
Scaling Regression Testing to Large Software Systems

Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold
College of Computing

Georgia Institute of Technology
Atlanta, Georgia

{orso|clarenan|harrold}@cc.gatech.edu

ABSTRACT
When software is modified, during development and main-
tenance, it is regression tested to provide confidence that
the changes did not introduce unexpected errors and that
new features behave as expected. One important prob-
lem in regression testing is how to select a subset of test
cases, from the test suite used for the original version of the
software, when testing a modified version of the software.
Regression-test-selection techniques address this problem.
Safe regression-test-selection techniques select every test case
in the test suite that may behave differently in the origi-
nal and modified versions of the software. Among existing
safe regression testing techniques, efficient techniques are of-
ten too imprecise and achieve little savings in testing effort,
whereas precise techniques are too expensive when used on
large systems. This paper presents a new regression-test-
selection technique for Java programs that is safe, precise,
and yet scales to large systems. It also presents a tool that
implements the technique and studies performed on a set
of subjects ranging from 70 to over 500 KLOC. The studies
show that our technique can efficiently reduce the regression
testing effort and, thus, achieve considerable savings.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools;

General Terms: Algorithms, Experimentation, Verifica-
tion

Keywords: Regression testing, testing, test selection, soft-
ware evolution, software maintenance

1. INTRODUCTION
As software evolves, regression testing is applied to mod-

ified versions of the software to provide confidence that the
changed parts behave as intended and that the changes did
not introduce unexpected faults, also known as regression
faults. In the typical regression testing scenario, D is the
developer of a software product P , whose latest version has
been tested using a test suite T and then released. During
maintenance, D modifies P to add new features and to fix
faults. After performing the changes, D obtains a new ver-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

sion of the software product, P ′, and needs to regression test
it before committing the changes to a repository or before
release.

One important problem that D must face is how to select
an appropriate subset T ′ of T to rerun on P ′. This process
is called regression test selection (RTS hereafter). A simple
approach to RTS is to rerun all test cases in T on P ′, that
is, to select T ′ = T . However, rerunning all test cases in T

can be expensive and, when there are limited changes be-
tween P and P ′, may involve unnecessary effort. Therefore,
RTS techniques (e.g., [2, 4, 6, 7, 9, 15, 17, 20, 22, 23]) use
information about P , P ′, and T to select a subset of T with
which to test P ′, thus reducing the testing effort. An im-
portant property for RTS techniques is safety. A safe RTS
technique selects, under certain assumptions, every test case
in the test suite that may behave differently in the original
and modified versions of the software [17]. Safety is impor-
tant for RTS techniques because it guarantees that T ′ will
contain all test cases that may reveal regression faults in P ′.
In this paper, we are interested in safe RTS techniques only.

Safe RTS techniques (e.g., [6, 7, 15, 17, 20, 22] differ in
efficiency and precision. Efficiency and precision, for an RTS
technique, are generally related to the level of granularity at
which the technique operates [3]. Techniques that work at a
high level of abstraction—for instance, by analyzing change
and coverage information at the method or class level—are
more efficient, but generally select more test cases (i.e., they
are less precise) than their counterparts that operate at a
fine-grained level of abstraction. Conversely, techniques that
work at a fine-grained level of abstraction—for instance, by
analyzing change and coverage information at the statement
level—are precise, but often sacrifice efficiency.

In general, for an RTS technique to be cost-effective, the
cost of performing the selection plus the cost of rerunning
the selected subset of test cases must be less than the overall
cost of rerunning the complete test suite [23]. For regression-
testing cost models (e.g., [10, 11]), the meaning of the term
cost depends on the specific scenario considered. For exam-
ple, for a test suite that requires human intervention (e.g., to
check the outcome of the test cases or to setup some machin-
ery), the savings must account for the human effort that is
saved. For another example, in a cooperative environment,
in which developers run an automated regression test suite
before committing their changes to a repository, reducing
the number of test cases to rerun may result in early avail-
ability of updated code and improve the efficiency of the
development process. Although empirical studies show that
existing safe RTS techniques can be cost-effective [6, 7, 19],

such studies were performed using subjects of limited size.
In our preliminary studies we found that, in many cases, ex-
isting safe techniques are not cost-effective when applied to
large software systems: efficient techniques tend to be too
imprecise and often achieve little or no savings in testing
effort; precise techniques are generally too expensive to be
used on large systems. For example, for one of the subjects
studied, it took longer to perform RTS than to run the whole
test suite.

In this paper, we present a new RTS algorithm for Java
programs that handles the object-oriented features of the
language, is safe and precise, and still scales to large sys-
tems. The algorithm consists of two phases: partitioning
and selection. The partitioning phase builds a high-level
graph representation of programs P and P ′ and performs
a quick analysis of the graphs. The goal of the analysis is
to identify, based on information on changed classes and in-
terfaces, the parts of P and P ′ to be further analyzed. The
selection phase of the algorithm builds a more detailed graph
representation of the identified parts of P and P ′, analyzes
the graphs to identify differences between the programs, and
selects for rerun test cases in T that traverse the changes.
Although the technique is defined for the Java language,
it can be adapted to work with other object-oriented (and
traditional procedural) languages.

We also present DejaVOO: a tool that we developed and
that implements our RTS technique.

Finally, we present a set of empirical studies performed
using DejaVOO on a set of Java subjects ranging from 70
to over 500 KLOC. The studies show that, for the subjects
considered, our technique is considerably more efficient than
an existing precise technique that operates at a fine-grained
level of abstraction (89% on average for the largest subject).
The studies also show that the selection achieves consider-
able savings in overall regression testing time. For the three
subjects, our technique saved, on average, 19%, 36%, and
63% of the regression testing time.

The main contributions of this paper are:

• The definition of a new technique for RTS that is ef-
fective and can scale to large systems.

• The description of a prototype tool, DejaVOO, that
implements the technique.

• A set of empirical studies that show and discuss the
effectiveness and efficiency of our technique. These are
the first studies that apply safe RTS to real systems of
these sizes.

2. TWO-PHASE RTS TECHNIQUE
The basic idea behind our technique is to combine the

effectiveness of RTS techniques that are precise but may
be inefficient on large systems (e.g., [7, 17, 18]) with the
efficiency of techniques that work at a higher-level of ab-
straction and may, thus, be imprecise (e.g., [9, 22]). We do
this using a two-phase approach that performs (1) an ini-
tial high-level analysis, which identifies parts of the system
to be further analyzed, and (2) an in-depth analysis of the
identified parts, which selects the test cases in T to rerun.

We call these two phases partitioning and selection. In
the partitioning phase, the technique analyzes the program
to identify hierarchical, aggregation, and use relationships
among classes and interfaces [13]. Then, the technique uses
the information about these relationships, together with in-

formation about which classes and interfaces have syntac-
tically changed, to identify the parts of the program that
may be affected by the changes between P and P ′. (Without
loss of generality, we assume information about syntactically
changed classes and interfaces to be available. This informa-
tion can be easily gathered, for example, from configuration-
management systems, IDEs that use versioning, or by com-
parison of the two versions of the program.) The output of
this phase is a subset of the classes and interfaces in the pro-
gram (hereafter, referred to as the partition). In the selec-
tion phase, the technique takes as input the partition identi-
fied by the first phase and performs edge-level test selection
on the classes and interfaces in the partition. Edge-level test
selection selects test cases by analyzing change and cover-
age information at the level of the flow of control between
statements (see Section 2.2 for details). To perform edge-
level selection, we leverage an approach previously defined
by some of the authors [7].

