination addresses 4. This service has four parameters. Two are required: a source address S and
a list of destination addresses A. Two are optional: a forwarding table identi�er R and a selection
function M used to match addresses with forwarding table entries. If the optional parameters are
not supplied, defaults will be used. The service also has several slots where the user may supply
policies. Each slot has a default policy, indicated in the square brackets and used if the user does
not supply an alternative. For example, Slot 2 is reached if the list of output interfaces turns out
to be null. By default, no error message is generated; the user may choose, for example, to send
an error message to the source. The other slots provide opportunities to control action taken upon

4The service is simpli�ed for exposition. An actual forwarding service would necessarily be more complex.

9

Parse packet to obtain S;A;R;M
hSlot 0:[null]i

Outputlist := ()
For each address a in A:

Let interface i := Lookup(a;R;M)
hSlot 1:[Add i to Outputlist]i

if Outputlist = () then hSlot 2:[null]i

hSlot 3:[null]i

For each unique i in Outputlist:
Create a copy D of the packet,

with A0 = fa : (i; a) 2 Outputlistg
if i is congested

then hSlot 4:[discard]i

else hSlot 5:[null]i

enqueue D for i.

Figure 3: Basic forwarding service

packet receipt and further processing (e.g., sending noti�cation, incoming and outgoing topology
information to the source, application of per-interface policy,
ow-speci�c congestion control).

5 Applications

As mentioned in the Introduction, the dynamic control enabled by active networks allows services
that are tailored to current network conditions. These services have the potential to improve
performance seen by applications, as compared to end-system-only solutions. In this section we
provide examples of active networking to improve performance of applications. We then provide
more detail on one application, namely, multicast video distribution.

5.1 Examples

E�orts to improve performance using active networking span a wide variety of areas. Amongst the
areas that appear to be most promising are:

� Multicast

The \traditional" IP multicast service hides from its users the details of the routing topology
and the number and location of receivers. For unreliable multicast, this approach makes
sense and allows scaling to larger applications; however, there are inherent problems in using
this model when it is desired to deliver data to all receivers reliably. The di�cult arises in
recovering from losses, which typically a�ect all receivers downstream in the multicast tree
from the point of a loss. A common approach is to spread the responsibility for multicast
retransmissions among the receivers, to avoid over-burdening the sender. For good perfor-
mance, this requires that receivers be aware of nearby receivers, that are above the loss point,
to provide retransmission.

10

By including state and processing in the network, retransmissions can be directed to nearby
receivers [9] or can come from caches at network nodes [10]. Both approaches reduce the
delay and transmission resources required for retransmission.

� Quality of service

Network conditions such as the presence of congestion or a lossy link can signi�cantly degrade
the quality of application streams. Schemes that require the sender to adapt to network con-
ditions have well-known limitations, including the time for the sender to detect the condition,
react, and transmit the adapted data to the receiver. During the adaptation interval, the
receiver will experience uncontrolled losses (when conditions worsen) or less-than-optimal
performance (when conditions improve). By moving information about how to adapt to net-
work conditions into network nodes, the appropriate type of adaptation can occur when and
where it is needed.

E�orts in this area have included transparent in-line protocol \boosters" to adapt to network
conditions (e.g., by adding forward error correction over error-prone links) [11] and intelligent
discard strategies for preserving the quality of MPEG video in the face of network conges-
tion [12]. An interesting combination of multicast and MPEG video distribution is examined
later in this section.

� Caching

A substantial fraction of all network tra�c today comes from applications in which clients
retrieve objects from servers (e.g. the World-Wide Web). The caching of objects in locations
\close" to clients is an important technique for reducing both network tra�c and response
time for such applications. Caching schemes require decisions about where to locate objects
and how to forward requests between caches. Current wide-area caches are manually con�g-
ured into a static hierarchy, thus incurring an administrative burden and limiting the ability
to react to dynamic conditions.

