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ABSTRACT
The use of web applications has become increasingly popular in
our routine activities, such as reading the news, paying bills, and
shopping on-line. As the availability of these services grows, we
are witnessing an increase in the number and sophistication of at-
tacks that target them. In particular, SQL injection, a class of code-
injection attacks in which specially crafted input strings result in
illegal queries to a database, has become one of the most serious
threats to web applications. In this paper we present and evalu-
ate a new technique for detecting and preventing SQL injection at-
tacks. Our technique uses a model-based approach to detect illegal
queries before they are executed on the database. In its static part,
the technique uses program analysis to automatically build a model
of the legitimate queries that could be generated by the applica-
tion. In its dynamic part, the technique uses runtime monitoring to
inspect the dynamically-generated queries and check them against
the statically-built model. We developed a tool, AMNESIA, that
implements our technique and used the tool to evaluate the tech-
nique on seven web applications. In the evaluation we targeted
the subject applications with a large number of both legitimate and
malicious inputs and measured how many attacks our technique de-
tected and prevented. The results of the study show that our tech-
nique was able to stop all of the attempted attacks without generat-
ing any false positives.

Categories and Subject Descriptors:D.2.5 [Software Engineer-
ing]: Testing and Debugging—Monitors;

General Terms: Security, Verification

Keywords: SQL injection, static analysis, runtime monitoring

1. INTRODUCTION
Many organizations have a need to store sensitive information,

such as customer records or private documents, and make this infor-
mation available over the network. For this reason, database-driven
web applications have become widely deployed in enterprise sys-
tems and on the Internet. Along with their growing deployment,
there has been a surge in attacks that target these applications. One
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type of attack in particular,SQL Injection Attacks (SQLIAs), is es-
pecially harmful. SQLIAs can give attackers direct access to the
database underlying an application and allow them to leak con-
fidential, or even sensitive, information. There are many exam-
ples of SQLIAs with serious consequences, and the list of victims
of such attacks includes high-profile companies and associations,
such as Travelocity, FTD.com, Creditcards.com, Tower Records,
and RIAA. Even more alarming is a study performed by the Gart-
ner Group on over 300 web sites, which found that 97% of the sites
audited were vulnerable to this kind of web attack. In fact, SQLIAs
have been described as one of the most serious security threats to
web applications [2, 21].

SQL injection refers to a class of code-injection attacks in which
data provided by the user is included in a SQL query in such a way
that part of the user’s input is treated as SQL code. SQLIAs are a
type of vulnerability that is ultimately caused by insufficient input
validation—they occur when data provided by the user is not prop-
erly validated and is included directly in a SQL query. By lever-
aging these vulnerabilities, an attacker can submit SQL commands
directly to the database. This kind of vulnerability represents a se-
rious threat to any web application that reads input from the users
(e.g., through web forms or web APIs) and uses it to make SQL
queries to an underlying database. Most web applications used on
the Internet or within enterprises work this way and could therefore
be vulnerable to SQL injection.

Although the vulnerabilities that lead to SQLIAs are well un-
derstood, they persist because of a lack of effective techniques for
detecting and preventing them. Programming practices such as de-
fensive programming and sophisticated input validation techniques
can prevent some vulnerabilities. However, attackers continue to
find new exploits that can avoid the checks programmers put in
place (e.g., [16, 19, 24]). Moreover, defensive programming is
labor-intensive, which makes it an impractical technique for pro-
tecting large legacy systems. General tools such as firewalls and
current Intrusion Detection Systems (IDSs) are also typically in-
effective against SQLIAs—SQLIAs are performed through ports
used for regular web traffic (usually open in firewalls) and work at
the application level (unlike most IDSs). Finally, most analysis-
based techniques for vulnerability detection do not address the spe-
cific characteristics of SQLIAs and are thus ineffective in this con-
text. The few analysis techniques specifically designed to target
SQLIAs provide only partial solutions to the problem. In particular,
dynamic techniques, such as penetration testing, introduce issues
of completeness and often result in false negatives being produced,
whereas techniques based on static analysis are either too imprecise
or only focus on a specific aspect of the problem.



In this paper, we propose a novel technique to counter SQLIAs.1

Our technique builds upon work done in model-based security and
in program analysis and uses a combination of static and dynamic
analysis techniques that is specifically designed to target SQLIAs.
The key insights behind the development of the technique are that
(1) the information needed to predict the possible structure of the
queries generated by a web application is contained within the ap-
plication’s code, and (2) an SQLIA, by injecting additional SQL
statements into a query, would violate that structure. Therefore, our
technique first uses static program analysis to analyze the applica-
tion code and automatically build a model of the legitimate queries
that could be generated by the application. Then, at runtime, the
technique monitors all dynamically-generated queries and checks
them for compliance with the statically-generated model. Queries
that violate the model are classified as illegal, prevented from exe-
cuting on the database, and reported to the application developers
and administrators.

In the paper, we also present an empirical evaluation of the tech-
nique. We implemented the technique in a prototype tool, AMNE-
SIA, and used the tool to evaluate the technique on a set of seven
subjects of various types and sizes. We targeted the subjects with a
large number of both legitimate accesses and SQL-injection attacks
and assessed the ability of our technique to detect and prevent the
attacks without stopping any legitimate access to the database. The
results of the evaluation are very promising. AMNESIA was able
to stop all of the 1,470 attacks without generating any false positive
for the 3,500 legitimate accesses. Moreover, our technique proved
to be very efficient, in that it imposed a negligible overhead on the
subject web applications.