Because of the partitioning performed in the first phase,
the low-level, expensive analysis is generally performed on
only a small fraction of the whole program. Although only a
part of the program is analyzed, the approach is still—under
certain assumptions—safe because (1) the partitioning iden-
tifies all classes and interfaces whose behavior may change
as a consequence of the modifications to P , and (2) the edge-
level technique we use on the selection phase is safe [7]. The
assumptions for safety are discussed in Section 2.3.

In the next two sections, we illustrate the two phases in
detail, using the example provided in Figures 1 and 2. The
example consists of a program P (Figure 1) and a modified
version of P , P ′ (Figure 2). The differences between the two
programs are highlighted in the figures. Note that, for ease
of presentation, we align and use the same line numbering
for corresponding lines of code in P and P ′. Also for ease of
presentation, in the rest of the paper we use the term type to
indicate both classes and interfaces and the terms super-type
and sub-type to refer to type-hierarchical relation (involving
two classes, a class and an interface, or two interfaces).

2.1 Partitioning
The first phase of the approach performs a high-level anal-

ysis of P and P ′ to identify the parts of the program that
may be affected by the changes to P . The analysis is based
on purely syntactic changes between P and P ′ and on the
relationships among classes and interfaces in the program.

2.1.1 Accounting for Syntactic Changes
Without loss of generality, we classify program changes

into two groups: statement-level changes and declaration-
level changes. A statement-level change consists of the mod-
ification, addition, or deletion of an executable statement.
These changes are easily handled by RTS: each test case that
traverses the modified part of the code must be re-executed.
Figures 1 and 2, at line 9, show an example of statement-
level change from P to P ′. Any execution that exercises
that statement, will behave differently for P and P ′.

A declaration-level change consists of the modification of
a declaration. Examples of such changes are the modifica-
tion of the type of a variable, the addition or removal of a
method, the modification of an inheritance relationship, the
change of type in a catch clause, or the change of a modi-
fiers list (e.g., the addition of modifier “synchronized” to a
method). These changes are more problematic for RTS than
statement-level changes because they affect the behavior of

Program P

1 : pub l i c c l a s s SuperA {
2 : i n t i =0;
3 : pub l i c void foo () {
4 : System . out . p r i n t l n (i) ;
5 : }
6 : }

7 : pub l i c c l a s s A extends SuperA {
8 : pub l i c void dummy() {
9 : i −−;
1 0 : System . out . p r i n t l n (− i) ;
1 1 : }

12 : }

1 3 : pub l i c c l a s s SubA extends A {}

1 4 : pub l i c c l a s s B {
1 5 : pub l i c void bar () {
1 6 : SuperA a=LibClass . getAnyA () ;
1 7 : a . foo () ;
1 8 : }
19 : }

2 0 : pub l i c c l a s s SubB extends B {}

2 1 : pub l i c c l a s s C {
2 2 : pub l i c void bar (B b) {
2 3 : b . bar () ;
2 4 : }
25 : }

Figure 1: Example program P .

Program P’

1 : pub l i c c l a s s SuperA {
2 : i n t i =0;
3 : pub l i c void foo () {
4 : System . out . p r i n t l n (i) ;
5 : }
6 : }

7 : pub l i c c l a s s A extends SuperA {
8 : pub l i c void dummy() {
9 : i++;
1 0 : System . out . p r i n t l n (− i) ;
1 1 : }
12a : pub l i c void foo () {
12b : System . out . p r i n t l n (i +1);
12 c : }
12d :}

1 3 : pub l i c c l a s s SubA extends A {}

1 4 : pub l i c c l a s s B {
1 5 : pub l i c void bar () {
1 6 : SuperA a=LibClass . getAnyA () ;
1 7 : a . foo () ;
1 8 : }
19 : }

2 0 : pub l i c c l a s s SubB extends B {}

2 1 : pub l i c c l a s s C {
2 2 : pub l i c void bar (B b) {
2 3 : b . bar () ;
2 4 : }
25 : }

Figure 2: Modified version of program P , P ′.

the program only indirectly, often in non-obvious ways. Fig-
ures 1 and 2 show an example of a declaration-level change:
a new method foo is added to class A, in P ′ (lines 12a–12c).
In this case, the change indirectly affects the statement that
calls a.foo (line 17). Assume that LibClass is a class in the
library and that LibClass.getAnyA() is a static method of
such class that returns an instance of SuperA, A, or SubA.
After the static call at line 16, the dynamic type of a can
be SuperA, A, or SubA. Therefore, due to dynamic bind-
ing, the subsequent call to a.foo can be bound to different
methods in P and in P ′: in P , a.foo is always bound to
SuperA.foo, whereas in P ′, a.foo can be bound to A.foo

or SuperA.foo, depending on the dynamic type of a. This
difference in binding may cause test cases that traverse the
statement at line 17 in P to behave differently in P ′.

Declaration-level changes have generally more complex ef-
fects than statement-level changes and, if not suitably han-
dled, can cause an RTS technique to be imprecise, unsafe,
or both. We will show how our technique suitably handles
declaration-level changes in both phases.

2.1.2 Accounting for Relationships Between Classes
In this section, we use the example in Figures 1 and 2 to

describe, intuitively, how our partitioning algorithm works
and the rationale behind it. To this end, we illustrate dif-
ferent alternative approaches to partitioning, discuss their
shortcomings, and motivate our approach.

One straightforward approach for partitioning based on
changes is to select just the changed types (classes or in-
terfaces). Assume that the change at line 9 in Figures 1
and 2 is the only change between P and P ′. In this case,
any test case that behaves differently when run on P and P ′

must necessarily traverse statement 9 in P . Therefore, the
straightforward approach, which selects only class A, would
be safe and precise: in the second phase, the edge-level anal-
ysis of class A in P and P ′ would identify the change at
statement 8 and select all and only test cases traversing it.

However, such a straightforward approach does not work
in general for declaration-level changes. Assume now that
the only change between P and P ′ is the addition of method
foo to A (12a–12c in P ′). As we discussed above, this change
leads to a possibly different behavior for test cases that tra-
verse statement 17 in P , which belongs to class B. There-
fore, all such test cases must be included in T ′, the set of
test cases to rerun on P ′. Conversely, any test case that does
not execute that statement can be safely excluded from T ′.

Unfortunately, the straightforward approach would still
select only class A. The edge-level analysis of A would then
show that the change between A in P and A in P ′ is the
addition of the overriding method A.foo, a declaration-level
change that does not affect directly any other statement in
A. Therefore, the only way to select test cases that may be
affected by the change would be to select all test cases that
instantiate class A1 because these test cases may execute
A.foo in P ′. Such an approach is clearly imprecise: some
test cases may instantiate class A and never traverse a.foo,
but the approach would still select them. Moreover, this
selection is also unsafe. If, in the second-phase, we analyze
only class A, we will miss the fact that class SubA inherits
from A. Without this information, we will not select test
cases that traverse a.foo when the dynamic type of a is
SubA. Because these test cases may also behave differently
in P and P ′, not selecting them is unsafe.

