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Abstract

This paper presents a framework that allows an
agent to use observed data to initially learn a
predefined set of primitives and the conditions
under which they are used. A method is included
for the agent to increase its performance while
operating in the environment. The details of im-
plementing this framework on agents that play air
hockey in simulation and on an actual table will
be presented. Issues involved with using obser-
vation data and primitives to increase the learning
rate of agents are discussed.

1. Introduction

Learning without any prior knowledge in environments
that contain large or continuous state spaces is a daunt-
ing task. For agents that operate in the real world, learn-
ing must occur in a reasonable amount of time. Provid-
ing an agent with domain knowledge and the ability to
use observed data when learning can greatly decrease the
time needed to learn new tasks. A framework was cre-
ated in which to conduct research that explores the use
of primitives in learning from observation. The frame-
work will be introduced and the details of software and
hardware agents that use that framework to learn how
to play air hockey will be described.

Figure 1: Hardware air hockey environment.

Figure 2: The virtual air hockey environment.

A hardware and software environment of air hockey,
figures 1 and 2, has been created. The software version
allows a human to play against a cyber player and the
hardware version allows the human to play against the
humanoid robot DB. In the software game an agent used
data collected while observing a human to initially learn
how to perform different types of air hockey primitives
and then went on to increase its performance of shot
primitives through practice. In both the hardware and
software versions the agents have used the observed data
to learn how to choose a primitive and primitive param-
eters when operating in the environment. This research
is also being performed in a marble maze environment
(Bentivegna and Atkeson, 2000), figure 3, but this paper
will primarily focus on air hockey.

1.1  Primatives

Robots typically must generate commands to all their
actuators at regular intervals. The analog controllers
for our 30-degree of freedom humanoid robot are given
desired torques for each joint at 420Hz. Thus, a task
with a one second duration is parameterized with
30 % 420 = 12600 parameters. Learning in this high
dimensional space can be quite slow or can fail totally.



Figure 3: The software marble maze game on the left modeled

after the hardware version on the right.

Random search in such a space is hopeless. In addition,
since robot movements take place in real time, learning
approaches that require more than hundreds of practice
movements are often not feasible. Special purpose
techniques have been developed to deal with this
problem, such as trajectory learning (An et al., 1988),
learning from observation (Atkeson and Schaal, 1997,
Hayes and Demiris, 1994, Kuniyoshi et al., 1994,
Bakker and Kuniyoshi, 1996, Dillmann et al., 1996,
Hirzinger, 1996, Ikeuchi et al., 1996), postural prim-
itives (Williamson, 1996), and other techniques that
decompose complex tasks or movements into smaller
parts  (Arkin, 1998, Bentivegna and Atkeson, 2000,
Mataric et al., 1998). It is our hope that primitives can
be used to reduce the dimensionality of the learning
problem (Arkin, 1998, Schmidt, 1988).

Primitives are solutions to small parts of a task that
can be combined to complete the task. A solution to
a task may be made up of many primitives. In the air
hockey environment, for example, there may be primi-
tives for hitting the puck, capturing the puck, and de-
fending the goal. There are many possible primitives,
and it is often possible to break a primitive up into
smaller primitives. In this research a task expert prede-
fines the set of primitives to be used for a given environ-
ment and algorithms are created to find the primitives
in the captured data.

2. Issues with Using Primitives

This section outlines some of the issues involved with us-
ing primitives and the research referenced in this section
provide examples of the methods by which the issue is
being handled.

2.1 Defining and Learning a Set of Primitives

A task that is to be performed using primitives must
first be decomposed into a set of primitives that include
all the actions needed to perform the task. This issue
can be dealt with by having a human task expert define

the set of primitives (Ryan and Reid, 2000) or have the
robot discover primitives automatically after observing a
performance of the task (Fod et al., 2000) or operating
in the task environment (McGovern and Barto, 2001).
Once a set of primitives is defined, the robot must have
a way to learn how to perform them. Some research deals
with this issue by explicitly programming the primitive
performance policy into the agent (Brooks, 1986) or hav-
ing the robot learn the policy using learning techniques
(Aboaf et al., 1989). Given a set of primitives and a
task, the robot must decide on which primitive to per-
form at any given time. This has been accomplished by
a human specifying the sequence of primitive types to be
performed (Mataric et al., 1998), using a planning sys-
tem (Tung and Kak, 1995), or having the robot learn the
sequence from observed data (Kuniyoshi et al., 1994).