The main contributions of this work are:

• The presentation of a new technique to counter SQL-injection
attacks that combines static analysis and runtime monitoring.

• A tool, AMNESIA, that implements the technique for Java-
based web applications.

• An empirical evaluation of the technique that shows the ef-
fectiveness and the efficiency of the technique.

• The development of a test bed for the evaluation of web-
application protection techniques that can be reused by other
researchers.

The rest of this paper is organized as follows. In Section 2 we
review and discuss related work. We provide an example of an
SQLIA in Section 3 and discuss our technique in Section 4. We
examine additional considerations in Section 5. Section 6 presents
our empirical evaluation and, finally, we conclude and outline fu-
ture work in Section 7.

2. RELATED WORK
Many existing techniques, such as filtering, information-flow anal-

ysis, penetration testing, and defensive coding, can detect and pre-
vent a subset of the vulnerabilities that lead to SQLIAs. In this
section, we list the most relevant techniques and discuss their limi-
tations with relation to SQLIAs.

Defensive Programming.Developers have employed a range
of code-based solutions to counter SQLIAs. Input validation based
techniques include checking user input for keywords, identifying
known malicious patterns, and escaping potentially troublesome
characters. While these techniques can stop straightforward and

1An early version of this work is described in a paper presented at
WODA 2005 [10].

unsophisticated attacks, attackers have learned to use alternate en-
coding schemes such as hexadecimal, ASCII and Unicode to ob-
fuscate their attacks. Furthermore, simply checking user input for
malicious keywords would clearly result in a high rate of false pos-
itives, since an input field could legally contain words that match
SQL keywords (i.e. “FROM”, “OR”, “AND”). Another widely pro-
posed coding solution is to use stored procedures for database ac-
cess. The ability of stored procedures to prevent SQLIAs is depen-
dent on its implementation. The mere fact of using stored proce-
dures does not protect against SQLIA. Interested readers may refer
to [1, 11] for examples of how applications that use stored proce-
dures, escaping of characters, and different forms of input valida-
tion can be vulnerable to SQLIAs.

Two recent approaches, SQL DOM [18] and Safe Query Ob-
jects [6], use encapsulation of database queries to provide a safe
and reliable way to access databases. These techniques offer an
effective way to avoid the SQLIA problem by changing the query-
building process from an unregulated one that uses string concate-
nation to a systematic one that uses a type-checked API. (In this
sense, SQL DOM and Safe Query Objects can be considered in-
stances of defensive coding.) Although effective, these techniques
have the drawback that they require developers to learn and use a
new programming paradigm or query-development process, unlike
our technique.

In general, defensive coding has not been successful in com-
pletely preventing SQLIA (e.g., [16, 19, 24]). Attackers keep find-
ing new attack strings or subtle variations on old attacks that can
avoid the checks programmers put in place. While improved cod-
ing practices (e.g., [11]) can help mitigate the problem, they are
limited by the developer’s ability to generate appropriate input val-
idation code and recognize all situations in which it is needed. Our
approach, being fully automated, can provide stronger guarantees
about the completeness and accuracy of the protections put in place.

General Techniques Against SQLIAs.Other researchers
have developed techniques specifically targeted at SQLIAs. Scott
and Sharp [23] use a proxy to filter input and output data streams
for a web application based on policy rules defined at the enterprise
level. Although this technique can be effective against SQLIA, it
requires developers to correctly specify filtering rules for each ap-
plication input. This step of the process is prone to human-error
and leaves the application vulnerable if the developer has not ad-
equately identified all injection points and correctly expressed the
filtering rules. Like defensive coding practices, this technique can-
not provide guarantees of completeness and accuracy.

Huang and colleagues [12] propose WAVES, a black-box tech-
nique for testing web applications for SQL-injection vulnerabili-
ties. This technique improves over general penetration-testing tech-
niques by using machine learning to guide its testing, but like all
black-box testing techniques, it cannot provide guarantees of com-
pleteness that static analysis based techniques are able to provide.

Boyd and colleagues propose SQLrand, an approach based on
randomization of SQL instructions using a key [3], which extends
a previous approach to counter general code-injections attacks [14].
In this approach, SQL code injected by an attacker would result in
a syntactically incorrect query. Although effective, this technique
could be circumvented if the key used for the randomization were
exposed. Moreover, the approach imposes a significant overhead
in terms of infrastructure because it requires the integration of a
special proxy in the web-application infrastructure.

Two related approaches by Nguyen-Tuong and colleagues [20]
and Pietraszek and Berghe [22] modify the PHP interpreter to track
precise taint information about user input. The techniques use a



context sensitive analysis to detect and reject queries if untrusted
input has been used to create certain types of SQL tokens.

Valeur and colleagues [25] propose the use of an Intrusion De-
tection System (IDS) to detect SQLIA. Their IDS system is based
on a machine learning technique that is trained using a set of typ-
ical application queries. The technique builds models of the typi-
cal queries and then monitors the application at runtime to identify
queries that do not match the model. Overall, this technique uses
an approach similar to ours, in that it builds expected query mod-
els and then checks dynamically-generated queries for compliance
with the model. Their technique, however, like most techniques
based on learning, can generate large number of false positive in
the absence of an optimal training set.