Because polymorphism and dynamic binding make RTS
performed only on the changed types both unsafe and im-
precise, a possible improvement is to select, when a type
C has changed, the whole type hierarchy that involves C

(i.e., all super- and sub-types of C. Considering our exam-
ple, this strategy will select a partition that contains classes
SuperA, A, and SubA. By analyzing SuperA, A, and SubA,
the edge-level technique would (1) identify the inheritance

1In this case, static calls are non-relevant because dynamic
binding can occur only on actual instances.

algorithm buildIRG

input: program P

output: IRG G for P

begin buildIRG
1: create empty IRG G

2: for each class and interface e ∈ P do

3: create node ne

4: GN = GN ∪ {ne}
5: end for

6: for each class and interface e ∈ P do

7: get direct super-type of e, s

8: GIE = GIE ∪ {〈ne, ns〉}
9: for each type r ∈ P that e references do

10: GUE = GUE ∪ {〈ne, nr〉}
11: end for

12: end for

13: return G

end buildIRG

Figure 3: Algorithm for building an IRG.

relationships correctly, (2) discover that a call to a.foo may
be bound to different methods in P and P ′ if the type of
a is A or SubA, and (3) consequently select for rerun all
test cases that instantiate A, SubA, or both. Thus, such a
partitioning would lead to safe results.

Although considering whole hierarchies solves the safety
issue, the approach is still imprecise. Again, some test cases
may instantiate class A or SubA and never invoke a.foo.
Such test cases behave identically in P and P ′, but they
would still be selected for rerun.

To improve the precision of the selection, our partition-
ing technique considers, in addition to the whole hierarchy
that involves a changed type, all types that explicitly refer-
ence types in the hierarchy. For our example, the partition
would include SuperA, A, SubA, and B. By analyzing these
four classes, an edge-level selection technique would be able
to compute the hierarchy relationships, as discussed above,
and also to identify the call site to a.foo in B.bar as the
point in the program where the program’s behavior may be
affected by the change (details on how this is actually done
are provided in Section 2.2). Therefore, the edge-level tech-
nique can select all and only the test cases that call a.foo

when the dynamic type of a is either A or SubA. This selec-
tion is safe and as precise as the most precise existing RTS
techniques (e.g., [2, 7, 17]).

It is important to note that no other type, besides the
ones in the partition, must be analyzed by the edge-level
technique. Because of the way the system is partitioned,
any test case that behaves differently in P and P ′ must
necessarily traverse one or more types in the partition, and
would therefore be selected. Consider, for instance, class C

of our example, which is not included in the partition. If a
test case that exercises class C shows a different behavior
in P and P ′, it can only be because of the call to B.bar in
C.bar. Therefore, the test case would be selected even if we
consider only B.

In summary, our partitioning technique selects, for each
changed type (class or interface), (1) the type itself, (2) the
hierarchy of the changed type, and (3) the types that ex-
plicitly reference any type in such hierarchy. Note that it
may be possible to reduce the size of the partition identi-
fied by the algorithm by performing additional analysis (e.g.,
by distinguishing different kinds of use relationships among
classes). However, doing so would increase the cost of the
partitioning and, as the studies in Section 3 show, our cur-
rent approach is effective in practice. In the next section,
we present the algorithm that performs the selection.

SuperA B C

SubBA

SubA

inheritance edge

use edge

Figure 4: IRG for program P of Figure 1.

2.1.3 Partitioning Algorithm
Before describing the details of the partitioning algorithm,

we introduce the program representation on which the algo-
rithm operates: the interclass relation graph. The Interclass
Relation Graph (IRG) for a program is a triple {N, IE, UE}:

• N is the set of nodes, one for each type.

• IE ⊂ N × N is the set of inheritance edges. An inher-
itance edge between a node for type e1 and a node for
type e2 indicates that e1 is a direct sub-type of e2.

• UE ⊂ N×N is the set of use edges. A use edge between
a node for type e1 and a node for type e2 indicates that
e1 contains an explicit reference to e2.

2

Figure 3 shows the algorithm for building an IRG, buildIRG.
For simplicity, in defining the algorithms, we use the follow-
ing syntax: ne indicates the node for a type e (class or
interface); GN , GIE , and GUE indicate the set of nodes N ,
inheritance edges IE, and use edges UE for a graph G, re-
spectively.

Algorithm buildIRG first creates a node for each type in
the program (lines 2–5). Then, for each type e, the algo-
rithm (1) connects ne to the node of its direct super-type
through an inheritance edge (lines 7–8), and (2) creates a
use edge from each nd to ne, such that d contains a reference
to e (lines 9–11). Figure 4 shows the IRG for program P in
Figure 1. The IRG represents the six classes in P and their
inheritance and use relationships.

Figures 5, 6, and 7 show our partition algorithm, compute-
Partition. The algorithm inputs the set of syntactically-
changed types C and two IRGs, one for the original version
of the program and one for the modified version of the pro-
gram. As we mentioned above, change information can be
easily computed automatically.

First, algorithm computePartition adds to partition Part

all hierarchies that involve changed types. For each type e

in the changed-type set C, the algorithm adds to Part e

itself (line 3) and all sub- and super-types of e, by calling
procedures addSubTypes and addSuperTypes (lines 4 and 5).
If s, the super-type of e in P , and s′, the super-type of e in
P ′, differ (lines 6–8), the algorithm also adds all super-types
of s′ to the partition (line 9). This operation is performed
to account for cases in which type e is moved to another
inheritance hierarchy. In these cases, changes to e may af-
fect not only types in e’s old hierarchy, but also types in e’s
new hierarchy. Consider our example program in Figure 1
and its corresponding IRG in Figure 4. Because the only
changed type is class A, at this point in the algorithm Part

would contain classes A, SubA, and SuperA.

2The fact that e1 contains an explicit reference to e2 means
that e1 uses e2 (e.g., by using e2 in a cast operation, by
invoking one of e2’s methods, by referencing one of e2’s field,
or by using e2 as an argument to instanceof).

algorithm computePartition

input: set of changed types C,
IRG for P , G

IRG for P ′, G′

declare: set of types Tmp, initially empty
output: set of types in the partition, Part

begin computePartition
1: Part = ∅
2: for each type e ∈ C do

3: Part = Part ∪ {e}
4: Part = Part ∪ addSubTypes(G, e)
5: Part = Part ∪ addSuperTypes(G, e)
6: ns = n ∈ G, 〈ne, n〉 ∈ GIE

7: ns′ = n ∈ G′, 〈ne, n〉 ∈ G′

IE

8: if s 6= s′ then

9: Part = Part ∪ {s′}
10: Part = Part ∪ addSuperTypes(G′, s′)
11: end if

12: end for

13: for each type p ∈ Part do

14: for each edge v = 〈nd, np〉 ∈ GUE do

15: Tmp = Tmp ∪ {d}
16: end for

17: end for

18: Part = Part ∪ Tmp

19: return Part

end computePartition

Figure 5: Algorithm computePartition.

Second, for each type p currently in the partition, compute-
Partition adds to a temporary set Tmp all types that ref-
erence p directly (lines 13–17). In our example, this part of
the algorithm would add class B to T .

Finally, the algorithm adds the types in Tmp to Part and
returns Part.

Procedure addSubTypes inputs an IRG G and a type e,
and returns the set of all types that are sub-types of e. The
procedure performs, through recursion, a backward traversal
of all inheritance edges whose target is node ne. Procedure
addSuperTypes also inputs an IRG G and a type e, and
returns the set of all types that are super-types of e. The
procedure identifies super-types through reachability over
inheritance edges, starting from e.