At first thought, choosing a primitive from among a
small set sounds like a simple procedure. But almost all
primitives have parameters such as speed of execution
and desired ending state (Wooten and Hodgins, 2000).
These parameters can have continuous values and there-
fore can be difficult to select or learn through trial and
error (Likhachev and Arkin, 2001). The advantages of
using primitives includes the ability for them to be used
multiple times while performing a task and to also use
primitives learned in one task in the performance of sim-
ilar tasks (Dietterich, 1998).

Learning can occur at many levels when learning
through practice using primitives. Among the items
that can be learned while operating in the task environ-
ment are the primitive type which should be performed
(Balch, 1997), the parameters to use with the chosen
primitive (Pearce et al., 1992), and the primitive execu-
tion policy (Lin, 1993). The research presented shows
many methods that can be used to learn each of these
items and an issue is how to choose a method that works
best to learn this information for a given environment.

2.2 Issues with Using Observed Data

When using observed data to learn a task other issues
are introduced. From all the information that the robot
is presented with, it must decide on what is relevant for
learning the task (Kaiser and Dillmann, 1996). The ob-
served data must also be segmented into primitives if
it is to learn such things as primitive sequence perfor-
mance, needed parameters, or primitive execution pol-
icy from the observed data. Segmenting and learn-
ing relevant features to observe can be accomplished
in many ways. Explicitly providing only the pre-
segmented information (Delson and West, 1996), spec-
ifying conditions that represent segmentation points
(Mori et al., 2001, Kang and Ikeuchi, 1993), and using
hidden Markov models (Hovland et al., 1996) are some
of the methods that have been explored.
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Figure 4: Framework for learning from observation using

primitives.

3. Strategy for Primitive Use

Figure 4 shows our framework designed for conducting
research in learning from observation using primitives.
Currently, a human, using domain knowledge, designs
the candidate primitives that are to be used. The primi-
tive recognition module segments the observed behavior
into the chosen primitives. This segmented data is then
used to provide the training data for the primitive selec-
tion, sub-goal generation, and action generation mod-
ules.

The primitive selection module provides the agent
with the primitive type to perform for the observed state
of the environment. The desired outcome, or goal, of per-
forming that primitive type is specified by the sub-goal
generation module. Lastly the actuators must be moved
to obtain the desired outcome. The action generation
module finds the actuator commands needed to execute
the chosen primitive type with the current goal. The
learning from execution module provides information to
the agent that can be used to improve its performance
while operating in the environment. The next section
provides an example of using this framework to have
agents learn how to behave in an air hockey game envi-
ronment.

4. Learning Air Hockey from Observa-
tion Using Primitives

The air hockey game consists of two paddles, a puck and
a board to play on. In the hardware version, figure 1,
the human plays against the humanoid robot DB. There
are no playing restrictions placed on the human players
and they can play just as if they were playing against
another human. Since the observation data is obtained
using DB’s eyes, the human player is also not required to
don special equipment. In the software version, figure 2,
a human player controls one paddle using a mouse and

at the other end is a simulated or virtual player. In the
simulator the paddles and the puck are constrained to
stay on the board, there is a small amount of friction
between the puck and the board’s surface, and there is
also energy loss in collisions between the puck and the
walls of the board and the paddles. Spin of the puck is
ignored in the simulation. In both versions the position
of the two paddles and the puck are recorded at 60Hz.

Figure 5: Three hit primitives being performed by the virtual
player: left, straight, and right.

4.1  Primitives Being Ezxplored in Air Hockey

As explained above, a human domain expert defines a
set of primitives to work with. Three hit primitives are
shown in figure 5. The full list of primitives used is:

e Left Hit: the player hits the puck and it hits the left
wall and then travels toward the opponent’s goal.

e Straight Hit: the player hits the puck and it travels
toward the opponent’s goal without hitting the side
walls.

e Right Hit: the player hits the puck and it hits the
right wall and then travels toward the opponent’s
goal.

e Block: the player deliberately does not hit the puck
but instead moves into a blocking position to prevent
the puck from entering their goal.

e Prepare: movements made while the puck is on the
opposite side from the player. The player may be
preparing to setup for a shot, or preparing to defend
their goal.

e Multi-Shot: movements made after a shot is at-
tempted, but while the puck is still on the player’s
side. If the puck is not quickly moving toward the
opponent’s side, the player will have the opportunity
to hit it again.