Static Analysis Techniques.The Java String Analysis (JSA)
library, developed by Christensen, Møller, and Schwartzbach [5]
provides us with a mechanism for generating models of Java strings.
JSA performs a conservative string analysis of an application and
creates automata that express all the possible values a specific string
can have at a given point in the application. Although this tech-
nique is not directly related to SQLIA, it is important to our work
because we use the library to generate intermediate forms of of our
SQL-query models. Other works such as JDBC-Checker [7, 8],
also make use of this library in their analysis.

JDBC-Checker is a technique for statically checking the type
correctness of dynamically-generated SQL queries by Gould, Su,
and Devanbu [7, 8]. This technique was not intended to detect and
prevent general SQLIAs, but can nevertheless be used to prevent
attacks that take advantage of type mismatches in a dynamically
generated query string to crash the underlying database. JDBC-
Checker is able to detect one of the root causes of SQLIA vulner-
abilities in code, which is improper type checking of input. How-
ever, this technique would not catch more general forms of SQLIAs
because these attacks must generate syntactically and type correct
queries in order to be successful. This technique also relies on the
JSA [5] library, and we use a similar approach to build an interme-
diate form of our SQL-query models (see Section 4.2).

Wassermann and Su propose an approach that uses static analysis
combined with automated reasoning to verify that the SQL queries
generated in the application layer cannot contain a tautology [26].
The primary drawback of this technique is that it is limited to only
detecting and preventing tautologies, which is only one of the many
kinds of SQLIAs that our technique addresses.

Huang and colleagues also define a white-box approach for de-
tecting input validation related errors that uses developer-provided
annotations [13]. Relying on developer-provided annotations lim-
its the practical applicability of the approach and the technique as-
sumes that preconditions for all sensitive functions can be accu-
rately expressed ahead of time, which is not always the case. Our
technique is fully automated and does not require any developer in-
tervention, such as annotations, in order to protect the application.

Recent work by Livshits and Lam [15] uses static analysis tech-
niques to detect vulnerabilities that have been described using the
PQL language [17]. In this approach, vulnerability signatures are
described using PQL, and a static analyzer is generated from the
vulnerability description. The analyzer detects instances of the vul-
nerability in the code. As opposed to our technique, this approach
attempts to find known SQLIAs vulnerabilities in code as opposed
to preventing them dynamically. Therefore, the approach can be ef-
fective in improving the code base of an application by identifying
vulnerabilities in the program that can then be eliminated. How-
ever, the approach is limited, in that it can only detect known and
specified vulnerabilities.

3. SQL INJECTION ATTACKS
Before describing our approach, we introduce a simple example

of an SQL Injection Attack (SQLIA). This will be used as a running
example throughout the paper as we describe our technique. We
provide a more rigorous definition of SQLIAs in Section 3.2.

3.1 Example of SQL-Injection Attack
In this section we introduce an example of a web application that

is vulnerable to an SQLIA and explain how an attacker could ex-
ploit this vulnerability. This particular example illustrates an attack
based on injecting a tautology into the query string. Although tau-
tologies represent only a subset of the SQLIAs that our technique
can address, we use this type of attack for illustration because it is
straightforward to understand and does not require deep knowledge
of SQL syntax and semantics.

Figure 1 shows a typical web application in which a user on
a client machine can access services provided by an application
server and an underlying database. When the user enters a login
and a password in the web form and presses thesubmit but-
ton, a URL is generated (http://foo.com/show.jsp?login=
doe&pass=xyz) and sent to the web server. The figure illustrates
which components of the web application handle the different parts
of the URL.

In the example, the user input is interpreted by servletshow.jsp.
(Servlets are Java applications that operate in conjunction with a
Web server.) In this scenario the servlet would (1) use the user
input to build a dynamic SQL query, (2) submit the query to the
database, and (3) use the response from the database to generate
HTML-pages that are then sent back to the user. Figure 2 shows
an excerpt of a possible implementation of servletshow.jsp.
MethodgetUserInfo is called with the login and the password
provided by the user. If bothlogin andpassword are empty,
the method submits the following query to the database:

SELECT info FROM users WHERE login=’guest’

If login andpassword are defined by the user, the method em-
beds the submitted credentials in the query. Therefore, if a user
submitslogin andpassword as “doe” and “xyz,” the servlet
dynamically builds the query:

SELECT info FROM users WHERE login=’doe’ AND pass=’xyz’

A web site that uses this servlet would be vulnerable to SQLIAs.
For example, if a user enters “’ OR 1=1 --” and “”, instead of
“doe” and “xyz”, the resulting query is:

SELECT info FROM users WHERE login=’’ OR 1=1 --’ AND pass=’’

The database interprets everything after the WHERE token as a
conditional statement, and the inclusion of the “OR 1=1” clause
turns this conditional into a tautology. (The characters “--” mark
the beginning of a comment, so everything after them is ignored.)
As a result, the database would return information about all users.
An attacker could insert a wide range of SQL commands via this
exploit.

