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Abstract—Network virtualization enables the deployment of
novel network architectures and services on existing Internet
infrastructure. In addition, virtual networks (VNs) can share the
resources in the physical substrate. To enable efficient resource
reallocation and network agility, VNs must sometimes migrate,
i.e., change their placements on a substrate network. While VN
placement, and to a lesser extent migration, has been studied
in the past, little attention has been devoted to deploying and
evaluating these functions over a real infrastructure. In this
paper, we study the VN migration problem based on network
virtualization in PlanetLab. We create a tool, PL-VNM, that
orchestrates the VN migration on PlanetLab for a given new
VN placement. The design and deployment of the tool reveal
challenges and constraints. Some are particular to PlanetLab
while others apply more generally to any virtualized infrastruc-
ture. Most significantly, we find that while in principle one can
specify a migration schedule (sequence of migration steps) as an
input to our tool, certain PlanetLab features make VN migration
scheduling very difficult if not infeasible. Our work leads to
recommendations about the features of a general virtualization
environment and specific recommendations for PlanetLab that
enable VN migration and migration scheduling. We believe
that the recommended features make long-term experiments
and application deployments on PlanetLab and other realistic
virtualized infrastructures possible.

I. INTRODUCTION

The critical importance of the Internet makes direct exper-
imentation hard. The ensuing gap between development and
deployment poses problems when evaluating novel network
architectures. Network virtualization is a process that enables
live experimentation, while providing isolation ([1], [2], [3],
[4], [5]). In this context, a virtual network (VN) is built on top
of a substrate network and is granted a portion of the substrate
physical resources. This decoupling of virtual networks from
the physical substrate provides opportunities for flexible VN
management when allocating substrate resources [6], [7], [8],
[9]).

Figure 1 shows by example multiple VNs that are built on
top of the same substrate network. The nodes and links of a
VN are mapped to selected substrate nodes and paths, respec-
tively. Resources are mapped according to the requirements of
the VN and their availability. These requirements are described
by the policy of the application running on this VN [10].
Available resources in the substrate are dependent on mappings
and utilization: A substrate node can host multiple VN nodes

Fig. 1. Virtual networks are mapped to a substrate network.

that share the resources of the substrate node; similarly, each of
the substrate links can also host multiple links from different
VNs.

Over time, a static mapping of VNs may lead to over- or
under-utilization of the substrate resources. As a consequence,
long-term benefit can only be maximized by redistributing
substrate resources. This means re-mapping virtual compo-
nents from one set of components of the substrate network
to another, when there are changes in the traffic carried on the
VN [11], [10], [6], [7], [8], [12], [13].

During the remapping process, we migrate the VN from
its initial placement to its final placement. To enable efficient
resource allocation and network agility, a VN must be able
to change its placement on the physical network quickly.
However, there is a lack of systematic exploration of this VN
agility feature. Prior work investigates migration of a single
virtual router [14]. In our previous work we use this technique
to devise and simulate VN migration schedules [15]. Other
work considers live network migration that utilizes Software-
Defined Networking techniques [16]. Still, this leaves open
questions pertaining to deployment and evaluation of VN
placement and migration over real infrastructure.

In this paper, we specifically study the VN migration
problem on PlanetLab [17]. PlanetLab is a prominent virtu-
alized infrastructure for deploying multiple VNs that share
the substrate network resources distributed across hundredsISBN 978-3-901882-58-6 c© 2014 IFIP



of physical domains on the Internet. A user requests a slice
on PlanetLab and selects a set of PlanetLab nodes to add
to the slice. Once the user selects a set of nodes for the
experiment, the user can connect these nodes together to form
a VN within the slice. However, some of the nodes may fail
or become unstable over time [18]. This can have a negative
impact, for example, on experimental results, as well as the
ability to experiment in the long-term. An effective virtual
network migration system could mitigate negative effects on
PlanetLab and similar platforms, while facilitating application
development.

A VN migration mechanism should minimize any disruption
introduced to the VN. It is also desirable that the process of
VN migration be automated and relatively fast. We propose a
migration mechanism for VN migration on PlanetLab designed
to meet these objectives.

