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Abstract. This paper describes a method to learn task primitives from
observation. A framework has been developed that allows an agent to use
observed data to initially learn a predefined set of task primitives and the
conditions under which they are used. A method is also included for the
agent to increase its performance while operating in the environment.
Data that is collected while a human performs a task is parsed into
small parts of the task called primitives. Modules are created for each
primitive that encode the movements required during the performance
of the primitive, and when and where the primitives are performed.

1 Introduction

Learning without any prior knowledge in environments that contain large or
continuous state spaces is a daunting task. For agents that operate in the real
world, learning must occur in a reasonable amount of time. It is essential for an
agent to have domain knowledge is if it to learn in the time scales needed [14].
Providing an agent with domain knowledge and also with the ability to use
observation data for learning can greatly increase its learning rate. This paper
describes a framework in which to conduct research that explores the use of
primitives in learning from observation.

Virtual and hardware environments of air hockey and a marble maze game,
figures 1 and 2, have been created as platforms in which to conduct this research.
The virtual environments were first created and provided an invaluable tool in
which to test algorithms that will be run on the hardware version. For this reason
the physics of the virtual environments are programmed to match those of the
hardware versions as much as possible. In all these environments the position
data can be collected as a human operates in the environment. The architecture
and current playing strategy of these environments will be described.

1.1 Primitives

Robots typically must generate commands to all their actuators at regular in-
tervals. The analog controllers for our 30-degree of freedom humanoid robot are
given desired torques for each joint at 420Hz. Thus, a task with a one second du-
ration is parameterized with 30 % 420 = 12600 parameters. Learning in this high



Fig. 1. The virtual air hockey environment on the left and the hardware version on
the right.

Fig. 2. The virtual marble maze game on the left modeled after the hardware version
on the right.

dimensional space can be quite slow or can fail totally. Random search in such
a space is hopeless. In addition, since robot movements take place in real time,
learning approaches that require more than hundreds of practice movements are
often not feasible. Special purpose techniques have been developed to deal with
this problem, such as trajectory learning [2], learning from observation [4,5,9,
13,6,8,10,11], postural primitives [17], and other techniques that decompose
complex tasks or movements into smaller parts [3,7, 15].

It is our hope that primitives can be used to reduce the dimensionality of the
learning problem [3,16]. Primitives are solutions to small parts of a task that
can be combined to complete the task. A solution to a task may be made up
of many primitives. In the air hockey environment, for example, there may be
primitives for hitting the puck, capturing the puck, and defending the goal. In
this research a task expert predefines the set of primitives to be used for a given
environment and algorithms are created to find the primitives in the captured
data.



1.2 Perceiving the Primitives

Since the observed data is continuous it must first be segmented into primitives.
To accomplish this, critical events are used. Critical events are easily observable
occurrences. Examples of critical events for the puck include collisions, in which
the ball speed and direction are rapidly changed, and the ball traveling in a
straight line with decreasing velocity. Algorithms have been created that find
the primitives within the data by searching for the proper sequence of critical
events.

1.3 Strategy for Primitive Use

Figure 3 shows our view of a primitive. Currently, a human, using domain knowl-
edge, designs the candidate primitives that are to be used. The primitive recog-
nition module segments the observed behavior into the chosen primitives. This
segmented data is then used to provide the encoding for the primitive selection,
sub-goal generation, and action generation modules.

The primitive selection module will provide the agent with the primitive to
use for the observed state of the environment. After it has been decided which
primitive to use, the desired outcome, or goal, of that primitive is specified by
the sub-goal generation module. Lastly the actuators must be moved to obtain
the desired outcome. The action generation module finds the actuator commands
needed to execute the chosen primitive type with the current goal.

After the agent has obtained initial training from observing human perfor-
mance, it should then increase its skill at that task through practice. Up to this
point the agent’s only high-level goal is to perform like the teacher. Its only en-
coding of the goal of the entire task is in the implicit encoding in the primitives
performed. The learning from practice module contains the information needed
to evaluate the performance of each of the modules toward obtaining a high-level
task objective. This information can then be used to update the modules and
improve performance beyond the teacher.

2 Air Hockey Environment

Figure 1 shows the virtual air hockey game created that can be played on a
computer. A human player using a mouse controls one paddle. At the other end
is a simulated or virtual player. The movement of the virtual player has been
limited to match that of the humanoid robot DB (www.erato.atr.co.jp/DB/).
Spin of the puck is ignored in the simulation. The position of the two paddles
and the puck, and any collisions occurring within sampling intervals are recorded.

The hardware implementation, figure 1, consists of the humanoid robot, a
small air hockey table, and a camera based tracking system. The robot observes
the position of the ball using its on board cameras and hardware designed to
supply the position of colored objects in the image. The humanoid’s torso is
moved during play to extend the reach of the robot. The head is moved so that
the playing field is always within view.
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Fig. 3. Our view of a primitive.

The full list of primitives currently being explored in the air hockey environ-
ment is:

— Left Hit: the player hits the puck and it hits the left wall and then travels
toward the opponent’s goal.

— Straight Hit: the player hits the puck and it travels toward the opponent’s
goal without hitting the side walls.

— Right Hit: the player hits the puck and it hits the right wall and then travels
toward the opponent’s goal.

— Block: the player deliberately does not hit the puck but instead moves into
a blocking position to prevent the puck from entering their goal.

— Prepare: movements made while the puck is on the opposite side from the
player. The player is either preparing to setup for a shot, or preparing to
defend their goal.

— Multi-Shot: movements made after a shot is attempted, but while the puck
is still on the player’s side. If the puck is not quickly moving toward the
opponent’s side, they will have the opportunity to hit it again.