3.2 Definition of SQL-Injection Attack
An SQL Injection Attack (SQLIA)occurs when an attacker at-

tempts to change the logic, semantics or syntax of a legitimate
SQL statement by inserting new SQL keywords or operators into
the statement.

This broad definition includes all of the variants of SQLIA re-
ported in Anley’s extensive documentation [1]. In particular, the
definition includes, but is not limited to, attacks based on tautolo-
gies, injected additional statements, exploiting untyped parame-



Figure 1: Example of interaction between a user and a typical web application.

ters, stored procedures, overly descriptive error messages, alter-
nate encodings, length limits, second-order injections and injection
of ”UNION SELECT”, ”ORDER BY”, and ”HAVING” clauses.
(See [1] for a detailed explanations of the different types and forms
of SQLIA.)

4. PROPOSED SOLUTION
Our proposed solution is a general technique that addresses all

types of SQLIAs as defined in Section 3.2. The approach works
by combining static analysis and runtime monitoring. The key in-
tuition behind the approach is that (1) the source code contains
enough information to infer models of the expected, legitimate SQL
queries generated by the application, and (2) an SQLIA, by inject-
ing additional SQL statements into a query, would violate such a
model. In its static part, our technique uses program analysis to
automatically build a model of the legitimate queries that could be
generated by the application. In its dynamic part, our technique
monitors the dynamically generated queries at runtime and checks
them for compliance with the statically-generated model. Queries
that violate the model represent potential SQLIAs and are thus pre-
vented from executing on the database and reported.

The technique consists of four main steps. We summarize the
steps and then describe them in more detail in subsequent sections.

Identify hotspots: Scan the application code to identifyhotspots—
points in the application code that issue SQL queries to the
underlying database.

Build SQL-query models: For each hotspot, build a model that
represents all the possible SQL queries that may be generated
at that hotspot. ASQL-query modelis a non-deterministic
finite-state automaton in which the transition labels consist
of SQL tokens (SQL keywords and operators), delimiters,
and place holders for string values.

Instrument Application: At each hotspot in the application, add
calls to the runtime monitor.

Runtime monitoring: At runtime, check the dynamically-generated
queries against the SQL-query model and reject and report
queries that violate the model.

4.1 Identify Hotspots
This step performs a simple scanning of the application code

to identify hotspots. For the example servlet in Figure 2, the set
of hotspots would contain a single element: the statement at line
10. (In Java-based applications, interactions with the database oc-
cur through calls to specific methods in the JDBC library,2 such as
java.sql.Statement.execute(String).)
2http://java.sun.com/products/jdbc/

public class Show extends HttpServlet {
...

1. public ResultSet getUserInfo(String login,
String password) {

2. Connection conn = DriverManager.getConnection("MyDB");
3. Statement stmt = conn.createStatement();
4. String queryString = "";

5. queryString = "SELECT info FROM userTable WHERE ";
6. if ((! login.equals("")) && (! password.equals(""))) {
7. queryString += "login=’" + login +

"’ AND pass=’" + password + "’";
}

8. else {
9. queryString+="login=’guest’";

}
10. ResultSet tempSet = stmt.execute(queryString);
11. return tempSet;

}
...

}

Figure 2: Example servlet.

4.2 Build SQL-Query Models
In this step we build the SQL-query model for each hotspot iden-

tified in the previous step. Within each hotspot, we are interested
in computing the possible values of the query string passed to the
database. To do this, we use the Java String Analysis (JSA) [5] li-
brary. This technique constructs a flow graph that abstracts away
the control flow of the program and represents string-manipulation
operations performed on string variables. For each string of inter-
est the technique analyzes the flow graph and simulates the string-
manipulation operations that are performed on the string. The re-
sult of the analysis is a Non-Deterministic Finite Automaton (NDFA)
that expresses, at the character level, all the possible values the con-
sidered string can assume. The string analysis is conservative, so
the NDFA for a string is an overestimate of all the possible values
of the string.

It is worth noting that the JSA [5] technique generates Deter-
ministic Finite Automata (DFAs), obtained by transforming each
NDFA into a corresponding DFA. However, the transformation to
DFAs increases the number of states and transitions in the graph
and introduces cycles that complicate the construction of our SQL-
query model. Therefore, we use their technique but skip its last
step.

To build our SQL-query model for a given hotspot, we use the
following process. We perform a depth first traversal of the NDFA
for the hotspot and group characters as either SQL keywords, op-
erators, or literal values and create a transition in the SQL-query



model that is annotated with their literal value. For example, a se-
quence of transitions labeled ’S’, ’E’, ’L’, ’E’, ’C’, and ’T’ would
be recognized as the SQLSELECT keyword and suitably grouped
into a single transition labeled “SELECT”. Because there are sev-
eral SQL dialects each with their own set of keywords and oper-
ators, this part of the technique can be customized to recognize
different dialects. We representvariable strings(i.e., strings that
correspond to a variable related to some user input) using the sym-
bol β (e.g., in our example the value of the variablepassword is
represented asβ.). This process is analogous to the one used by
Gould, Su, and Devanbu [8], except that we perform it on NDFAs
instead of DFAs.

Figure 3 shows the SQL-query model for the single hotspot in
our example. The model reflects the two different query strings
that can be generated by the code depending on the branch followed
after theif statement at line 6 (Figure 2).