Given that most of the users can request only one slice for
their experiments, we focus on VN migration within a single
PlanetLab slice. We design, implement, and evaluate with live
experiments, a controller called PL-VNM that orchestrates the
VN migration to new VN placements on PlanetLab. In princi-
ple, we can schedule the migration steps to minimize the dis-
ruption to the VN. In practice, our experiments have revealed
that certain PlanetLab features make VN migration scheduling
infeasible. Our work leads to specific recommendations for
PlanetLab that would enable VN migration scheduling, as
well as recommend features for more general virtualization
environments. We believe that the recommended features make
long-term experiments and application deployments on shared
virtualized infrastructures possible.

We first give an overview of the PlanetLab architecture and
how VNs are implemented on PlanetLab. Then we present the
architecture of our proposed migration controller PL-VMN
in Section III. In Section IV, we discuss the challenges of
VN migration scheduling to minimize the disruption to the
VN in the ideal case. We further experiment with gateway
scheduling in PL-VNM as the realistic case in Section V.
We then give recommendations in Section VI for enabling
VN migration scheduling on both PlanetLab environment and
generic virtualization environment. We conclude in Section
VII with future work.

II. VIRTUAL NETWORKS ON PLANETLAB

In this section we briefly describe two well known methods
for implementing and managing VN resources in PlanetLab.
We begin first by discussing the ways in which VNs may be
allocated the resources that are granted by PlanetLab.

A. VN-to-PlanetLab Resource Allocation

PlanetLab uses a slice abstraction to gather a collection of
resources across different PlanetLab components. Slices are
requested by a user. Once allocated, the user can add nodes
to the slice. All nodes are shared by different slices. For each
node that is added to the slice, a virtual container is created.
This container holds the node within the slice, and isolates the

node from other slices. This virtual container can be accessed
by the user with an appropriate SSH key.

Figure 2 shows two types of virtual containers. Circles,
triangles, and diamonds represent the virtual containers that
are allocated to slices 1, 2, and 3, respectively. The shapes
colored white are not actively participating in any routing or
forwarding. We call them the non-active virtual containers.
The colored shapes represent the virtual containers that are
allocated to the slices and have virtual routers running on them.
We call them the active containers.

Consider a slice that is allocated entirely to a single VN. In
this allocation the slice and the VN are identical, and include
all resources, active and non-active containers. In this context
the migration of a VN in PlanetLab means migrating either the
slice itself, or all the active and non-active virtual containers
from nodes in the current slice to nodes in another slice. Either
type of migration requires changes to the infrastructure on
PlanetLab and the way it assigns resources to different slices.
This capability is not currently available, nor is it possible, in
the PlanetLab environment.

Alternatively, it is possible to partition resources within a
single slice. This feature can be used to build multiple VNs
within a single slice. The VN is first mapped to a subset of
virtual containers. These virtual containers are active and hold
the VN’s virtual routers. Virtual routers are connected virtual
links using point-to-point tunnels. In Figure 2, a VN of slice
1 is placed on the three active virtual containers (colored
circles) and the virtual links between them. The three non-
active virtual containers of slice 1 (white circles) are not
part of the VN. The substrate resources available for a VN
placement and migration are confined to the resources of a
slice. For example, migration of the VN in slice 1 can be
done by migrating the active containers to the three non-active
containers within slice 1.

Fig. 2. An example assignment of VN nodes within PlanetLab

B. Implementation and Management of VNs on PlanetLab

There are two common methods to create and manage a
VN within a slice on PlanetLab. The first implements VNs
in user space. This requires the creation of a virtual router
in each container using the Click router [19], and connecting



the virtual routers together with UDP tunnels [20]. User space
implementations increase the latency of forwarding packets
due to the time copying packets between the kernel and user
space and also the time waiting for Click to run on the CPU.