Complexity.Algorithm buildIRG makes a single pass over
each type t, to identify t’s direct super-class and classes ref-
erenced by t. Therefore, the worst-case time complexity of
the algorithm is O(m), where m is the size of program P . Al-
gorithm computePartition performs reachability from each
changed type. The worst case time complexity of the algo-
rithm is, thus, |C|O(n2), where C is the set of changed types
and n is the number of nodes in the IRG for P (i.e., the num-
ber of classes and interfaces in the program). However, this
complexity corresponds to the degenerate case of programs
with n types and an inheritance tree of depth O(n). In prac-
tice, the depth of the inheritance tree can be approximated
with a constant, and the overall complexity of the partition-
ing is linear in the size of the program. In fact, our ex-
perimental results show that our partition algorithm is very
efficient in practice; for the largest of our subjects, JBoss,
which contains over 2,400 classes and over 500 KLOC, our
partitioning process took less than 15 seconds to complete.

2.2 Selection
The second phase of the technique (1) computes change

information by analyzing the types in the partition identi-
fied by the first phase, and (2) performs test selection by
matching the computed change information with coverage
information. To perform edge-level selection, we use an ap-
proach previously defined by some of the authors [7]. In the

procedure addSubTypes

input: IRG G,
type e

output: set of all sub-types of e, S

begin addSubTypes
19: S = ∅
20: for each node ns ∈ G, 〈ns, ne〉 ∈ GIE do

21: S = S ∪ {s}
22: S = S ∪ addSubTypes(G, s)
23: end for

24: return S

end addSubTypes

Figure 6: Procedure addSubTypes.

procedure addSuperTypes

input: IRG G,
type e

output: set of all super-types of e, S

begin addSuperTypes
25: S = ∅
26: while ∃ns ∈ G, 〈ne, ns〉 ∈ GIE do

27: S = S ∪ {s}
28: e = s

29: end while

30: return S

end addSuperTypes

Figure 7: Procedure addSuperTypes.

following we provide an overview of this part of the tech-
nique. Reference [7] provides additional details.

2.2.1 Computing Change Information
To compute change information, our technique first con-

structs two graphs, G and G′, that represent the parts of P

and P ′ in the partition identified by the partitioning phase.
To adequately handle all Java language constructs, we de-
fined a new representation: the Java Interclass Graph. A
Java Interclass Graph (JIG) extends a traditional control
flow graph, in which nodes represent program statements
and edges represent the flow of control between statements.
The extensions account for various aspects of the Java lan-
guage, such as inheritance, dynamic binding, exception han-
dling, and synchronization. For example, all occurrences
of class and interface names in the graph are fully quali-
fied, which accounts for possible changes of behavior due to
changes in the type hierarchy. The extensions also allow for
safely analyzing subsystems if the part of the system that is
not analyzed is unchanged (and unaffected by the changes),
as described in detail in Reference [7].

For the sake of space, instead of discussing the JIG in de-
tail, we illustrate how we model dynamic binding in the JIG
using our example programs P and P ′ (see Figures 1 and 2).
The top part of Figure 8 shows two partial JIGs, G and G′,
that represent method B.bar in P and P ′. In the graph,
each call site (lines 16 and 17) is expanded into a call and a
return node (nodes 16a and 16b, and 17a and 17b). Call and
return nodes are connected by a path edge (edges (16a,16b)
and (17a,17b)), which represents the path through the called
method. Call nodes are connected to the entry node(s) of
the called method(s) with a call edge. If the call is static
(i.e., not virtual), such as the call to LibClass.getAnyA(),
the call node has only one outgoing call edge, labeled call.
If the call is virtual, the call node is connected to the entry
node of each method that can be bound to the call. Each
call edge from the call node to the entry node of a method m

is labeled with the type of the receiver instance that causes
m to be bound to the call. In the example considered, the
call to a.foo at node 17a is a virtual call. In P , although
a can have dynamic type SuperA, A, or SubA, the call is

� � � � � � � � �

� 	 �

� � � � � �

 � � � � � � � � � � �

 � �

� � � �

�
� � � � � �

� � � � � � � � � � � �

� 	 �

� � � � � �

 � � � � � � � � � � �

 � �

� � � �
�

� � � � � �

� � � � � �

 � �

� 	 � � � � � � � � 	 � � � � � � �

�

�

�

� �

�
�� ! " # $ # % & ' () * +
�� ! " # $ # %) * +

�, - . / 0 1 0 2 3 4 5 6 7 8 9 :
��, - ; < 0 - . / 0 2 9 :

� => 1> -? @A B C D

� � � � � � � � �

� � � � � � � � �

E F � G H � � � � I � � � � J � � �
K � H H

E F � G H � � � � I � � � � J � � �
K � H H

Figure 8: Edge-level regression test selection.

always bound to method SuperA.foo (there is only one im-
plementation of method foo, in SuperA, which is inherited
by A and SubA). Therefore, G contains three call edges
from node 17a to the entry of SuperA.foo, labeled SuperA,
A, and SubA. In P ′, if the dynamic type of a is SuperA,
the call is bound to SuperA.foo, whereas if the dynamic
type of a is A or SubA, the call is bound to A.foo. There-
fore, G′ contains one call edge from node 17a to the entry of
SuperA.foo, labeled SuperA, and two call edges from node
17a to the entry of A.foo, labeled A and SubA.

After constructing the JIGs, the technique traverses them
to identify dangerous edges: edges that, if traversed, may
lead to a different behavior in P and P ′. For example, for
P and P ′ in Figures 1 and 2, the edge that represents the
flow of control from the statement at line 8 to the statement
at line 9 is a dangerous edge. Any input that causes P to
traverse that edge may—in this specific case, will—cause a
different behavior in P and in P ′. Similar to Rothermel and
Harrold’s technique [17], our technique identifies dangerous
edges by performing a synchronous traversal of G and G′.
Whenever the targets of like-labeled edges in G and G′ differ,
the edge is added to the set of dangerous edges.

To illustrate, consider again G and G′ in Figure 8. The
algorithm that performs the synchronous traversal of the
graphs starts from node 15 in G and G′, matches the edges
from 15 to 16a, and compares their target nodes. Because
the two nodes match (i.e., they represent identical instruc-
tions), the traversal continues from these nodes. The al-
gorithm continues through like paths in the two graphs by
traversing like-labeled edges until a difference in the tar-
get nodes of such edges is detected. Therefore, the algo-
rithm successfully matches the three pairs of nodes, in G

and G′, labeled LibClass.getAnyA(), 16b, and 17a. At this
point, assuming that the next edge considered is the out-
going call edge with label SubA (edge (17a,3,“SubA”)), the
algorithm would compare the target nodes for such edge in
G and G′ and find that they differ: in G, the target node
is SuperA.foo(), whereas in G′, the target node is A.foo().
The algorithm would thus add this edge to the set of dan-
gerous edges. For analogous reasons, the algorithm would
add edge (17a,3,“A”) to the set of dangerous edges. Con-
versely, edge (17a,3,“SuperA”) is not dangerous because its
target node, both in G and in G′, has not changed. Subse-
quent traversals find no additional dangerous edges and, at

the end of the synchronous walk, the set of dangerous edges
for P consists of edges (17a,3,“SubA”) and (17a,3, “A”).

In the next section, we describe how dangerous edges are
matched with coverage information to select for rerun all
test cases in T that traverse edge (17a,3,“SubA”) or edge
(17a,3,“A”), that is, all test cases that execute the call at
statement 17 with a’s dynamic type being A or SubA.

