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Abstract

This paper describes the use of task primitives in robot
learning from observation. A framework has been de-
veloped that uses observed data to initially learn a task
and then the agent goes on to increase its performance
through repeated task performance (learning from prac-
tice). Data that is collected while a human performs a
task is parsed into small parts of the task called prim-
itives. Modules are created for each primitive that en-
code the movements required during the performance of
the primitive, and when and where the primitives are per-
formed. The feasibility of this method is currently being
tested with agents that learn to play a virtual and an ac-
tual air hockey game.

1 Introduction

Human learning is often accelerated by observing a
task being performed or attempted by someone else. If

robots can be programmed to use such observations to

accelerate learning their ushty and functionality will
be increased and programming and learning time will be

decreased. This paper describes research that explores

the use of primitives in learning from observation. Our
ultimate goal is to show that the use of primitizeceler-
ates learning, and that primitives can be learned automat-
ically by observing a teacher's performance. This paper
describes how a set of predefined primitives can be used
in learning from observation.

Figure 1 shows a virtual air hockey game that was cre-
ated that allows a person to play against a virtual player.
How the virtual air hockey playing agent learns its behav-
ior from observing a human will be described. Research
in this environment is also being performed using a hu-
manoid robot (www.erato.atr.co.jp/DB/) and a camera
based tracking system, figure 2. Learning using primi-
tives on the hardware version has just begun. The archi-
tecture and current playing strategy of this environment
will be described.

A camera based motion capture system can easily be
used to collect data in a hardware implementation [9, 17].
Spong and others have programmed a robot arm to play
air hockey [8, 18, 20].

Figure 1: The virtual air hockey environment. The disc

shaped object near the centerline is a puck that slides on
the table and bounces off the sides, and the other two
disc shaped objects are the paddles. The virtual player
controls the far paddle, and a human player controls the
closer paddle by moving the mouse. The object of the
game is to score points by making the puck hit the oppo-
site goal (the purple/light area at the ends of the board).

2 Primitives

Robots typically must generate commands to all their
actuators at regular intervals. The analog controllers for
our 30-degree of freedom humanoid robot are given de-
sired torques for each joint 420Hz. Thus, a task with a
one second duration is parameterized with 420 =
12600 parameters. Learning in this high dimensional
space can be quite slow or can fail totally. Random
search in such a space is hopeless. In addition, since
robot movements take place in real time, learning ap-
proaches that require more than hundreds of practice
movements are often not feasible. Special purpose tech-
niques have been developed to deal with this problem,



Figure 2: The hardware air hockey environment.
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Figure 3: Our view of a primitive.

such as trajectory learning [1], learning from observa-
tion [4, 5, 11, 15, 6, 10, 12, 13], postural primitives [21],

and other techniques that decompose complex tasks or ated that can be played on a computer.

movements into smaller parts [2, 7, 16].

It is our hope that primitives can be used to reduce
the dimensionality of the learning problem [2, 19]. Prim-
itives are solutions to small parts of a task that can be
combined to complete the task. A solution to a task may
be made up of many primitives. In the air hockey environ-
ment, for example, there may be primitives for hitting the
puck, capturing the puck, and defending the goal. There
are many possible primitives, and it is often possible to
break a primitive up into smaller primitives.

2.1 Strategy for Primitive Use

Figure 3 shows our view of a primitive. Currently, a
human, using domain knowledge, designs the candidate
primitives that are to be used. The learning from obser-
vation module segments the observed behavior into the
chosen primitives. This segmented data is then used to
provide the encoding for the primitive selection, sub-goal
generation, and action generation modules.

The primitive selection module will provide the agent
with the primitive to use for the observed state of the en-

vironment. After it has been decided which primitive
to use, the desired outcome, or goal, of that primitive
is specified by the sub-goal generation module. Lastly
the actuators must be moved to obtain the desired out-
come. The action generation module finds the actuator
commands needed to execute the chosen primitive type
with the current goal.

After the agent has obtained initial training from ob-
serving human performance, it should then increase its
skill at that task through practice. Up to this point the
agent's only high-level goal is to perform like the teacher.
Its only encoding of the goal of the entire task isin the im-
plicit encoding in the primitives performed. The learning
from practice module contains the information needed to
evaluate the performance of each of thedules toward
obtaining a high-level task objective. This information
can then be used to update the modules and improve per-
formance beyond the&cher.