In our design and evaluations we have selected to implement
VNs in kernel space by setting up packet forwarding in kernel
space using the Vsys API [21]. With Vsys, a virtual router in a
PlanetLab node can install routes to the forwarding table in the
kernel space. When a PlanetLab node receives packets for one
of the slices it hosts, it does not copy the packets from kernel
space to user space before the redirection. Instead, the packets
are forwarded directly according to the forwarding table of
the node. Thus, the latency of packet forwarding within a
node is considerably lower compare to using the user space
routers [22].

Vsys currently is fully functional on the PlanetLab Europe
nodes. It allows each slice to have access to certain super user
sudo privileges, that include creating virtual interfaces and
tunnels and forwarding table entries for that slice. Each user is
assigned a private IP subnet for the slice. The forwarding table
in the kernel is shared among other slices. Isolation is provided
through Vsys such that actions performed on a PlanetLab node
in a slice do not affect other slices sharing the same PlanetLab
node. A user can only modify the forwarding table entries
that belong to the assigned IP subnet. With this kernel space
forwarding table sharing feature, a user space router can install
routes to the forwarding table in kernel space directly.

PlanetLab uses ingress filtering to prevent packets from
forged IP source addresses. The packets are filtered accord-
ing to the strict mode of unicast Reverse Path Forwarding
(uRPF) [23]. The packets are still forwarded directly in kernel
space according to the forwarding table entries. However,
packets are filtered based on their source IP addresses. When
a PlanetLab node receives a packet from one of its virtual
interfaces, the node checks for the best route of the packet’s
source IP address in the forwarding table. If the virtual
interface of that best route does not match with the receiving
virtual interface, i.e., the arriving virtual interface is not used
to forward packets to that source IP address, the packet will
be dropped. If it passes the check, the node looks for the
best route of the destination IP address and forwards the
packet accordingly. Note that only the best route is considered.
Other existing routes in the forwarding table for the same IP
address or subnet with lower priority are ignored. This feature
prevents asymmetric paths on the VN between two nodes
and has negative implications on VN migration, as shown in
Section IV.

To setup VNs, we use a Python Vsys API package provided
by NEPI [24]. According to the VN topology, we connect the
PlanetLab nodes with point-to-point tunnels through the Vsys
API. We assign private IP addresses within the assigned subnet
of our slice to the virtual interfaces for those tunnels. Then we
install the pre-computed routing table entries to the forwarding
tables of the PlanetLab nodes through the Vsys API. In our
current implementation, we assume that we are using static
routing. In the future implementation, we can install a routing

daemon to interact with the forwarding table in the kernel
space through the Vsys API for updating forwarding table
entries. 1

III. VIRTUAL NETWORK MIGRATION ON PLANETLAB

We now describe the proposed virtualization architecture
that supports VN migration in PlanetLab, the migration pro-
cess and how to evaluate it.

A. Migration Architecture and Process Overview

At the center of our VN migration architecture we have
designed and implemented our own migration controller, PL-
VNM. Gateways are used in addition to redirect traffic between
virtual networks. An example instantiation of our architecture
is shown Figure 3. Shown in the upper-right, PL-VNM or-
chestrates the VN setup and migration remotely. It connects
to all the virtual nodes in the VN and the gateways to set up
the VN and the virtual links between the nodes.

We focus on connections between VN virtual routers and
gateways hosted by PlanetLab nodes in the same slice. While
it is possible to connect end hosts that are not PlanetLab
nodes through UDP tunnels, in our experiments, we choose
to maintain all the virtual nodes including the end hosts on
PlanetLab. Figure 3 shows the initial and final placements of
the VN and they are mapped to different sets of PlanetLab
nodes. Only the VN is migrated to its final placement in
our experiment. The end hosts and gateways maintain their
placements.

In our VN migrations, we focus on network elements
between gateways. Since migration is done in the IP layer,
one of the roles of the gateways is to hide the IP route
changes from the end host applications. If end hosts were
directly connected to the VN, then when the VN migrates to
its final placement, the interfaces of the end hosts would also
have to adopt new IP addresses. Such changes of IP addresses
adversely affect the connectivity of the applications.