2.2.2 Performing Test Selection
When testing a program P , testers measure the cover-

age achieved by a test suite T to assess the adequacy of T .
Coverage is usually computed for program entities, such as
statements or edges. For each test case t in T , informa-
tion is recorded about which entities in P are executed by
t. Such coverage information can be automatically collected
using one of the many coverage tools available and can be
conveniently represented as a coverage matrix, with one row
per entity and one column per test case. A mark in a cell
(i, j) represents the fact that test case tj covers entity ei.
The bottom part of Figure 8 shows a partial coverage ma-
trix for program P , whose JIG G is shown in the upper part
of the same figure. The matrix shows that test cases t1, t2,
and t4 cover edge (16b,17a,“”), t1 covers (17a,3,“SuperA”),
t2 and t4 cover (17a,3,“A”), and t4 covers (17a,3,“SubA”).
Test case t3 does not cover any of the edges shown.

In our approach, we use coverage at the edge-level because
that is the level at which we also compute change informa-
tion, as described in the previous section. Given the set
of dangerous edges and the coverage matrix for program P

and test suite T , our technique performs a simple lookup
and selects for rerun all test cases that traverse at least one
dangerous edge. For the example in Figure 8, where the
dangerous edges are (17a,3,“A”) and (17a,3,“SubA”), our
approach would select test cases t2 and t4. It is worth not-
ing that the coverage for the test cases that do not traverse
any dangerous edge does not have to be recomputed: it does
not change because such test cases execute exactly in the
same way in both P and P ′. In the case in which relative
positions in the code change, coverage can be mapped from
P to P ′ based on change information [1, 21], or it can be
recomputed when free cycles are available.

Two things are worth noting about this part of the tech-
nique. First, coverage information can be efficiently gath-
ered and many testers gather it anyway, so we are imposing
little or no extra overhead on the testing process. Second,
the approach does not necessarily require this specific kind
of coverage and could be adapted to work with coverage of
other entities, such as statements.

2.3 Assumptions For Safety
To be safe, our technique must rely on some assumptions

about the code under test, the execution environment, and
the test cases in the test suite for the original program. Two
overall assumptions are that the code must be compilable
(i.e., that the programs we analyze are syntactically correct)
and that the test cases in T can be rerun individually (oth-
erwise, there would be no reason to perform regression-test
selection). The other assumptions are related to the deter-
minism of test-case execution, the execution environment,
and the use of reflection within the code.

Deterministic test runs.Our technique assumes that a test
case covers the same set of statements, and produces the
same output, each time it is run on an unmodified program.

This assumption guarantees that the execution of a test case
that does not traverse affected parts of the code yields the
same results for the original and the modified programs and,
thus, allows for safely excluding test cases that do not tra-
verse modifications. Note that this assumption does not in-
volve all multithreaded programs, but only those programs
for which the interaction among threads affects the coverage
and the outputs. In such cases, for our technique to be ap-
plicable, we must use special execution environments that
guarantee the deterministic order in which the instructions
in different threads are executed [12].

Execution environment.Changes in the execution envi-
ronment could modify the program behavior in ways that
our technique would not be able to identify. Therefore, we
assume that the execution environment is the same across
versions. In particular, we assume that the same Java Vir-
tual Machine is used and that there are no changes in the
libraries used by the program under test.

Use of reflection.In Java, reflection provides runtime ac-
cess to information about classes’ fields and methods, and al-
lows for using such fields and methods to operate on objects.
Reflection can affect the safety of regression-test-selection
techniques in many ways. For example, using reflection, a
method may be invoked on an object without performing a
traditional method call on that object. For another exam-
ple, a program may contain a predicate whose truth value
depends on the number of fields in a given class; in such a
case, the control flow in the program may be affected by the
(apparently harmless) addition of unused fields to that class.
Although some uses of reflections can be handled through
analysis, others require additional, user-provided informa-
tion. In our work, we assume that such information is avail-
able and can be leveraged for the analysis. In particular,
in the case of dynamic class loading, we assume that the
classes that can be loaded (and instantiated) by name at a
specific program point either can be inferred from the code
(in the case in which a cast operator is used on the instance
after the object creation) or are specified by the user.

3. EMPIRICAL EVALUATION
Our goal is to empirically investigate effectiveness and effi-

ciency of the technique presented in this paper when applied
to medium and large systems. To this end, we developed a
prototype tool, DejaVOO, that implements the technique,
and used it to perform an empirical study on a set of sub-
jects. The study investigates three research questions:

RQ1: What percentage of the program under test does
our partitioning technique select, and how does this affect
the overall RTS costs?

RQ2: How much do we gain, in terms of precision, with
respect to a technique that operates only at a high-level of
abstraction?

RQ3: What overall savings can our technique achieve in
the regression testing process?

3.1 The Tool: DejaVOO

The diagram in Figure 9 shows the high-level architecture
of DejaVOO, which consists of three main components:
InsECT, DEI, and Selector.

InsECT (Instrumentation, Execution, and Coverage Tool)
is a modular, extensible, and customizable instrumenter and

Program P

Test Suite

for P

DEI

Program P

Program P’

Change

Information

Partitioner

InsECT

Instrumenter

Comparator

Subset of P

Subset of P’

Instrumented

Code
JVM Coverage Matrix

Dangerous

Edges

DejaVOO

Selector
T’

Figure 9: High-level architecture of the DejaVOO

regression-test-selection system

coverage analyzer that we developed in Java [5]. Within
DejaVOO, we use InsECT to gather edge-coverage infor-
mation for program P when run against its test suite T .

DEI (Dangerous Edges Identifier) and Selector imple-
ment the two-phase technique presented in this paper. The
Partitioner performs Phase 1 of the technique: it inputs
program P , program P ′, and information about changed
types, and computes the partitions of P and P ′ to be fur-
ther analyzed. We make no assumptions on how the change
information is gathered, as long as it is expressed in terms
of syntactically changed types (classes and interfaces).

To identify inheritance and use relations between types,
the Partitioner uses the Byte Code Engineering Library
(BCEL)3 to inspect classes’ and interfaces’ bytecode. The
Partitioner also takes advantage of externally provided in-
formation (through a configuration file) for some uses of re-
flection, such as calls to java.lang.Class.newInstance() or
calls to several classes in the java.lang.reflect package. If
such information is not provided for a point in the program
where the use of reflection requires it, the Partitioner issues
a warning and reports the point in the program for which
the information is missing.

The Comparator performs the first part of Phase 2 of the
technique: it builds the JIGs for the parts of P and P ′ to be
analyzed, compares them, and identifies dangerous edges.

The Selector implements the final part of Phase 2. It
performs a simple lookup in the coverage matrix to select
all test cases that traverse any dangerous edge and reports
the list of such test cases.

3.2 Variables and Measures

3.2.1 Independent Variables
The independent variable in this study is the particular

RTS technique used. We considered four techniques.
RetestAll. This technique simply selects all test cases in

T for rerun on P ′. This is our control technique.
HighLevel. This technique identifies changes at the class

and interface level and selects all test cases that instanti-
ate changed classes or classes that may be affected by the
changes. We use this technique as a representative of the
RTS approaches based on an efficient analysis performed at
a high level of abstraction, such as the firewall-based tech-
niques [9, 22].

EdgeLevel. This technique identifies changes at the edge
level and selects test cases based on coverage information at
the same level. This technique is analogous to Phase 2 of
our approach performed on the whole program. We use this

3
http://jakarta.apache.org/bcel/

technique as a representative of the RTS approaches based
on a precise and expensive analysis (e.g., [7, 18]).

TwoPhases. This is the two-phase technique presented
in this paper.

3.2.2 Dependent Variable and Measures
Our dependent variables of interest are (1) effectiveness

of the technique in terms of savings in testing effort, and
(2) technique efficiency in terms of overhead imposed on
the testing process. Because the techniques we examine are
safe, and thus select all test cases that may reveal regres-
sion faults, fault detection capability of the selected test
cases is not a variable of interest. We use two measures
for technique effectiveness: reduction in test-suite size and
reduction in test-execution time. We use one measure for
technique efficiency: analysis time.