4.3 Instrument Application
In this step, we instrument the application by adding calls to

the monitor that check the queries at runtime. For each hotspot,
the technique inserts a call to the monitor before the call to the
database. The monitor is invoked with two parameters: the string
that contains the actual query about to be submitted and a unique
identifier for the hotspot. Using the unique identifier, the runtime
monitor is able to correlate the hotspot with the specific SQL-query
model that was statically generated for that point and check the
query against the correct model.

Figure 4 shows how the example application would be instru-
mented by our technique. The hotspot, originally at line 10 in Fig-
ure 2, is now guarded by a call to the monitor at line 10a.

...
10a. if (monitor.accepts (<hotspot ID>,

queryString))
{

10b. ResultSet tempSet =
stmt.execute(queryString);

11. return tempSet;
}

...

Figure 4: Example hotspot after instrumentation.

4.4 Runtime Monitoring
At runtime, the application executes normally until it reaches a

hotspot. At this point, the string that is about to be submitted as a
query is sent to the runtime monitor. The monitor parses the query
string into a sequence of tokens according to the specific SQL syn-
tax considered. Tokens in the query that represent string or numeric
constants can match any transition in the SQL-query model labeled
with β. Note that, in our parsing of the query string, the parser
identifies empty string constants by their syntactic position and we
denote these in the parsed query string usingε, the common sym-
bol for the empty string. Figure 5 shows how the last two queries
discussed in Section 3.1 would be parsed during runtime monitor-
ing.

It is important to point out that our technique parses the query
string the same way that the database would, according to the spe-
cific SQL grammar considered. In other words, it does not do a
simple keyword matching over the query string, which would cause
false positives and problems with user input that happened to match
SQL keywords. For example, a user-submitted string that contains
SQL keywords but is syntactically a text field, would be correctly

recognized as a text field. However, if the user were to inject special
characters, as in our example, to force part of the text to be eval-
uated as a keyword, the parser would correctly interpret this input
as a keyword. Using the same parser as the database is important
because it guarantees that we are interpreting the query the same
way that the database will.

After the query has been parsed, the runtime monitor checks it
by assessing whether the query violates the SQL-query model as-
sociated with the hotspot from which the monitor has been called.
An SQL-query model is an NDFA whose alphabet consists of SQL
keywords, operators, literal values, and delimiters, plus the spe-
cial symbolβ. Therefore, to check whether a query is compliant
with the model, the runtime monitor can simply check whether the
model (i.e., the automaton) accepts the query (i.e., whether a se-
ries of valid transitions reaches an accepting state). Recall that
a string constant (includingε) or numeric constant in the parsed
query string can match eitherβ or an identical literal value in the
SQL-query model.

If the model accepts the query, then the monitor lets the execu-
tion of the query continue. Otherwise, the monitor identifies the
query as an SQLIA. In this case, the monitor prevents the query
from executing on the database and reports the attack.

To illustrate, consider again the queries from Section 3.1 shown
in Figure 5 and recall that the first query is legitimate, whereas the
second one corresponds to an SQLIA. When checking query(a),
the analysis would start matching from tokenSELECT and from
the initial state of the SQL-query model in Figure 3. Because the to-
ken matches the label of the only transition from the initial state, the
automaton reaches the second state. Again, tokeninfo matches
the only transition from the current state, so the automaton reaches
the third state. The automaton continues to reach new states until
it reaches the state whose two outgoing transitions are labeled “=”.
At this point, the automaton would proceed along both transitions.
On the upper branch, the query is not accepted because the automa-
ton does not reach an accept state. Conversely, on the lower branch,
all the tokens in the query are matched with labels on transitions,
and the automaton reaches the accept state after consuming the last
token in the query (“’”). The monitor can therefore conclude that
this query is legitimate.

The checking of query(b) proceeds in an analogous way until
token OR in the query is reached. Because the token does not
match the label of the only outgoing transition from the current
state (AND), the query is not accepted by the automaton, and the
monitor identifies the query as an SQLIA.

Once an SQLIA has been detected, our technique stops the query
before it is executed on the database and reports relevant informa-
tion about the attack in a way that can be leveraged by developers.
In our implementation of the technique for Java, we throw an ex-
ception when the attack is detected and encode information about
the attack in the exception. If developers want to access the infor-
mation at runtime, they can simply leverage the exception-handling
mechanism of the language and integrate their handling code into
the application.

Having this attack information available at runtime is useful be-
cause it allows developers to react to an attack right after it is de-
tected and develop an appropriate customized response. For exam-
ple, developers may decide to avoid any risk and shut-down the part
of the application involved in the attack. Alternatively, a developer
could handle the attack by converting the information into a for-
mat that is usable by another tool, such as an Intrusion Detection
System, and reporting it to that tool. Because this mechanism inte-
grates with the application’s language, it allows developers a good
deal of flexibility in choosing a response to SQLIAs.
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Figure 3: SQL-query model for the servlet in Figure 2.

(a) SELECT info FROM users WHERE login=’doe’ AND pass=’xyz’

SELECT info FROM users WHERE login = ’ doe ’ AND pass = ’ xyz ’

(b) SELECT info FROM users WHERE login=’’ OR 1=1 -- ’AND pass=’’

SELECT info FROM users WHERE login = ’ ε ’ OR 1 = 1 -- ’ AND pass = ’ ε ’

Figure 5: Example of parsed runtime queries.