Besides hiding IP address changes from end hosts, the
gateways also perform traffic redirection during VN migration.
The changes of routes in the forwarding tables of the gateways
determine which placement of the VN the packets should be
forwarded to. For example, in Figure 3, the forwarding table
of gateway gi starts with the routes to destination ej and ek
with the next hop to the initial placement of the VN. During
the VN migration, these routes are changed to reflect the next
hop as the final placement of the VN.

1Prior work investigated the interaction between dynamic routing in the
native and overlay layers [25]. With dynamic routing and a high node degree
VN topology, the migration process can be improved through rerouting. The
VN migration process is similar except for handling the HELLO messages
among the virtual routers. For example, in OSPF, if the time of the migration
is longer than the HELLO message timer, the effects of the migration will
be recognized as a link failure or a network instability event. Currently
the recommendation for the time between sending HELLO messages is 10
seconds which is longer than the time for migration, which takes less than 2
seconds. So, the migration cannot be noticeable by the virtual routers. In case
it is noticeable, it will be recognized as a link failure and the traffic will be
rerouted. As a result, we believe our work still applies to the virtual networks
with dynamic routing.



Fig. 3. An example VN migration setup in our PlanetLab experiment

The process of VN migration proceeds as follows:
1) Launch new virtual routers on the final placement nodes.
2) Clone the routing states from the active to the final virtual

routers.
3) Redirect traffic at the gateways to the final VN placement.
During the migration, PL-VNM installs the required pack-

ages at the final placement nodes. Then PL-VNM clones the
routing states 2 of the virtual routers on the VN to the virtual
routers at the final placements. After cloning, PL-VNM issues
traffic redirection commands to all the gateways gi, gj , and
gk to change the forwarding table entries with next hop to the
final placement of the VN nodes.

B. Migration Evaluation Metrics and Migration Scheduling

We evaluate migration performance by measuring packet
loss and the time to complete the migration. In our architecture
packet loss can occur at the gateways when the old route
to the VN’s initial placement is replaced by a new route to
the final placement. Because the forwarding and redirecting
of traffic are done at the routing layer, the packets are only
forwarded to the best route from the forwarding tables of the
gateways. Furthermore, because of the aforementioned uRPF
check, packets that are buffered on the initial placement of the
VN can be dropped or lost during the traffic redirection.

In prior work [15], [16], it has been established that mi-
gration scheduling, i.e., the sequence and timings of gateway
redirection requests can have a significant effect on migration
performance. Also, there is often a tradeoff between migration
duration and VN disruption as measured by packet loss. For
example, in our system if all gateways are asked to redirect
their traffic at the same time, this will cause the migration to

2The routing states of the PlanetLab virtual routers are defined as the entries
in the forwarding tables of the virtual routers on PlanetLab. We clone the
routing states instead of copying them to the final placement nodes directly
because the virtual interfaces and IP addresses of these virtual interfaces are
assigned differently on each virtual node.

complete quickly. This, however, is likely to cause the most
packet loss to applications.

Implementing a migration schedule, however, requires the
network control (to deploy the required traffic redirection) at
small time granularity. As it turns out this is very challenging
in the PlanetLab environment. In our work we explore two
possible control strategies and evaluate them experimentally
as is described in Section V.

C. The PL-VNM Controller

Our controller, PL-VNM, performs both VN installation and
migration. During a VN installation or migration, PL-VNM
connects to all the virtual routers and gateways through SSH
connections to initiate and synchronize the VN installation
or migration procedures. We implement PL-VNM with the
Python Vsys API package. The package has to be installed on
all nodes in the slice. The user also has to request to add the
Vsys tags to the slice.

Figure 4 shows its detailed architecture. PL-VNM stores the
VN topologies, substrate network topology, and the mapping
of the VNs with SQLite database [26]. The VN orchestrator
installs the VNs according to the mappings with the Python
Vsys API to the PlanetLab nodes. The VN orchestrator installs
the virtual links between the virtual routers and installs routes
to the forwarding tables of the virtual nodes through the API.