3 Marble Maze Environment

In the marble maze game a player controls a marble through a maze by tilting
the board that the marble is rolling on. The hardware board is tilted using
two knobs and the virtual board is controlled with the mouse, figure 2. There
are obstacles, in the form of holes, that the marble may fall into, and walls.
In both versions the time and the board and ball positions are recorded as a
human plays the game. The virtual game models the movement of the marble
and treats collisions with the wall aesthetically with a significant loss of energy.
The human controls the board on the hardware version by using knobs connected
to encoders. The motor command generated by the encoder system is read by
the computer and sent to the motors. The position of the ball is obtained using
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Fig. 4. Primitives used in the marble maze environment.

a Newtonlabs Cognacrome vision system [1]. The computer can also generate its
own commands and send them to the motors.

The primitives for the marble maze game are designed to give the agent the
skills it will need to perform the task. The following primitives are currently
being explored and are shown in figure 4:

— Roll Wall Stop: The ball rolls along a wall and stops when it hits another
wall.

Roll Off Wall: The ball rolls along a wall and then rolls off the end.

— Guide: The ball is moved without touching a wall.

— Roll From Wall: The ball hits, or is on, a wall and then is maneuvered off it.
Corner: The ball is in a corner and the board is being positioned to move
the marble from the corner.

4 Selecting the Appropriate Primitive and Sub-Goal

As discussed in the strategy above, it is the responsibility of the primitive selec-
tion module to choose the type of primitive, based on the current state and prior
observations of primitives being executed. In our implementation, the context
or state in which the human has performed each primitive is extracted from the
observed data, and is used by a nearest neighbor lookup process to find the past
primitive executions whose context is most similar to the current context. For
example the puck’s position and velocity when it crosses a pre-specified line is
often used as the index for a lookup. In the air hockey environment the primitives
are selected and then run to completion, before the next primitive is selected
and executed. In the marble maze environment a primitive can be interrupted
if it is not making progress or causes the marble to fall into a hole.

The sub-goals for the primitive provide the parameters needed to perform
the action. The sub-goals for the hit primitives, for example, are the desired
hit location, the puck’s desired post-hit velocity, and the target location. In
air hockey these sub-goals are returned along with the single nearest neighbor



Games Time Holes Not making
Observed fallen into |progress
1 367.3 6 5

2 257.9 6 3

3 234.6 3 3

4 189.8 5 2

5 129.9 4 1

6 72.2 3 0

7 123.4 3 1

8 73.2 4 0

9 231.0 3 3

10 243.0 3 3

o

Table 1. Performance of player agent o
then playing one game.

serving the number of games specified and

as part of the selected primitive. The sub-goals in the marble maze game are
obtained by interpolating between parameters of multiple previously executed
primitives close of the selected type.

5 Results

In the virtual game of air hockey an agent used data collected while observing
a human to initially learn how to perform air hockey primitives and went on
to increase it performance of shot primitives through practice. Agents in both
the hardware and software versions have used the observed data to learn how
to choose a primitive and parameters when operating in the environment. An
agent in the virtual marble maze game learned how to perform primitives and an
initial primitive selection strategy from observing a human. An agent also went
on to increase its performance through practice. Initial research in the hardware
marble maze has shown that better sensing and controlling devices are needed
and a new version is currently being constructed for further research.

Table 1 shows the performance of a marble maze agent after it has observed
a various number of games performed by a skilled human player. This agent
only used the observed data and is not learning from practice. The observed
player performed the task in about 55 seconds and never fell into a hole or was
penalized for not making progress. There is an improvement in time to complete
the maze up until six games are observed. But for holes fallen into, is not clear
that observing more then three games has proven to be of benefit.

Since this agent is not using the learning from practice module, when it runs
through the maze multiple times, it has approximately the same performance
on each run. Any difference is due to noise that is purposely introduced into the
simulation. A common error is for the agent to choose a primitive that has been
performed on just the other side of the wall from where it is. This would create a
sub-goal position that is out of reach of the marble from the current location. In



this situation the marble would mostly just sit in a corner or fall in a hole that
is nearby. Another frequently observed error is the agent choosing a primitive
that it can not perform from the current state of the environment.

From observing the performance of this agent it can be seen that it must
also have the ability to learn beyond the observation. As mentioned above, the
agent computes an action using the observed data and then goes on to perform
that action. To change its performance the agent must have knowledge of the
overall task objective and some way to evaluate its performance toward the
accomplishment of the task. It must also have a way to change its behavior as
it practices to increase its performance toward completing the task.

6 Increasing Performance through Practice

There are a number of things the agent can learn to increase its performance
while operating in the environment. At the primitive level it can improve the pol-
icy to become more proficient at primitive performance. The virtual air hockey
player observed its own performance and collected data while practicing. This
data was then used separately in a neural network and a kernel regression model
to improve the hit performance of the agent. Many other methods can be used
by an agent to learn a primitive through practice such as those used by Schaal
and Atkeson [5] in pole balancing and of Kamon et. al. [12] in learning to grasp
objects.

Agents can also learn to select more appropriate primitives and parameters.
Without the learning from practice module the agent’s only goal is to act like
the teacher with no knowledge of a higher goal or task objectives. It is the job
of the learning from practice module to provide this information so the agent’s
performance can be increased. The algorithms and performance of this module
are currently being tested and will be presented in future research.

7 Conclusions

Agents must learn quickly if they are to operate in high dimension environ-
ments. Providing an agent with domain knowledge and the ability to learn from
observation can greatly improve its learning rate. The presented framework pro-
vides much flexibility in conducting learning from observation research using
primitives. The current research using this framework demonstrates its ability
and future research will focus on improving the performance of the individual
modules.
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