E�orts to use active networking for caching include using network mechanisms to route cache
requests to pre-con�gured cache locations [10], and combining small caches with information
about the contents of nearby caches, at each network node [13]. The Adaptive Web Caching
project is developing an architecture for an adaptive, scalable web caching system, with
mechanisms that could be realized using active networking or application-layer protocols [14].

� Network management

The conventional approach to network management is to poll managed devices from a man-
agement station, requesting the values of variables and checking for anomalies. This approach
concentrates the intelligence in the management stations, resulting in processing and com-
munication bottlenecks. Further, the poll-and-check approach severely limits the ability to
track problems in a timely and e�cient manner.

Several projects are considering the use of active networking to improve network management.
The Smart Packets project [4] at BBN is developing architecture, languages, and protocols for
making managed nodes programmable. The Netscript project [7] at Columbia is developing
techniques to automatically create systematic management instrumentation and respective
MIBs, using the structure of active elements.

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2048 4096 6144 8192 10240 12288 14336 16384 18432 20480 22528 24576

F
ra

ct
io

n
of

 F
ra

m
es

 D
ec

od
ed

Buffer Size (bytes)

Link Speed 1000 Kbps, 1 Video Source

D0 Layering
D0 GL

D1 Layering
D1 GL

Figure 4: Single video source, varying bu�er size, 1000 Kbps Link

5.2 Multicast Video Distribution

We conclude this section by providing a snapshot of the performance improvement o�ered by active
networking for multicast video distribution. Multicast video distribution is particularly challenging
due to heterogeneity in the paths from the sender to the receivers and the problems of scaling for
large numbers of receivers. The classic approach to dealing with heterogeneity and scale is the use
of receiver-based adaptation schemes. Under these schemes, the sender transmits multiple streams
suitable for a range of path characteristics. Each receiver joins the stream (or streams) that can
be supported by the individual path from the sender.

Active networking allows another option for the location of the adaptation, namely: in the
network. The basic operation of network-based adaptation is as follows: the sender transmits a
full rate stream on a single multicast group, to which all receivers subscribe. The routers in the
multicast tree have information (established a priori by out-of-band mechanisms and/or carried
in-band as part of data packets) about how to intelligently reduce the rate of the stream in the
face of congestion on an outgoing link. For routers in the tree that do copying, the rate adaptation
occurs after copying the multicast packet. Thus each outgoing link is treated separately and each
receiver obtains performance based on the path from the sender, not in
uenced by other receivers
or parts of the multicast tree. The adaptation occurs when dictated by congested conditions,
thus an increase in available bandwidth can immediately be utilized and a decrease in available
bandwidth immediately triggers controlled reduction of the rate.

We compare a network-based adaptation strategy with a receiver-based layered strategy for
distribution of MPEG video. We use a topology that has two receivers: one relatively uncongested
(D0) and one heavily congested (D1). The details of operation of the two approaches and the
experimental con�guration can be found in [15].

Figure 4 shows the fraction of frames decoded at each receiver (D0 and D1) for network- and
receiver-based, as the amount of bu�ering at the routers varies. A frame is considered decoded
only if the receiver gets all packets in the frame and all packets in all dependent frames, i.e., those
frames used by MPEG for the relative encoding. The network-based adaptation curves are labeled

12

\GL" for GOP-level discard; the receiver-based adaptation curves are labeled \Layering".
For the congested receiver (D1), the network-based adaptation consistently delivers 2-3 times

more decodable frames than layering. For the uncongested receiver (D0), the network-based scheme
has far better performance at smaller bu�er sizes. This is because the receiver-based adaptation
\over-reacts" to transient congestion and drops one of the streams, which accounts for 60% of all
the frames. As the bu�er sizes are increased, the network is able to absorb the transient bursts,
and the performance of receiver D0 under receiver-based adaptation approaches 100% goodput.
However, increasing bu�ers do not help in case of long-lived congestion as is seen in the case of the
congested receiver (D1).