When a request for VN migration is initiated with initial and
final VN placements, PL-VNM schedules and automates the
migration. The migration routing state translator identifies the
routing states that are affected at the gateways and translates
these routes according to the final placement of the VN. With
the routing state changes from the migration routing state
translator, the migration orchestrator first computes a migra-
tion schedule, and orchestrates the migration according to the
schedule. The migration orchestrator installs new translated
routes to the VN’s final placement PlanetLab nodes. After
that, according to the migration schedule, it sends redirection
commands to the gateways to redirect traffic to the VN’s
final placement. These commands change the routes in the
forwarding tables of the gateways. Once that is finished, the
routing state updates are sent back to PL-VNM with the final
VN mapping.

In our prototype, we have two choices of implementation
for controlling traffic redirection at the gateways. The first
choice is to execute the commands according to the schedule
produced by the algorithm at PL-VNM through SSH sessions
to the gateways. With this technique, called remote scheduling,
there is a lag between the time the control command is issued
by PL-VNM and the execution time of the command at the
gateway. This lag can be considerable and unpredictable and
makes it difficult, if not impossible, to control the actual
migration timing.

By contrast we schedule at the gateway nodes with at job
scheduling utility [27]. With this technique, called gateway
scheduling, the gateways should be synchronized through NTP
[28]. PL-VNM computes the migration schedule and uses
at to schedule the commands at different gateways. In this



Fig. 4. The detailed architecture of PL-VNM

case the latency between PL-VNM and the gateways is not
an issue. However, OS process timing resolution and NTP
accuracy can, again, make it hard to control migration timing.
We explore the relative performance of these two approaches
in our experiments in Section V.

D. Our Process for VN Migration in PlanetLab

The migration process is described by the steps below, and
accompanied by matching depictions of each step in Figure 5:

1) Add the PlanetLab nodes for the new node placements to
the slice such that the virtual containers for the slice are
created on those nodes. This step can be done through
the PlanetLab API or the PlanetLab website.

2) Set up the new VN on the final placements of the virtual
nodes:

a) Set up virtual interfaces on each new virtual router
according to the configuration of the old virtual routers.

b) Connect the virtual routers at their final placements ac-
cording to the VN topology with point-to-point tunnels
through the Vsys API.

3) Clone the routing states of the old virtual routers to the
new virtual routers of the VN. The routing states cannot
be directly copied from the old virtual router because the
virtual interfaces of these states are different.

4) Establish point-to-point overlay links between the gate-
ways to the VN on its final placement.

5) PL-VNM issues commands to the gateways according
to the schedule to redirect traffic to the new VN. These
redirection commands change the forwarding table entries
on the gateways between the VN and the end hosts. This
step requires synchronization among all the gateways.

6) Disconnect the old VN from the gateways and remove
the routing states on the old virtual routers.

Step 1-4 and 6 can be done in the background. Step 5
requires accurate redirection timing in order to implement a
given migration schedule.

(a) A VN with three nodes on their initial mappings serving three sets
of end hosts.

(b) Step 1-3: Set up the new VN on the final placements of the virtual
nodes. Clone the virtual nodes’ routing states to their final placements.

(c) Step 4: Establish point-to-point overlay links between the gateways
gi, gj and gk to the VN on its final placement.

(d) Step 5-6: At the gateways, redirect traffic between the end hosts by
switching the next hops of the forwarding table entries from the VN’s
initial to the final placement. Disconnect the gateways from the initial
placement.

Fig. 5. Migrating a VN with three virtual nodes serving three sets of end
hosts ei, ej and ek .



IV. VN MIGRATION SCHEDULING CHALLENGES IN
PLANETLAB

Fig. 6. The topology of the 2-node VN on PlanetLab

We illustrate PlanetLab VN migration scheduling challenges
here through a 2-node VN example as shown in Figure 6.
We consider f1,2 a traffic flow from end host e1 to e2. f1,2
has a virtual path of (e1, g1, A,B, g2, e2). Nodes A and B
move from an initial placement to a final placement through
redirection of traffic at both g1 and g2. PL-VNM issues
traffic redirection commands to g1 and g2. We assume these
redirection commands are executed (not issued by PL-VNM)
at times t1 and t2, respectively.