Reduction in test-suite size. One method used to compare
RTS techniques considers the degrees to which the tech-
niques reduce test-suite size for given modified versions of a
program. Using this method, for each RTS technique R that
we consider and for each (version, subsequent-version) pair
(Pi,Pi+1) of program P , where Pi is tested by test suite T ,
we measure the percentage of T selected by R to test Pi+1.

Reduction in test-execution time. To further evaluate sav-
ings, for each RTS technique, we measure the time required
to execute the selected subset of T (i.e., T ′) on Pi+1. As
discussed in the introduction, other cost factors may be rel-
evant when assessing the savings achieved by a regression
testing technique (e.g., the amount of human effort saved).
However, we limit ourselves to the reduction in test-suite size
and in test-execution time because they are good indicators
and, most important, can be measured accurately.

Analysis time. One way to measure the overall savings
OS achieved by an RTS technique when applied to version
Pi+1 of a program is given by the formula

OS = TimeT − TimeT ′ − TimeA

where TimeT is the time to execute the entire test suite on
Pi+1, TimeT ′ is the time to execute the selected subset of T

on Pi+1, and TimeA is the time to perform RTS, or analysis
time [10]. Analysis time is thus an important indicator of
the efficiency of an RTS technique. To compare efficiency
of different techniques, for each RTS technique, we measure
the time required to perform RTS on Pi+1.

3.3 Experiment Setup
3.3.1 Subject programs

As subjects for our study we utilized several releases of
each of three medium-to-large programs: Jaba, Daikon,
and JBoss, summarized in Table 1. The table shows, for
each subject, the size as number of non-commented lines of
code (KLOC), the number of classes and interfaces (Types),
the number of versions (V ersions), the number of test cases
(TC), and the time required to run the entire regression test
suite (Time TS). All values, except the number of versions,
are computed, for each program, as averages across versions.

Jaba
4 (Java Architecture for Bytecode Analysis) is a frame-

work for analyzing Java programs developed within the Aris-
totle Research Group at Georgia Tech. Daikon

5 is a tool
that performs dynamic invariant detection. JBoss

6, the

4
http://www.cc.gatech.edu/aristotle/Tools/jaba.html

5
http://pag.lcs.mit.edu/daikon/

6
http://www.jboss.org/

Subject KLOC Types Versions TC Time TS

Jaba 70 525 5 707 54 mins

Daikon 167 824 5 200 74 mins

JBoss 532 2,403 5 639 32 mins

Table 1: Subjects programs for the empirical study.

largest of our subjects, is a fully-featured Java application
server. For all three programs, we extracted from their CVS
repositories five consecutive versions from one to a few days
apart. By doing so, we simulate a possible way in which re-
gression testing would occur in practice, before any commit
to the repository. For all three programs, we used the test
suites used internally by the programs’ developers, which
were also available through CVS.

3.3.2 Experiment Design
To implement technique HighLevel, we modified DejaVOO

so that, after identifying the partition in Phase 1, it skips
Phase 2 and instead selects all test cases through the par-
tition. As an implementation of EdgeLevel, we used a pro-
totype tool, created at Georgia Tech, that implements the
RTS technique presented by some of the authors in Refer-
ence [7]. Finally, as an implementation of TwoPhases, we
used DejaVOO, discussed above.

For each version Pi, we ran the entire regression test suite
for Pi and measured the time elapsed. This corresponds to
our control technique, RetestAll. We also performed a sec-
ond run of each version to collect coverage information. (We
measured time and coverage on different runs to avoid for
the instrumentation overhead to affect the time measure-
ments.) Then, for each (program, modified-version) pair
(Pi, Pi+1), we performed RTS using the three techniques
considered. For each technique, we measured selected test-
suite size, selected test-suite execution time, and analysis
time, as discussed in Section 3.2.2. These measures served
as the data sets for our analysis. We collected all data on
a dedicated 2.80 GHz Pentium4 PC, with 2 GB of memory,
running GNU/Linux 2.4.23.

3.4 Threats to Validity
Like any empirical study, this study has limitations that

must be considered when interpreting its results. We have
considered the application of the RTS techniques studied
to only three programs, using one set of test data per pro-
gram, and cannot claim that these results generalize to other
workloads. However, the systems and versions used are real,
large software systems, and the test suites used are the ones
actually used by the developers of the considered systems.

Threats to internal validity mostly concern possible errors
in our algorithm implementations and measurement tools
that could affect outcomes. To control for these threats,
we validated the implementations on known examples and
performed several sanity checks. One sanity check that we
performed involved checking that all the test cases that pro-
duce different outputs for the modified programs are actually
selected by our tool. Another sanity check involved making
sure that techniques EdgeLevel and TwoPhases selected ex-
actly the same test cases. We also spot checked, for many
of the changes considered, that the results produced by the
two phases of our approach were correct.

3.5 Results and Discussion
In this section, we present the results of the study and

discuss how they address the three research questions that
we are investigating.

Subject Total Chg. Types in EdgLv TwoPh
Types Classes Partition (sec) (sec)

Jaba v2 525 13 350 (66.7%) 63 69 (10)
Jaba v3 525 3 151 (28.8%) 63 48 (10)
Jaba v4 525 3 343 (65.3%) 62 70 (9)
Jaba v5 525 2 141 (26.9%) 62 46 (9)

Daikon v2 816 171 515 (63.1%) 540 185 (5)
Daikon v3 817 27 261 (32.0%) 420 63 (3)
Daikon v4 839 226 554 (66.0%) 420 246 (6)
Daikon v5 849 9 390 (45.9%) 420 186 (6)
JBoss v2 2,410 23 463 (19.2%) 420 70 (10)
JBoss v3 2,407 21 71 (3.0%) 480 18 (10)
JBoss v4 2,406 23 67 (2.8%) 480 17 (10)
JBoss v5 2,386 95 550 (23.1%) 660 133 (13)

Table 2: Savings in test selection time using TwoPhases.

RQ1. The first part of RQ1 concerns the effectiveness
of our partitioning technique in selecting only small frac-
tions of the program to be further analyzed. To address
this part of RQ1, we analyzed the size of the partitions
computed by TwoPhases for each version of each subject.
The second part of RQ1 aims to investigate whether the
identification of small partitions actually results in savings
for the overall test-selection process. To address this sec-
ond part of the question, we compared the analysis time for
technique TwoPhases with the analysis time for technique
EdgeLevel (which performs the same kind of edge-level anal-
ysis as TwoPhases, but on the whole program).

Table 2 shows the data that we analyzed. The table con-
tains one row for each subject and version. Version num-
ber vi for program P indicates data for (program, modified-
version) pair (Pi−1, Pi). For each subject and version Pi,
we report: the number of types in Pi (Total Types); the
number of classes that syntactically changed between Pi−1

and Pi (Chg Classes);7 the number of types in the partition
selected by Phase 1 of our technique (Types in Partition),
both as an absolute number and as a percentage over the
total number of types (in parentheses); the time required to
perform edge-level RTS on the whole system (EdgLv); and
the time required to perform our two-phase RTS (TwoPh),
in the format 〈totaltime〉 (〈partitioning time〉).