3 Virtual Air Hockey

Air hockey is a game played by two people. They use
round paddles to hit a flat round puck across a table. Air
is forced up through many tiny holes in the table's sur-
face, which creates a cushion of air for the puck to slide
on with relatively little friction. The table has an edge
around it that prevents the puck from going off the table,
and the puck bounces off this edge with little loss of ve-
locity. At each end of the table there is a goal area. The
objective of the game is to hit the puck so that it goes into
the opponent's goal area while also preventing it from go-
ing into your own goal area.

Figure 1 shows the virtual air hockey game cre-
The game
consists of two paddles, a puck and a board to play
on. A human player using a mouse controls one
paddle. At the other end is a simulated or virtual
player. The software for this game can be obtained
at www.cc.gatech.edu/projects/LearniRgsearch/. The
movement of the virtual player has very limited physics
incorporated intoit. The paddle movement is constrained
to operate with a velocity limit. Paddle accelerations are
not monitored and therefore can be unrealistically large.
The virtual player uses only its arm and hand to position
the paddle. For a given desired paddle location, the arm
and hand are placed to put the paddle in the appropriate
location, and any redundancies are resolved so as to make
the virtual player look “human-like”. If the target is not
within the limits of the board and the reach of the virtual
player the location is adjusted to the nearest reachable
point. The torso is currently fixed in space but could be
programmed to move in a realistic manner. The virtual
player's head moves so that it is always pointing in the
direction of its hand, but is irrelevant to the task in this
implementation.

The paddles and the puck are constrained to stay on



Figure 4: Three hit primitives being performed by the
virtual player: right, straight, and left.

the board. There is a small amount of friction between
the puck and the board's surface. There is also energy
loss in collisions between the puck and the walls of the
board and the paddles. Spin of the puck is ignored in the
simulation. The position of the two paddles and the puck,
and any collisions occurring within sampling intervals are
recorded.

4 Air Hockey Primitives

As explained above, human domain knowledge was
used to define a set of primitives to work with initially.
Three hit primitives are shown in figure 4. The full list of
primitives used is:

o Left Hit: the player hits the puck and it hits the left
wall and then travels toward the opponent's goal.

¢ Straight Hit: the player hits the puck and it travels
toward the opponent's goal without hitting the side
walls.

¢ Right Hit: the player hits the puck and it hits the
right wall and then travels toward the opponent's
goal.

¢ Block: the player deliberately does not hit the puck
but instead moves into a blocking position to prevent
the puck from entering their goal.

e Prepare: movements made while the puck is on the
opposite side from the player. The player is either
preparing to setup for a shot, or preparing to defend
their goal.

e Multi-Shot: movements made after a shot is at-
tempted, but while the puck is still on the player's
side. If the puck is not quickly moving toward the
opponent's side, they will have the opportunity to hit
it again.

4.1 Perceiving the Primitives

The observed data must first be segmented into the
above primitives. To accomplish this,tital events are

used. Critical events are easily observable occurrences.
The puck mostly travels in a straight line with a gradu-
ally decreasing velocity. Critical events for the puck in-
clude collisions, in which the ball speed and direction are
rapidly changed.

The prepare primitive is performed whenever the puck
is on the side opposite the player and will continue until
a shot is to be attempted or a block is to be performed.
In all the remaining primitives the puck is on the same
side as the player, so discovering which primitive is being
performed requires taking into account the position and
velocity of the puck and collisions of the puck with the
player's paddle.

The hit primitives are parameterized by the incom-
ing puck position and velocity (when it crossed the cen-
ter line), the hit location, the outgoing puck velocity and
the target position. To find this primitive in the captured
data, a collision of the puck with the player's paddle is
searched for. When this event has been found, the puck's
velocity vector is then observed to determine the target of
the hit, and the state of the environment under which this
primitive was selected. A simple idealized model is used
to determine where the puck would hit the back wall if
the opponent did not block it. This use of a model enables
the learning agent to estimate the target being attempted
without the shot having to be completed. Téwcuracy
of the model can be critical in producing useful training
data. Other methods can be used to reduce the reliance on
the model, such as only considering shots that have actu-
ally hit the back wall without having hit any other walls
or paddles.

If it is determined that the puck did not travel from
the other side prior to a shot being made, this shot will
be classified as a multi-shot primitive. The multi-shot
primitive may be performed after a failed shot attempt or
a blocking primitive and the puck is moving very slowly
within hitting range. Here the player has plenty of time
to setup and make a shot. If, after a collision with the
observed player's paddle has been detected, the puck's
observed trajectory does not fit the requirements for one
of the hit primitives, the blocking primitive is considered.