We define li and lf as the one-way path latencies of the
virtual paths of the flow f1,2 from e1 to e2 at the initial
placement and final placement, respectively. Assuming that
the capacity of the virtual paths (g1, A,B, g2) of the initial
and final placements are the same, we consider three cases:

1) When li = lf : After g1 switches from the initial mapping
path to final mapping path at t1, the last packet traveled
on the initial mapping path takes li to arrive to g2. At the
same time, the next packet (after the redirection) takes
the final mapping path and arrives to g2 at t1 + li. Since
li = lf , g2 should switch to the final path at time t1 + li
to prevent packet loss.

2) When lf > li: Similar to the previous case except that
the packets on the final mapping path take a longer time
to arrive to g2. As a result, the time for g2 to switch to
the final path should fulfill t1 + li < t2 < t1 + lf or
li < t2 − t1 < lf .

3) For the case of li > lf , packet loss is unavoidable. Once
g1 has issued the redirection command at t1, the packets
after t1 switch to the final mapping path with latency lf <
li. The first packet on the final path reaches g2 earlier
than the last packet on the initial path. No matter when
g2 switches the path, packet loss would be observed. To
minimize packet loss, g2 should switch the path between
t1 and t1 + li, i.e., t1 ≤ t2 ≤ t1 + li.

Note that the above analysis is for one direction of traffic
flow. Avoiding packet loss in the opposite direction of traffic
(from e1 to e2 in the above case) will most likely require
different timing considerations for the gateway redirection.
Because PlanetLab requires symmetric paths, it is not possible
to manage the two flow directions independently.

Fig. 7. Percentage of packet loss vs. redirection command execute time at
g2 minus redirection command execute time at g1, i.e., (t2 − t1).

Experimental results: We now show results from an exper-
iment on the topology in Figure 6. We migrate the VN from
its initial placement to its final placement 35 times. We use
iperf to send a UDP flow with 1.5 Mbps rate from e1 to e2
for 10 seconds. PL-VNM issues the redirection commands to
the two gateways at the same time. Under ideal conditions
this will cause the simultaneous redirection at both gateways.
However, as noted earlier, various factors can cause the actual
execution times to be quite variable. In fact, we observe values
for t2 − t1 ranging from -7.1 to +3.2 seconds. This confirms
our earlier assessment of the difficulty of controlling migration
timing in PlanetLab.

Figure 7 shows a scatter plot of the packet loss versus
the time between the redirection commands executed on each
gateway (i.e., t2− t1). Each point on the figure represents one
measurement result. The path latencies in the initial and final
placements are 240 ms and 160 ms, respectively. We measure
the percentage of packet loss within 10 seconds of the traffic
redirection. This falls under case 3 in the discussion above.
Thus we expect packet loss to be minimized when t2 − t1
is less than 240 ms. Indeed we do observe packet loss at a
minimum (with some experimental variation, at and around
this interval). The minimum time difference of t2 − t1 = 89
ms gives a minimum packet loss of 0.009%. However, there
are also other cases with roughly a time difference of 75 ms
with 79% packet loss.

V. GATEWAY SCHEDULING IN PL-VNM

In this section, we evaluate whether gateway scheduling
(where redirection tasks are scheduled in advance at the
gateways themselves) can provide better timing control for
VN migration in PlanetLab. We do this using our PL-VNM
prototype to control a 3-node VN migration experiment (Fig-
ure 8). The VN has three virtual routers that are connected to
three end hosts through three gateways. In our experiment, we
migrate the VN between its initial and final placements back
and forth 110 times. We also use iperf to measure the packet



loss for 60 seconds between all pairs of end hosts, i.e., total
of 6 UDP flows with 1.5Mbps rate among 3 end hosts.

A. Remote Scheduling Baseline

We first run baseline experiments using remote scheduling.
During the migration, PL-VNM first issues commands to clone
the VN on the VN’s final placements. Then PL-VNM issues
redirection commands to the gateways for switching the flow
to the final VN placement at the same time through remote
scheduling (SSH). We record the time of command execution
at the gateways and measure the packet loss for the flows.