If it is determined that the puck did not travel from
the other side prior to a shot being made, this shot will
be classified as a multi-shot primitive. The multi-shot
primitive may be performed after a failed shot attempt or
a blocking primitive and the puck is moving very slowly
within hitting range. In this situation the player has a
lot of time to setup and make a shot. If, after a collision



with the observed player’s paddle has been detected, the
puck’s observed trajectory does not fit the requirements
for one of the hit primitives, the blocking primitive is
considered. If the player’s paddle is near their goal at the
time of the collision, this will be classified as a blocking
primitive.

The prepare primitive is performed whenever the puck
is on the side opposite the player and will continue until
a shot is to be attempted or a block is to be performed.

4.2 Perceiving the Primitives

The observed data must first be segmented into the
above primitives. To accomplish this, critical events are
used. Critical events are easily observable occurrences
such as the puck mostly traveling in a straight line with
a gradually decreasing velocity and puck collisions, in
which the ball speed and direction rapidly change. A
small portion of data that has been collected while a
human played against the humanoid robot is shown in
figure 6. From this data it can be seen that the puck-
paddle hit locations occur when the puck and paddle are
within hitting range and there is a significant change in
the puck’s velocity.
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Figure 6: A small segment of data captured while a human
operates in the hardware air hockey environment. The graph
on the left shows 2D, x and y, traces of the paddle and puck.
On the right this same data is shown plotted against time.

To find a hit primitive in the captured data, for ex-
ample, a collision of the puck with the player’s paddle
is searched for. When this event has been found, the
puck’s velocity vector is then observed to determine the
target of the hit, and the state of the environment under
which this primitive was selected.

4.8 Selecting the Appropriate Primitive

As discussed in the strategy above, it is the responsi-
bility of the primitive selection module to choose the
type of primitive, based on the current state and prior
observations of primitives being executed. In our imple-
mentation, the context or state in which the human has

performed each primitive is extracted from the observed
data, and is used by a weighted nearest neighbor lookup
process to find the past primitive executions whose con-
text is most similar to the current context. The puck’s
position and velocity when it crosses a predefined line is
used as the index for a lookup. Since the player must
decide on a shot well before the puck is hit, a predefined
line located just past the centerline from the player was
chosen as the point where the agent will make its deci-
sion.

From the segmented data a database is created that
contains the primitive type that was used, the state of
the environment when that type was used, and the state
of the environment that results from performing that
primitive. A data point in the air hockey hit database
contains; the primitive type used (one of the primitive
types described above), the position and velocity com-
ponents of the puck when it crosses the predefined line,
the location of the puck when it was hit, the absolute
velocity of the puck after it is hit, and the location on
the back of the wall that the puck would hit if it is not
blocked by the opponent.

A simple idealized model is used to determine where
the puck would hit the back wall if the opponent did
not block it. This use of a model enables the learning
agent to estimate the target being attempted without
the shot having to be completed. The accuracy of the
model can be critical in producing useful training data.
Other methods can be used to reduce the reliance on the
model, such as only considering shots that have actually
hit the back wall without being blocked by the opponent.

A lookup can now be performed on this database to
find the data points that are closest to the query point.
To find the closest points in the state space the distance
of each data point from the query point is computed as
follows: D (z,q) = wj,/>_;(z; —q;)? where  and ¢
are the locations of the data point and the query point
in state space and w is a vector that allows each dimen-
sion to be weighted differently . j represents the jth
component of the vector. The closest five data points of
the same primitive type determine which primitive type
is chosen.