If the player's paddle is near their goal at the time of the
collision, this will be classified as a blocking primitive.

4.2 Selecting the Appropriate Primitive and Sub-
Goal

As discussed in the strategy above, it is the respon-
sibility of the primitive selection module to choose the
type of primitive, based on the current state and prior ob-
servations of primitives being executed. In our imple-
mentation, the context or state in which the human has
performed each primitive is extracted from the observed
data, and is used by a nearest neighbor lookup process to
find the past primitive executions whose context is most
similar to the current context. For example the puck's po-



sition and velocity when it crossed the centerline is often
used as the index for a lookup. In this implementation the
primitives are selected and then run to completion, before
the next primitive is selected and executed.

The sub-goals for the primitive provide the parame-
ters needed to perform the action. The sub-goals for the
hit primitives, for example, are the desired hit location,
the puck's desired post-hit velocity, and the target loca-
tion. Currently these sub-goals are returned along with

the single nearest neighbor as part of the selected prim-

itive. A future implementation will obtain the sub-goals
by interpolating between parameters of previously exe-
cuted primitives of the selected type.

4.3 Finding the Right Paddle Motion

Once the primitive to perform has been decided upon,

and the parameters are obtained, the agent must then fig- follows: D (z, q)

ure out how to move the paddle to obtain the sub-goal.
This can be done in many ways. Three methods have

¢ The location of the paddle relative to the puck at the
time of contact.

This information is used in the action generation mod-
ule to tell the agent the paddle's velocity components and
relative position that are needed to make the desired shot.
The query to the generation module is the puck's velocity
(from the game state) and desired hit location, the desired
velocity of the puck after itis hit, and the desired location
to shoot for on the back wall (from the sub-goal genera-
tion module). The module then outputs the information
needed by the virtual player to make the shot.

The kernel regression method uses a weighed average
of the closest n points to the query point to compute the
needed information. To find the closest points in the state
space the Euclidean distance of each data point from the
query point is computed. This distance is computed as

>_;(x; — q;)* wherez andq are

the locations of the data point and the query pointin state
space. j represents thgth component of the vector. A

been tried; an idealized model based on physics, neural kernel function uses the distance to compute the weight

networks, and kernel regression [3].

The model based on idealized physics contains a simu-
lation algorithm and computes the required paddle move-
ments to hit the puck to a desired location with the desired
output velocity. The computed movement is the mini-
mum movement needed to obtain the correct hit. Paddle
velocity that is perpendicular to the normal of the paddle-
puck collision does not affect the puck's movement. This
method ignores puck spin. Using this model produces
extremely accurate results but does not take intoaet
the information obtained from the observation. The ac-
curacy of the model largely determines the results of this
method. If a model based on domain knowledge is not
available some other method must be used.

For the neural network and kernel regression methods
information is extracted from the captured data so as to
have the virtual player move the paddle the way that the

human moved the paddle to make a shot. The observed
data is segmented into the primitives and a database is

created for each of the primitives. The hit primitives con-
tain the following information:
Input:

e The XY location of the puck when it was hit.

The velocity components of the puck when it was
hit.

The absolute velocity of the puck just after it is hit.

The position on the back wall that the puck would
hit if unobstructed.

Output:

¢ The paddle's velocity components at the time of the
collision.

of that data point. The kernel function chosen for this
module isK (D) = exp~P”. The output components at
the query point use n data points and are computed using
_ D _uiK(D(®xiq)

= S~ko@.q) where:

the following equationy(q)
ranges froni ton.

5 Hardware Air Hockey

The hardware implementation, figure 2, consists of the
humanoid robot and a small air hockey table. The robot
observes the position of the ball using its onboard cam-
eras and hardware designed to supply the position of col-
ored objects in the image. The humanoid's torso is moved
during play to extend the reach of th@bot. The head is
moved so that the playing field is always within view.

5.1 Computing Joint Angles

This task uses 16 degrees of freedom. The following
joints are used in the air hockey task: shoulder (2 joints),
elbow, arm rotation, wrist rotation, hand (2 joints), waist
(3 joints), head (2 joints, nod and rotation), and eyes (2
joints each eye, pan arit). Using all the joints above,
except for the head and eyes, the robot must be positioned
so that the puck is flat on the board and moves smoothly
from one location to another. The other joints are used
to position the head and eyes so that the entire board is
in view at all times. We have manually positioned the
robot in several positions on the board while maintain-
ing these constraints, figure 5. To get joint angles for any
desired puck position, we interpolate using the four sur-
rounding training positions and use an algorithm similar
to that used in graphics for texture mapping [14]. This
approach allows us to solve the inverse kinematics of the
robot with extreme redundancy in a simple way.