6 Future Directions

We have presented an overview of approaches to active networking, and discussed some potential
applications. We have omitted many details, and the reader should bear in mind that many
problems must be addressed to make this vision of active networks a reality. Among the interesting
issues and challenges are:

� What form of access to low-level node resources is compatible with maintenance of a \fast
path" for packet processing.

� Development of scheduling mechanisms and policies to deal with combined computation
(protocol processing) and transmission bandwidth requirements on output channels.

� De�nition of common mechanisms to protect network resources |transmission and compu-
tation bandwidth, and storage| from waste due to misbehaving network components. An
example of such a mechanism is the \time to live" �eld in IP, which ensures that packets
are forwarded a bounded number of times. In an active network, where the relationship be-
tween received and transmitted packets at a node is less straightforward, a more sophisticated
mechanism may be required; the challenge is to keep it scalable.

� Approaches to state installation that enable users to place functionality at the \right" place
in the network |for example, branch points in multicast distribution trees| while hiding
most details of the topology.

Acknowledgments

The architecture described here is the result of contributions by the researchers in the DARPA
active networks community, including (but not limited to) Scott Alexander, Bob Braden, Carl
Gunter, John Guttag, Gary Minden, Sandy Murphy, Scott Nettles, Hilarie Orman, Larry Peterson,
Jonathan Smith, and David Wetherall. Errors, inconsistencies, and omissions are the responsibility
of the authors.

References

[1] D. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A toolkit for building and dy-
namically deploying network protocols. In IEEE OPENARCH'98, San Francisco, CA, April
1998.

13

[2] Larry Peterson et al. Scout Joust. http://www.cs.arizona.edu/scout/joust.html.

[3] Jonathan Smith, David Farber, Carl A. Gunter, Scott Nettles, Mark Segal, William D. Sin-
coskie, David Feldmeier, and Scott Alexander. SwitchWare: Towards a 21st century network
infrastructure. Whitepaper.

[4] Beverly Schwartz, Wenyi Zhou, Alden Jackson, W. Timothy Strayer, Dennis Rockwell, and
Craig Partridge. Smart Packets for Active Networks. BBN Technologies, http://www.net-
tech.bbn.com/smtpkts/smart.ps.gz, 1998.

[5] Ivan Ming-Chit, Weiguo Wang, and Aurel Lazar. A comparative study of connection setup
on a concurrent connection management platform. In Proceedings IEEE OpenArch '98, April
1998.

[6] D. Scott Alexander et. al. Active Network Encapsulation Protocol (ANEP).
http://www.cis.upenn.edu/ switchware/ANEP/docs/ANEP.txt, 1997.

[7] Y. Yemini and S. da Silva. Towards programmable networks. In IFIP/IEEE International

Workshop on Distributed Systems: Operations and Management, L'Aquila, Italy, October
1996.

[8] Nina T. Bhatti and Richard D. Schlicting. A system for constructing con�gurable high-level
protocols. Proceedings of SIGCOMM '95, 25(4):138{150, October 1995.

[9] G. Parulkar C. Papadopoulos and G. Varghese. An error control scheme for large-scale mul-
ticast applications. In Infocom'98, 1998.

[10] Ulana Legedza, David J. Wetherall, and John Guttag. Improving the performance of dis-
tributed applications using active networks. IEEE Infocom'98, 1998.

[11] D. Bakin, W. Marcus, A. McAuley, and T. Raleigh. An FEC Booster for UDP Application
over Terrestrial and Satellite Wireless Networks. In Int'l Mobile Satellite Conference (IMSC

97), 1997.

[12] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. An Architecture for Active Networking.
In Proceedings of High Performance Networking 97, 1997.

[13] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. Self-organizing wide-area network caches.
In IEEE Infocom'98, 1998.

[14] L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S. Floyd, and V. Jacobson. Adaptive web
caching: Towards a new global caching architecture. In 3rd Int'l WWW Caching Workshop,
1998.

[15] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. Network support for multicast video
distribution. Technical Report GIT-CC-98-16, College of Computing, Georgia Institute of
Technology, 1998.

14