Currently, the information reported by our technique includes the
time of the attack, the location of the hotspot that was exploited,
the attempted-attack query, and the part of the query that was not
matched against the model. We are currently considering additional
information that could be useful for the developer (e.g., information
correlating program execution paths with specific parts of the query
model) and investigating ways in which we can modify the static
analysis to collect this information.

5. ADDITIONAL CONSIDERATIONS

5.1 Efficiency
In terms of efficiency, our approach requires the execution of the

monitor for each database query. Since we check the query against
the SQL-query model, which is an NDFA, the worst case complex-
ity is exponential in the size of the automaton, which in the worst
case is quadratic in the size of the program [5]. However, the visit
of the NDFA is typically linear because the automata generated by
the analysis are usually trees. Also, the automata are linear for
typical programs—the case of a quadratic size corresponds to an
application that modifies the query string and branches in each line
of the program. In fact, our experience is that most automata are
actually quite small with respect to the size of the corresponding
application. In practice, considered that the monitor just checks a
typically short set of tokens against an NDFA, whereas database
queries normally involve interactions over a network, we expect
the overhead for the monitoring to be negligible. This intuition is
confirmed by our empirical evaluation (see Section 6).

5.2 Effectiveness and Precision
Our technique can produce false negatives in two situations: (1)

when the string analysis results in a SQL query model that is overly
conservative and includes spurious queries (i.e. queries that could
not be generated by the application) that happen to match an at-
tack; and (2) when a legitimate query happens to have the same
“SQL structure” of an attack. For example, if a developer adds
conditions to a query from within a loop, an attacker who inserts an
additional condition of the same type would generate a query that
does not violate the SQL-query model. We expect both of these
cases to be rare in practice because of the typically peculiar struc-
ture of SQLIAs. The attacker would have to produce an attack that
directly matches either an imprecision of the analysis or a specific
pattern. Moreover, in both cases, the type of attacks that could be

exploited would be limited by the constraints imposed by the rest
of the model that was used to match the query.

Although the string analysis that we use is conservative, there are
situations in which our technique can produce false positives. False
positives can occur when the string analysis is unable to generate
a string model that is precise enough. In particular, if the string
analysis over-approximates a hard-coded string and this hard-coded
string is used in the application to construct a SQL token, our tech-
nique will generate an incomplete SQL-query model. The prob-
lem is that, in these cases, our analysis cannot determine whether
the over-approximation represents a variable or a hard-coded SQL
token. Our analysis could either allow queries to partially match
keywords and variables (possibly causing false negatives) or reject
queries that traverse those particular transitions (possibly causing
false positives). We chose a conservative approach and decided to
reject the queries in these cases. It is worth noting that this situation
did not occur in any of the 271 automata that we generated for our
evaluation.

Lastly, it is important to note the scope of our technique. Our
technique targets SQLIAs, which are exploits where an attacker
is attempting to inject SQL statements into a query sent to the
database. SQLIAsdo not include other types of web-application-
related attacks. For example, a common attack on web applications
is to steal authentication tokens that are passed between a browser
and the database application to hijack the session and issue queries
to the database. This is not an injection attack because the attacker
is simply using the rights and privileges assigned to the victim to
access the database through legitimate (i.e., non injected) queries.

5.3 Assumptions
Our technique requires two assumptions to be satisfied by the

targeted web application. The first assumption is that user input
consists only of values, such as numbers and strings, that are not
meant to be interpreted as SQL tokens. In other words, our tech-
nique cannot handle cases in which the user input is legitimately
supposed to add SQL tokens to the query. Applications that allow
the user to do so would cause our technique to generate false posi-
tives because we would recognize the user-introduced SQL tokens
and operators as an injection. (While this is technically correct ac-
cording to our definition of SQLIA, because the user input is an
actual injection of SQL tokens, blocking these queries would result
in incorrect behavior for this type of application.) In general, this
is a reasonable assumption. Users can still enter SQL statements
in a field (e.g., a text area of a discussion board on SQL), as long



as the application treats such input as text. Applications that do
allow users to directly enter SQL queries are typically database-
administration tools whose usage is restricted to a trusted set of
users connecting from specific machines.

Second, we assume that application developers build database
queries by combining substrings and that they do not obfuscate the
logic of the query construction. This assumption is important be-
cause our technique’s safety and precision depends on the accuracy
of the underlying string analysis, which in turn depends on the com-
plexity of the query-generation code. Because of this assumption,
our technique cannot handle applications that use different query-
development paradigms, such as SQL DOM [18], and applications
that store query strings in a way that prevents the string analysis
from detecting them (e.g., in a file). We believe that this assump-
tion is not too restrictive. In fact, it is satisfied by all of the web
applications that we have analyzed so far. Also, the same assump-
tion has been widely adopted by other researchers [1, 3, 5, 7, 8, 11,
12, 13, 16, 19, 20, 21, 22, 24, 26].