Table 2 shows that the percentage of types selected ranges
from 2.8%, for JBoss v4, to 66.7%, for Jaba v2, with an
average of 36.9%. The table also shows that the partition-
ing performed efficiently: for the largest subject, JBoss, it
computed the partition in 13 seconds, in the worst case.
This result is encouraging because it shows that, at least for
the cases considered, we can safely and efficiently avoid the
analysis of a considerable part of the system. Note that the
results show no direct correlation between the number of
changes in the program and the size of the partition identi-
fied. Although more studies are required to confirm this ob-
servation, based on previous experience, we conjecture that
the size of the partition is related more to the location of
the changes than to the number of changes.

For the second part of RQ1, the results in Table 2 show
that the two-phase analysis achieves overall savings in anal-
ysis time in most, but not all cases. For two versions of
Jaba, v2 and v4, the time to perform the two-phase selec-
tion is higher than the time to perform selection on the whole
system. However, we note that: (1) the additional cost is on
the order of a few seconds and is thus compensated by the
savings obtained for the other two versions of Jaba; and (2)

7For the subjects and versions considered, there were no
changed interfaces.

Subject Testsuite HighLevel TwoPhases
Size Selection Selection

Jaba v2 707 606 (85.7%) 502 (71.0%)
Jaba v3 707 606 (85.7%) 202 (28.6%)
Jaba v4 707 606 (85.7%) 432 (61.1%)
Jaba v5 707 707 (100.0%) 707 (100.0%)

Daikon v2 200 183 (91.5%) 168 (84.0%)
Daikon v3 200 168 (84.0%) 168 (84.0%)
Daikon v4 200 183 (91.5%) 168 (84.0%)
Daikon v5 200 168 (84.0%) 40 (20.0%)
JBoss v2 639 432 (67.6%) 282 (44.1%)
JBoss v3 639 284 (44.4%) 11 (1.7%)
JBoss v4 639 242 (37.9%) 238 (37.3%)
JBoss v5 639 501 (78.4%) 452 (70.7%)

Table 3: Results of selection for HighLevel and TwoPhases.

the time for the analysis of the whole Jaba program is low,
which penalizes the almost fixed overhead imposed by the
partitioning. We observe that the larger the system, and
the longer the analysis time, the more negligible is the par-
titioning time. In fact, our data show a clear trend in this
direction, with average savings in test selection time that
grow with the size of the subject: 6.8% for Jaba, 62% for
Daikon, and 89% for JBoss. (These percentages are com-
puted by averaging the ratio of the test-selection time for
TwoPhases to the test-selection time for EdgeLevel over the
five versions of each subject.) This trend is promising and
shows that our technique may scale to even larger systems.

RQ2. The results in Table 2 show that the use of our
two-phase technique can result in savings in test selection
time. However, performing the second phase of the tech-
nique at the edge-level is not necessarily cost-effective. A
technique that operates at a high-level of abstraction and
performs test-case selection at the class/interface level is
more efficient and may provide similar results in terms of
selection. This is the question addressed by RQ2. To an-
swer this question, we compared techniques HighLevel and
TwoPhases in terms of the number of test cases selected.
The results of the comparison are presented in Table 3. The
table reports, for each subject and version Pi, the size of Pi’s
test suite (Testsuite Size), constant across a subject’s ver-
sions, the number of test cases selected by technique High-
Level (HighLevel Selection), and the number of test cases
selected by technique TwoPhases (TwoPhases Selection).
The number of test cases is reported both as an absolute
number and as a percentage over the total number of test
cases (in parentheses).

The results in the table show that, in most cases, tech-
nique TwoPhases selects considerably fewer test cases than
HighLevel. There are only two cases in which the two tech-
niques select the same number of test cases, for Jaba v5 and
Daikon v3. In all other cases, TwoPhases is more effective
in reducing the number of test cases to be rerun: TwoPhases
selects 21% fewer test cases than HighLevel on average, and
64% fewer in the best case, for Daikon v5. In the next sec-
tion, we evaluate how this reduction affects the cost of the
overall regression-testing process.

RQ3. With RQ3, we want to investigate what overall sav-
ings can be achieved in the regression-testing process by us-
ing technique TwoPhases. To this end, we compare the over-
all time to perform regression testing using TwoPhases and
using RetestAll, our control technique. The overall time for
a technique includes the analysis time to perform the test se-
lection (this time is zero for RetestAll) and the time to rerun
the selected test cases. Although not explicitly addressed by
RQ3, we also add to the comparison technique HighLevel, to

LMLLN

OLMLLN

PLMLLN

QLMLLN

RLMLLN

SLLMLLN

TOTUTPTVTOTUTPTVTOTUTPTV

WXYXZX[\]̂WY]__

àb
c

deff
gfh
g̀

ia
jka

lm
af

cnh
ao

pqrqsrtuuvwxyzq{qu|}~�y�sqs

Figure 10: Overall time for regression testing using techniques RetestAll, HighLevel, and TwoPhases.

investigate whether there are cases in which the efficiency
of the analysis compensates for the higher number of test
cases to rerun (see Table 3).

Figure 10 shows a chart with the results of the comparison.
For each subject and version Pi, we show three bars. The
height of each bar indicates, from left to right, the time re-
quired to regression test Pi using technique RetestAll, High-
Level, and TwoPhases. The time is expressed as a percent-
age of the time required to rerun all the test cases

In all except one case, the use of both HighLevel and
TwoPhases results in savings in the overall regression-testing
time. The only exception is Jaba v5, for which all test cases
are selected (due to a change in the main path of the pro-
gram) and, thus, the overall time is increased by the over-
head of the test selection. However, the additional cost is
low: 0.3% for HighLevel and 1.7% for TwoPhases. In all
other cases, the savings in testing time range from 3.1%
to 58.9%, with an average of 18%, for HighLevel, and from
5.9% to 89.7%, with an average of 42.8%, for TwoPhases. As
for the comparison between HighLevel and TwoPhases, in 5
out of 15 cases, the techniques achieve almost the same sav-
ings. In some of these cases, HighLevel performs marginally
better than TwoPhases because it selects a similar number
of test cases, but it does it more efficiently. In the remaining
10 cases, and overall, TwoPhases outperforms HighLevel. If
we consider, for each subject, the average across versions
of the difference in savings, TwoPhases takes 14.3%, 16.2%,
and 32.5% less time than HighLevel to regression test Jaba,
Daikon, and JBoss, respectively. The savings achieved by
TwoPhases, with respect to RetestAll, for the three subject
are 18.9%, 35.7%, and 62.5%, respectively. These data show
that our technique can achieve considerable savings in terms
of regression-testing time.

4. RELATED WORK
To date, a number of techniques have been developed for

regression testing of procedural software (e.g., [2, 6, 7, 9,
10, 15, 17, 18, 20, 22, 23]). The technique from Ren and
colleagues [15] is an approach for identifying both which test

cases are affected by code changes and which changes affect
each test case. Unlike our approach, their technique mostly
focuses on unit test cases. Although it would be interesting
to compare the cost-effectiveness of their technique to our
two-phase approach, such a comparison is outside the scope
of this paper.

Most of the other approaches listed above are based on
identifying differences between the old and new versions of
the program and on performing selection by matching such
differences with coverage information for the test cases [2, 6,
17, 18, 20]. The second phase of our technique uses a similar
approach for selection. However, unlike these approaches,
our technique (1) handles object-oriented features, and (2)
does not have to analyze the whole system, but only the
partition identified in the first phase.

Rosenblum and Weyuker [16] and Harrold and colleagues [8]
studied how coverage data can be used to predict the cost-
effectiveness of regression-test-selection approaches. Ostrand
and Weyuker studied the distribution of faults in several ver-
sions of a large industrial software system [14]. This line of
work is complementary to our approach, in that their pre-
dictors could be used to inform regression testing (e.g., to
avoid performing selection when it is highly unlikely to pro-
duce any savings).