4.4 Computing the Primitive Parameters

The sub-goals, or outcome of performing that primi-
tive, provide the parameters needed to perform the ac-
tion. The parameters needed to perform the hit prim-
itive are the desired hit location, the angle between
the puck and paddle when it is hit, the puck’s desired
post-hit velocity, and the target location.  This in-
formation is obtained using a locally weighted regres-
sion (LWR) model(Atkeson et al., 1997). The selected
data points provide the information to compute the pa-
rameters. A kernel function, K (D)= exp=®P”, uses



the distance to compute the weight of each data point.
The output components at the query point use n data
points aid are computed using the following equation:

yi K(D(T:,q))
19 = 5K o@.q)
values of the vector w and «a were set globally and were
chosen by trial and error.  Future research will ex-
plore methods to select these values locally and also ex-
plore the use of the locally weighted learning methods of
Schaal, et al. (Schaal et al., 2000).

where i ranges from 1 to n. The

4.5  Finding the Right Paddle Motion

Currently the agents in air hockey are programed with
the ability to move the paddle from an initial location to
a given location with a given velocity. To properly be-
have in the air hockey environment the information the
agents need is where to move the paddle and when. The
parameters that were obtained above provide the infor-
mation for the appropriate action generation module to
compute the needed paddle movements. In the block-
ing primitive, for example, the paddle only needs to be
moved to the blocking location and will then wait there
until the puck is moving away from the agent or stops.
The hit primitives are more complicated and the agent
needs to know where the paddle should be and what its
velocity should be when the puck is hit. Three methods
have been tried to provide this information; an idealized
model based on physics, neural networks, and LWR.

The model based on idealized physics contains a sim-
ulation algorithm and computes the required paddle
movements to hit the puck to a desired location with
the desired output velocity. The computed movement
is the minimum movement needed to obtain the correct
hit. Paddle velocity that is perpendicular to the normal
of the paddle-puck collision does not affect the puck’s
movement. This method ignores puck spin. Using this
model produces extremely accurate results but does not
take into account the information obtained from the ob-
servation. The accuracy of the model largely determines
the results of this method. If a model based on domain
knowledge is not available some other method must be
used.

For the neural network and kernel regression methods
information is extracted from the captured data so as
to have the virtual player move the paddle the way that
the human moved the paddle to make a shot. Another
data base is created from the observed data for the hit
primitives and contains the following information:

Input:

e The XY location of the puck when it was hit.
e The velocity components of the puck when it was hit.

e The absolute velocity of the puck just after it is hit.

e The position on the back wall that the puck would
hit if unobstructed.

Output:

e The paddle’s velocity components at the time of the
collision.

e The location of the paddle relative to the puck at the
time of contact (the angle between the puck and the
paddle).

The needed paddle velocity components are returned
from a query to the database above. The needed paddle
position is computed using the puck’s desired hit loca-
tion, which is passed as a sub-goal to the action gener-
ation module, and the relative paddle information, re-
turned from a query to the database. A back propaga-
tion neural network that contains six inputs, three out-
puts, and a hidden layer with 20 nodes was trained using
the database. After being trained the network provides
the needed information very rapidly. The LWR model
is the same as that described in sections 4.3 and 4.4.
As can be seen, at each query of the LWR model every
data point in the database is considered. For very large
databases or slow computers this can be a problem.

5. Learning Using Only the Observation

Up to this point the agent’s only high-level goal is to
perform like the teacher. Its only knowledge of the goal
of the entire task is in the implicit encoding in the prim-
itives performed. The agent performs an action based
upon the observed information. If the results of that
performed action are undesirable, a method to store this
information should exist. In air hockey, for example, the
agent may choose a right bank shot for a given observed
environment state. If the outcome of this action is that
the agent misses the puck and a score is made against the
agent, the agent should not attempt that same action,
under the same conditions, in the future. The learning
from practice module contains the information needed to
evaluate the performance of each of the modules toward
obtaining the high-level task objective. This information
can then be used to update the modules and improve
performance beyond the teacher.

6. Increasing Performance beyond the
Observation

There are a number of things that these agents can learn
to increase their performance while operating in the en-
vironment. They can improve the policy to become
more proficient at primitive performance. The virtual
air hockey player observed its own performance and col-
lected data while playing and practicing. To practice,
pucks are shot toward the agent and the agent attempts



to make a shot. This data was then used to add informa-
tion to the database that is used with the neural network
and LWR model to improve the hit performance of the
agent. Many other methods can be used by an agent to
learn a primitive through practice such as those used by
Schaal and Atkeson (Atkeson and Schaal, 1997) in pole
balancing and of Kamon, et al. (Kamon et al., 1998) in
learning to grasp objects.