6. EVALUATION
The goal of our empirical evaluation is to assess the effectiveness

and efficiency of the technique presented in this paper when applied
to various web applications. We developed a prototype tool, called
AMNESIA, that implements the technique, and used it to perform
an empirical study on a set of subjects. The study investigates three
research questions:

RQ1: What percentage of attacks can our technique detect and
prevent that would otherwise go undetected and reach the database?

RQ2: How much overhead does our technique impose on web
applications at runtime?

RQ3: What percentage of legitimate accesses does our tech-
nique identify as false positives?

The following sections present the tool, illustrate the setup for
our evaluation, and discuss the two studies that we performed to
address our research questions.

6.1 The Tool: AMNESIA

AMNESIA (Analysis and Monitoring for NEutralizing SQL In-
jection Attacks) is the prototype tool that implements our technique
to counter SQLIAs for Java-based web applications. AMNESIA is
developed in Java and its implementation consists of three modules
that leverage various existing technologies and libraries:

Analysis module. This module implements Steps 1 and 2 of our
technique. Its input is a Java web application and it out-
puts a list of hotspots and a SQL-query models for each
hotspot. For the implementation of this module, we lever-
aged JSA [5]. The analysis module is able to analyze Java
Servlets as well as JSP pages.

Instrumentation module. This module implements Step 3 of our
technique. It inputs a Java web application and a list of
hotspots and instruments each hotspot with a call to the run-
time monitor. We implemented this module using INSECT,
a generic instrumentation and monitoring framework for Java
developed at Georgia Tech [4].

Runtime-monitoring module. This module implements Step 4 of
our technique. It takes as input a query string and the ID
of the hotspot that generated the query, retrieves the SQL-
query model for that hotspot, and checks the query against
the model. For this module, we also leveraged INSECT.

Figure 6 shows a high-level overview of AMNESIA. In the
static phase, the Instrumentation Module and the Analysis Module
take as input a web application and produce (1) an instrumented
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Figure 6: High-level overview of AMNESIA.

version of the application, and (2) an SQL-query model for each
hotspot in the application. In the dynamic phase, the Runtime-
Monitoring Module checks the dynamic queries while users inter-
act with the web application. If a query is identified as an attack, it
is blocked and reported.

6.2 Experiment Setup
To be able to investigate our research questions, we needed a test

bed for our technique and tool. In particular, we needed a set of web
applications and a set of inputs for those applications that included
both legitimate inputs and SQLIAs. In the next two sections, we
present the subjects that we collected for our studies and describe
how we generated a large, meaningful set of inputs for the subjects.
In our experimental setup, we were careful to develop the test bed
in a way that allows us (and other researchers) to easily rerun our
experiments.

6.2.1 Subjects
For the evaluation we used seven experimental subjects. The

subjects are all typical web applications that accept input from the
user through a web form and use the input to build queries to an un-
derlying database. Five of the subjects, Employee Directory, Book-
store, Events, Classifieds, and Portal, arecommercialapplications
that we obtained from GotoCode (http://www.gotocode.
com). The two remaining applications, Checkers and Office Talk,
were developed by different teams of students as part of a class
project. Although these last two are not commercial applications,
we selected them because they have been used in previous, related
studies [8]. All subjects were deployed on our local test bed servers
as they would be in a commercial setting.

Table 1 provides information about the subjects. For each sub-
ject, the table shows its name (Subject); a concise description (De-
scription); its size in terms of lines of code (LOC); the number
of accessible servlets (Servlets) with the total number of servlets
in the application in parenthesis; the number of injectable param-
eters (Injectable Params); the number of state parameters (State
Params); the number of hotspots (Hotspots); and the average size
of the SQL automata generated by AMNESIA (Automata Size),
with the minimum–maximum range in parentheses.

We define aninjectable parameteras an input parameter to a
web application whose value is used to build part of a query that is



Subject Description LOC Servlets Injectable State Hotspots Automata Size
Params Params Size (#nodes)

Checkers Online checkers game 5,421 18 (61) 44 0 5 289 (2–772)
Office Talk Purchase-order management system 4,543 7 (64) 13 1 40 40 (8–167)
Employee Directory Online employee directory 5,658 7 (10) 25 9 23 107 (2–952)
Bookstore Online bookstore 16,959 8 (28) 36 6 71 159 (2–5,269)
Events Event tracking system 7,242 7 (13) 36 10 31 77 (2–550)
Classifieds Online management system for classifieds10,949 6 (14) 18 8 34 91 (2–799)
Portal Portal for a club 16,453 3 (28) 39 7 67 117 (2–1,187)

Table 1: Subject programs for the empirical study.

then sent to the database. We define astate parameteras a param-
eter that may affect the flow of control within the web application
but never becomes part of a query. By definition, state parameters
cannot result in SQL injection, and therefore, we only focus on in-
jectable parameters for our attacks. For example, in URLhttp://
some.host/empldir/Login.jsp?Login=john&Password=
xyz&FormAction=login, for application Employee Directory,Lo-
gin andPasswordare injectable parameters, whereasFormAction
is a state parameter that the web application uses to decide how to
handle the user request.

We did not consider all servlets in our study because some servlets
can only be accessed if the web session is in a very specific state,
which is difficult to recreate automatically and would require cus-
tom handling of each web application. We callaccessible servlets
the servlets that, to be accessed, only required the user to be logged-
in or did not require sessions at all. Because we were able to gener-
ate enough attacks considering accessible servlets only, we did not
consider the remaining servlets.