Fig. 8. The topology of the 3-node VN in our PlanetLab experiment

Fig. 9. Packet loss vs time difference between the execution time of the
related gateways’ redirection commands using PL-VNM remote scheduling
on the 3-node VN with only 4 flows

Figure 9 shows the result of this experiments with remote
scheduling. The percentage of packet loss on the y-axis is
based on the total measurement time of 60 seconds with
iperf. The x-axis shows the time difference between the traffic
redirection command issued times to the gateways for the cor-
responding flows. Even though the redirection commands are
issued at the same time, we find the time differences ranging
from -7.8 to +13.1 seconds and again the time differences
illustrate the serious timing problems of the remote scheduling
approach. Flows from node b are not shown in the figure
because we notice that flows from node b to any other nodes

experience high packet loss. The loss rate on these two flows
are too high even there is no migration.

We observe that when there is almost zero time difference
between the redirection command execution time at the two
related gateways, the packet loss is close to zero. This is
because the difference in latencies between the initial and final
placement of the paths is also small (tens of milliseconds). We
still observe cases that time difference is close to zero while
10% packet loss is observed. This effect can be caused by a
background event happening in the substrate network.

B. VN Migration Scheduling through Gateway Scheduling

We now consider migration control via gateway scheduling.
We run a set of experiments on the same topology as before.
However, we schedule the traffic redirection commands ahead
at the gateways with at utility at the same time. All the
PlanetLab nodes are synchronized with NTP so that the error
of the time is limited to 100 ms.

(a) Switching from the initial to the final placement

(b) Switching from the final back to the initial placement

Fig. 10. Packet loss vs time difference between the execution time of the
related gateways’ redirection commands using gateway scheduling on the 3-
node VN with only 4 flows

Figure 10(a) shows the results of the experiments that
migrating the VN from its initial to its final placement. Figure



10(b) shows the results of the experiments that migrating the
VN from its final to its initial placement. First, the range of
time difference is within -1.7 to +2.7 seconds given that the
commands on different gateways are scheduled to be executed
at the same time. The command execution timings behave
much better than in the remote scheduling case. This also
causes packet loss to be much less with this control paradigm.

The time variation is caused by the accuracy of NTP
synchronization and the load on gateway CPUs. The resources
including CPU time and memory of the gateways are shared
among different PlanetLab slices. If the gateways are executing
some other jobs for other slices, the traffic redirection com-
mands will be prioritized to be executed after the other jobs.
Thus, the execution time will be delayed.

Even though timing control is significantly better with
gateway scheduling, we still believe it is not adequate to
provide the fine-grained control required to minimize loss
caused by VN migration.

VI. RECOMMENDATIONS FOR PLATFORMS TO SUPPORT
VN MIGRATION

When we started this work, our goal was to complete our
prototype with a migration scheduling heuristic and to demon-
strate how this heuristic can be used to minimize disruption in
VN migration on PlanetLab. It is relatively straightforward to
take the analysis of the scenarios in Section IV and produce
a scheduling heuristic that under ideal conditions will provide
the least packet loss when migrating a VN. We show a sketch
of such a heuristic in the Appendix. However, on shared
infrastructure, the difficulty in controlling redirection timing
due to network latency and resource availability makes this an
uninteresting exercise.

Instead we conclude by giving some recommendations
about substrate features that are required to enable VN migra-
tion. Some of these are feasible to deploy on PlanetLab while
others point to design elements in a future infrastructure such
as GENI [29].

A. Providing Improved Timing Control in Substrate Nodes

The performance and time to execute the migration com-
mand is constrained by available synchronization and schedul-
ing mechanisms. We recommend the following features at the
substrate network to provide improved timing control. These
features also apply to a general substrate infrastructure that
supports VN migration.

Reduce clock granularity to facilitate synchronization:
VN migration scheduling as described in Section IV depends
on the path latencies between end hosts. The path latencies
typically encountered are in the few hundred milliseconds
range. By contrast, scheduling with the at utility is limited
to a granularity of seconds. Our evaluations suggest that a
job scheduler with a granularity of 1 ms at the gateways
is appropriate. Quartz, for example, is a commercial-grade
java-based job scheduler that shows job scheduling with a
granularity of 1 ms is feasible [30].