The agent can also learn to select more appropriate
primitives and primitive parameters. An algorithm that
provides this ability is currently being tested and will be
presented in the future.
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Figure 7: The number of goals obtained by the virtual agent
as an increasing number of shots are observed. Note the log
scale on the horizontal axis.

7. Results

Both the software and hardware air hockey agents have
learned a shot taking behavior from observing a human
player. The agents decide on what type of shot will be
attempted, the position the puck will be hit at, and the
pucks desired velocity after it is hit from the observed
data. These agents provide a fun and challenging oppo-
nent. Figure 7 shows a graph of the performance of the
hit primitives as the software agent observes an increas-
ing number of hits. The agent first observes a number of
shots taken by the human. The puck is then shot toward
the agent 500 times just as if the opponent hit it. The
number of times the agent scores for each observation set
is shown in the graph. During these trials the opponent’s
goal is left undefended. As the number of observed hits
increases, the agent’s performance increases. We are cur-
rently devising other ways to evaluate the performance
of the air hockey player agent in a quantitative way such
as having it play against another software agent with a
fixed playing strategy.

The humanoid’s vision system is being improved to

allow the robot to sense the objects more accurately and
to also observe its own paddle. Currently the board is
placed in a fixed location and the robot only assumes its
paddle is at the position on the board it was commanded
to. Having the ability to see its own paddle in relation-
ship to the puck will provide the ability to incorporate
a learning method without having to be as concerned
about small movements in the board’s position.

8. Discussion

While a framework offers structure and can help to mod-
ularized the problem, it also limits what can be done to
only things provided for by the framework. Many deci-
sions must go into creating a framework that affords an
appropriate trade-off between modularization and flexi-
bility. This section discusses some of the design decisions
that went into creating the framework presented in fig-
ure 4. The ability to use observed data in a systematic
way and to learn while practicing were two of the main
concerns while creating the framework. The ability to
generalize within the environment and across to other
environments was also considered.

8.1 Combining Primitive Type and Parameter
Selection

The presented framework first selects the primitive type
to perform for the observed environment state. The se-
lected primitive type then narrows down the search for
the parameters needed. What if we do away with the
primitive selection module and just have the subgoal
generation module provide the next subgoal? To use
that subgoal information there must be a higher level
process that can select the primitive policy that needs
to be performed to obtain that subgoal from the agent’s
current state. We are now back to the original problem
of selecting a primitive type to use, but have different
information in which to select it. For this situation it
would be good if a primitive policy could tell us if it is
capable of taking the system from the current state to
the goal state. The research of Faloutsos, et al. pro-
vides an example of a method to find the set of precon-
ditions under which a policy will operate correctly and
also shows how difficult this is (Faloutsos et al., 2001).
It is our belief that by first committing to a primitive we
are simplifying the learning problem by only having to
learn the set of parameters appropriate to that primitive
type. By separating these modules the method used to
provide the needed information can be unique for each
decision providing extra flexibility.



8.2 Combining Parameter Selection and Prim-
itive Ezecution

It may be considered that once a primitive type was se-
lected the primitive execution policy can decide on the
needed parameters thereby eliminating the subgoal mod-
ule. By doing this there will be a loss in generality and
flexibility. The primitive execution module contains the
policy to bring the system from the current state to a
new state within the constraints of the primitive type.
The primitive execution policy maps the sensor readings
to an action for each time step. The primitive policy is
designed to operate under constraints of a local environ-
ment. This means that this same policy may be used in
different parts of the environment state space. A pol-
icy for a primitive type, for example, can be performed
in any location where the configuration matches that
needed for that primitive type. The selected subgoal
provides the arguments needed to communicate to the
policy the desired outcome. The policy may not encode
information about the environment that is necessary to
select the parameters. This allows the policy to be very
specialized, but it must depend on a process with higher
knowledge to specify the arguments needed to ensure
continued success in the task. As can be seen, this also
allows the subgoal to be generated using any method
and any information needed. By separating these mod-
ules the subgoals can be generated using a course dis-
cretization of the environment state space and the pol-
icy can then use any method appropriate to control the
system as seen in the research of Morimoto and Doya
(Morimoto and Doya, 1998).
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