Figure 5: The six given configurations of the robot used
to compute all enclosed configurations.

5.2 Vision

It is the job of the robot's vision system to provide the
location of the puck and the two paddles on the playing
field. Due to the movements of the torso, the head of
the robot, and therefore the eyes, move. A simple object
tracking method that takes into account the constrained
playing field is used to compensate for this movement
and provide accurate object tracking. The vision system
consists of cameras located in the head of the robot and
a color tracking system for each camera output. The sys-
tem tracks the four corners of the board, the puck, and
a paddle. Figure 6 shows the four corners and the puck
displayed in the vision system. Using the four known
corners and the fact they are in a plane, the location of an
object within that polygon and on the plane can be com-
puted. The state of the puck consists of its position and
velocity. The puck velocity is numerically computed us-
ing filtered positions. The vision system runs at 60 frames
per second and as long as the four corners are in view,
board positions can be computed.

6 Differences Between the Software and Hardware
Air Hockey

In the virtual game sensing is perfect and collision in-
formation is accurately known because it can be obtained
from the simulator. In the hardware version only position
data is obtained. From this data critical events such as
collisions must be determined. We discover collisions by
searching for rapid changes in the puck's velocity. The
positions of the objects on the board are used to deter-
mine what item the puck collided with. In all other ways
the primitives are searched for in a similar manner as in
the software version.

Figure 6: The four corners of the board and the puck in
the middle as seen by the robot.

400

350 | Vet
300 - /
250 | [
200 |- /

150 -

goals per 500 test shots

100 | /

50 | l

0 1 1 1 1 1 1 1 1
1 3 10 32 100 316 1000 31621000081623

number of training examples (log scale)

Figure 7: The number of goals obtained by the virtual
agent as an increasing number of shots are observed.
Note the log scale on the horizontal axis.

In the software version the agent may be placed with-
out regard to physics. But in the hardware version the
robot has many limitations such as maximum speed and
command delay time. In the software version the shot
is not considered until the puck crosses the centerline,
giving it just a very small time to setup and make the
shot. This strategy will not provide enough time for the
hardware robot to make the shot. Therefore the hardware
agent must start considering shots and setting up for them
as soon as possible.

Predicting the trajectory of the puck is used in seg-
menting the data and in deciding on hit locations. The
software version uses a simulator that is noise free and
it is therefore very accurate in predicting the future state
of the puck. In the hardware version on the other hand,
the environment cannot be ascurately modeled. Addi-
tionally there will be slight variability from game to game
due to factors such as the board being tilted or the friction
changing due to fluctuations in the blower output.



7 Results [3]

The learning from observation algorithms for virtual 4]
air hockey is fully implemented. The virtual air hockey
player agent provides a fun and challenging opponent.
Figure 7 shows a graph of the performance of the hit
primitives as the agent observes an increasing number of
hits. The agent first observes a number of shots taken by
the human. The puck is then shot toward the agent 500
times just as if the opponent hit it. The number of times
the agent scores for each observation set is shown in the
graph. During these trials the opponent's goal is left un-
defended. As the number of observed hits increases, the
agent's performance increases. We are currently devising
other ways to evaluate the performance of the air hockey
player agent in a quantitative way.

The same learning algorithms are currently being
adapted for use by the humanoid robot. The humanoid air
hockey environment has been set up and we have demon-
strated the humanoid's ability to hit the puck and move
around the board. Using a predefined playing strategy
the humanoid has proven to be a fun opponent and the
opportunity to increase its performance using this type of
learning can be seen.

(6]

(71

(8]

[9]

[10]

[11]

8 Conclusions

Virtual and hardware versions of an air hockey game [12]
have been created that allow data to be captured while the
games are being played. Humans, using domain knowl-
edge, select primitives to use and create software needed
to parse the captured data. Modules are then created that
use this data to select when and where primitives should
be performed, the parameters needed for the performance [14]
of the primitives, and the low-level movements needed
during the actual performance of the primitive. The agent
then uses these modules to perform the task. A virtual air
hockey player has learned a shot strategy, how to hit, and
prepare from observing a human. A humanoid robot has
been programmed to observe the state of the air hockey [16]
environment and play using a predefined strategy.

[13]

(18]
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