Enable prioritization of migration commands at gateways:
We observe that the time to complete migration commands is
characterized by delayed starts in addition to slow execution.
Time averages measured over 110 executions are summarized
in Table I. Lag time is the time between the scheduled start
and actual start times, and averages at least 0.5 seconds
at each of the gateways. Furthermore, we see in Table I
that execution time is highly dependent on load, with values
ranging from a few milliseconds at gateway gc, to a many
hundred milliseconds at remaining gateways. Prioritization
of migration commands would reduce these timing effects
within a slice. The ideal is for prioritization commands to
be respected at the substrate layer, in addition.

TABLE I
THE AVERAGE LAG TIME BETWEEN COMMAND ISSUE TIME AND THE TIME

THE GATEWAYS START EXECUTING THE COMMANDS AND THE AVERAGE
REDIRECTION COMMAND EXECUTION TIME AT THE GATEWAYS

ga gb gc

Average lag time (sec) 0.536 0.869 0.564
Average execution time (sec) 0.813 0.702 0.066

B. An Asymmetric Routing Policy to Reduce Packet Loss

Currently, PlanetLab supports only symmetric routing, a
policy that is enforced by way of the strict mode in uRPF [23].
This policy insists that changes in forwarding behavior must be
synchronized across gateways with matching segments along
forward and reverse paths, as described in Section II-B. At
any time, if the gateways are not synchronized with symmetric
paths, i.e. one gateway is using the initial placement to forward
packets while the other one is using the final placement, the
traffic flowed through these gateways will be dropped. During
migration this causes long contiguous steams of lost packets.

To prevent packet loss during the traffic redirections we rec-
ommend support at the gateways for feasible mode (see [23])
in uRPF in addition to strict mode. In feasible mode, asym-
metric routing is allowed. As long as the forwarding tables
maintain simultaneous routes to the initial and final place-
ments, packets will pass the checks and will be forwarded.

VII. CONCLUDING REMARKS AND FUTURE WORK

We believe that our work makes long-term experiments
and application deployments on shared virtualized infrastruc-
tures possible. We propose a VN migration mechanism for
PlanetLab. We design and implement a controller called PL-
VNM to orchestrate the VN migration. We evaluate our work
with experiments. Although we only perform small scale
experiments, the challenges also apply to public networks
that support virtualization through the routing layer. Ideally,
a migration schedule would minimize the disruption to the
VN. However, certain PlanetLab features make migration
scheduling infeasible. We further recommend features for
general virtualization environments to enable VN migration
scheduling.



We note an alternative approach may exist by way of
collaboration between the VN migration controller and the end
systems. This may be particularly advantageous in cases where
it is possible to recover gracefully from the packet loss that
occurs within the short disruption period that follows a redi-
rection. Applications that deliver data with an on-off behavior
are appropriate targets, with dynamic adaptive streaming over
HTTP (DASH) as just one example [31]. In this context a VN
controller could trigger migrations between the transmission
of video segments. Additionally, the controller could notify the
end systems of impending migrations and the need to buffer
packets locally until the migration is complete. We leave this
investigation for future work.
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APPENDIX

The following is a sketch of a heuristic migration scheduling
algorithm:

1) Identify all the directional flows among all the gateways
and end hosts.

2) Estimate or measure the flow size of each pair of bidi-
rectional flows fi,j and fj,i between end hosts ei and
ej .

3) Sort the flows in descending order of flow size or priority.
4) For each flow in the descending order:

a) Check whether the command execution time ti and tj
of gateways gi and gj , respectively, are set, where gi
and gj are the gateways that connect ei and ej to the
VN, respectively.

b) If not,
i) Measure the path latency and set the path latency

as the time difference between tj and ti according
to the cases in Section IV.

ii) Schedule the execution time to execute the redirec-
tion commands for the flow according ti and tj .