Other techniques are defined for object-oriented software
and are more directly related to the technique presented
in this paper [7, 9, 18, 22]. White and Abdullah’s tech-
nique [22] constructs a firewall to enclose the set of classes
affected by the changes; such classes are the only ones that
need to be retested. Hsia and colleagues’ technique [9] is
also based on the concept of class firewall defined originally
by White and Leung [23], but leverages a different represen-
tation of the program. Both techniques are limited in that
they do not handle certain object-oriented features (e.g.,
exception handling) and perform analysis only at the class
level, which can be imprecise (see Table 3). Moreover, the
techniques are not implemented and, thus, there is no em-
pirical evidence of their effectiveness or efficiency.

Rothermel and colleagues extend Rothermel and Harrold’s
technique for RTS of C programs to C++ [18]. This tech-
nique handles only a subset of object-oriented features and
requires the analysis of the whole system, which may be
inefficient for large systems.

Harrold and colleagues [7] propose an RTS technique for
Java. This technique handles all language features, but re-
quires low-level analysis of the entire program under test.

Although not defined for object-oriented programs, the
hybrid technique discussed by Bible and colleagues [3] is re-
lated to our two-phase technique. Similar to our approach,
their technique combines a coarser-grained analysis with a
finer-grained analysis, so as to apply the latter only where
needed. However, their coarse-grained analysis is more ex-
pensive than our first phase because it still computes dif-
ferences between the old and new programs at the method
level for the whole program. Conversely, our partitioning
computes simple dependences and postpones the expensive
analysis to the second phase, which is performed only on a
small part of the program.

5. CONCLUSIONS
In this paper, we have presented a new technique for re-

gression test selection of Java software that is designed to
scale to large systems. The technique is based on a two-
phase approach. The first phase performs a fast, high-level
analysis to identify the parts of the system that may be
affected by the changes. The second phase performs a low-
level analysis of these parts to perform precise test selection.

The paper also presents an empirical study performed on
three medium-to large-sized subjects to investigate the ef-
ficiency and the effectiveness of the technique. The results
of the study are encouraging: For the subjects considered,
the technique (1) produces considerable savings in regres-
sion testing time (62.5% on average for the largest subject
considered), and (2) scales well (in fact, its cost-effectiveness
improves with the size of the program under test).

The empirical results also led us to an interesting research
direction to further improve our RTS technique. The studies
show that there are cases in which the second phase of the
technique could be skipped in favor of a selection at the
partition level (technique HighLevel). Future research could
investigate heuristics (e.g., based on the size of the partition
or in the location of the changes) for identifying those cases.

We are currently working on improving the efficiency of
the tool and performing a controlled experiment with a larger
set of versions. We are also investigating various ways to fur-
ther improve the efficiency of the technique. Finally, we are
investigating ways to leverage knowledge about the changes
in the program to assess the adequacy of existing test cases
in covering the changed parts of the code.

Acknowledgments
This work was supported in part by NSF awards CCR-
0205422, CCR-0306372, and SBE-0123532. Michael Ernst
provided access to Daikon’s CVS. Sebastian Elbaum and
the anonymous ISSTA reviewers provided insightful com-
ments on a previous version of this paper.

6. REFERENCES
[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. A differencing

algorithm for object-oriented programs. In Proceedings of the

19th IEEE International Conference on Automated Software
Engineering (ASE 2004), Linz, Austria, Sep. 2004.

[2] T. Ball. On the limit of control flow analysis for regression test
selection. Proceedings of the ACM-SIGSOFT International
Symposium on Software Testing and Analysis, pages 134–142,
Mar. 1998.

[3] J. Bible, G. Rothermel, and D. S. Rosenblum. A comparative
study of coarse- and fine-grained safe regression test selection
techniques. ACM TOSEM, 10(2):149–183, Apr. 2001.

[4] D. Binkley. Semantics guided regression test cost reduction.
IEEE Transactions on Software Engineering, 23(8), Aug.
1997.

[5] A. Chawla and A. Orso. A generic instrumentation framework
for collecting dynamic information. In Online Proceeding of
the ISSTA Workshop on Empirical Research in Software
Testing (WERST 2004), Boston, MA, USA, Jul. 2004.

[6] Y. Chen, D. Rosenblum, and K. Vo. Testtube: A system for
selective regression testing. Proceedings of the 16th
International Conference on Software Engineering, pages
211–222, May 1994.

[7] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. Spoon, and A. Gujarathi. Regression Test
Selection for Java Software. Proceedings of OOPSLA, pages
312–326, Oct. 2001.

[8] M. J. Harrold, G. Rothermel, D. S. Rosenblum, and E. J.
Weyuker. Empirical studies of a prediction model for
regression test selection. IEEE Transactions on Software
Engineering, 27(3):248–263, Mar. 2001.

[9] P. Hsia, X. Li, D. Kung, C.-T. Hsu, L. Li, Y. Toyoshima, and
C. Chen. A technique for the selective revalidation of OO
software. Software Maintenance: Research and Practice,
9:217–233, 1997.

[10] H. K. N. Leung and L. J. White. A cost model to compare
regression test strategies. In Proceedings of the Conference on
Software Maintenance ’91, pages 201–208, Oct. 1991.

[11] A. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the
cost-benefits tradeoffs for regression testing techniques. In
Proceedings of the International Conference on Software
Maintenance (ICSM 02), pages 204–213, Oct. 2002.

[12] C. E. McDowell and D. P. Helmbold. Debugging concurrent
programs. ACM Computing Surveys, 21(4):593–622, Dec.
1989.

[13] B. Meyer. Object-oriented Software Construction. Prentice
Hall, New York, N.Y., second edition, 1997.

[14] T. J. Ostrand and E. J. Weyuker. The distribution of faults in
a large industrial software system. In Proceedings of the
International Symposium on Software Testing and Analysis,
pages 55–64, Jul. 2002.

[15] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: A tool for change impact analysis of java programs.
Technical Report DCS-TR-551, Department of Computer
Science, Rutgers University, Apr. 2004.

[16] D. S. Rosenblum and E. J. Weyuker. Using coverage
information to predict the cost-effectiveness of regression
testing strategies. IEEE Transactions on Software
Engineering, 23(3):146–156, Mar. 1997.

[17] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM TOSEM, 6(2):173–210, Apr.
1997.

[18] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test
selection for C++ software. Journal of Software Testing,
Verification, and Reliability, pages 77–109, Jun. 2000.

[19] G. Rothermel and M.J.Harrold. Empirical studies of a safe
regression test selection technique. IEEE TSE, pages 401–419,
Jun. 1998.

[20] F. Vokolos and P. Frankl. Pythia: A regression test selection
tool based on text differencing. International Conference on
Reliability, Quality, and Safety of Software Intensive System,
May 1997.

[21] Z. Wang, K. Pierce, and S. McFarling. BMAT – a binary
matching tool for stale profile propagation. The Journal of
Instruction-Level Parallelism, 2, May 2000.

[22] L. J. White and K. Abdullah. A firewall approach for
regression testing of object-oriented software. In Proceedings
of 10th Annual Software Quality Week, May 1997.

[23] L. J. White and H. N. K. Leung. A firewall concept for both
control-flow and data-flow in regression integration testing.
Proceedings of the Conference on Software Maintenance,
pages 262–270, Nov. 1992.