6.2.2 Input Generation
For our evaluation we generated a large set of inputs that rep-

resented normal and malicious usage of the subject applications.
The attacks were developed by a Masters student at Georgia Tech
who worked for a local software-security company. The student
was an experienced programmer who had developed commercial-
level penetration tools for detecting SQL-injection vulnerabilities.
Moreover, the student was not familiar with our technique, which
reduced the risk of developing a set of attacks biased by the knowl-
edge of the approach and its capabilities. In the rest of this section,
we outline the specific steps that were taken in order to generate the
set of inputs and prepare them for usage in our evaluation.

First , we identified all the servlets in each subject. Each servlet
is a URL that accepts a set of parameters and that is typically ac-
cessed via the submission of a web form. For example, in the lo-
gin page of the example in Figure 1, the servlet ishttp://foo.
com/show.jsp, and a generic access to the entry point ishttp:
//foo.com/show.jsp?login=〈value1〉&pass=〈value2〉.
For the accessible servlets, we identified the corresponding injectable
and state parameters. This step was necessary because if state pa-
rameters are not assigned the correct value, the web application
simply returns an error, and no attack can be successful. Further,
we classified the type of each parameter as either string or numeric
and identified the specific values that could be used for the state
parameters. (This part of the evaluation was performed manually
and involved a considerable effort.) At the end of this first phase,
we had two lists of parameters, state and injectable, for each appli-
cation and servlet; each state parameter was associated with a set
of possible values and each injectable parameter was classified as
either string or numeric.

Second, the student generated a set ofattack strings, malicious
input strings that can be used to perform SQLIAs. To define the set
of attack strings, the student used exploits that were developed by
commercial penetration teams to take advantage of SQL-injection

vulnerabilities. The student also surveyed various sources that in-
cluded US-CERT (http://www.us-cert.gov/), CERT/CC
Advisories (http://www.cert.org/advisories/), and sev-
eral security-related mailing lists. The student used the examples
of attacks discussed on those sites and mailing lists to define the
attack strings. In this way, the student generated attack strings
that are representative of real attacks that could be performed on
the considered subjects. The set contained a total of 30 attack
strings that encoded a wide variety of attacks. The attack strings
themselves were each unique and represented a different way to
exploit an SQLIA vulnerability. Most of the attack strings had
been previously reported in literature [1]. These strings included
attacks based on injections of additional statements, exploiting un-
typed parameters, stored procedures, tautologies, alternate encod-
ings, and injections of ”UNION SELECT”, ”ORDER BY”, ”HAV-
ING” and ”JOIN” clauses. Other types of attacks, such as the ones
that leverage overly descriptive error messages and the ones based
on second-order injections were not included since they depended
on an initial first round of successful injection.

Third , the student generated two sets of inputs for each applica-
tion. Each input consisted of the URL for a servlet together with
the value(s) of one or more parameters of that servlet. The first
set is the set of legitimate inputs, which we call LEGIT, and con-
tains only inputs with legitimate parameters (i.e., inputs that cannot
result in an SQLIA). The second set is the set of SQL-injection
inputs, which we call ATTACK, and consists of inputs such that
at least one of the parameters is an attack string (i.e., inputs that
may result in an SQLIA). To populate set LEGIT, the student cre-
ated different inputs by using different combinations of legitimate
values for the injectable parameters based on their type. All state
parameters were always assigned a meaningful and correct value.
For each application, the LEGIT set contained 500 elements.

To populate the ATTACK sets, the student used two kinds of in-
puts: (1) inputs for which one parameter is assigned an attack string
(and all other parameters are assigned legitimate values); (2) inputs
for which more than one parameter is assigned an attack string. The
student created inputs of the first type by exhaustively assigning to
each parameter of each servlet all possible attack strings, one at a
time. The remaining parameters were assigned various combina-
tions of legitimate values based on their type. Then, all unsuccess-
ful attacks were eliminated from the set, that is, all attacks that were
blocked by the web application were removed from the ATTACK
set. (Some of the web applications performed sufficient input val-
idation and returned an error page when they detected improper
input.) The student generated inputs of the second type for a web
application by randomly selecting, without repetition, an accessi-
ble servlet within the application and a set of possible values for all
the parameters. For each parameter, a random number between 1
and 60 was generated. If the number was less then or equal to 30,
the student assigned the corresponding attack string to the parame-
ter. Otherwise, he assigned a legitimate value to the parameter. In
this way, each parameter had a 50% chance of containing an attack
string. The student continued generating inputs of the second type



until we had either 100 successful attacks (i.e., attacks that were
not blocked by the web application and reached the database) or
2,000 unsuccessful attacks. (Note that the random generation was
always able to generate at least 100 successful attacks, so we never
reached the threshold of unsuccessful attacks.) For each applica-
tion in the evaluation we had an ATTACK set whose size ranged
from 140 to 280 elements. Table 2, explained in the next section,
shows the number of attacks for each application. In the table, we
also report the number of unsuccessful attacks for completeness.

6.3 Study 1: Effectiveness
In the first study, we investigatedRQ1, the effectiveness of our

technique in detecting and preventing SQLIAs. We analyzed and
instrumented each application using AMNESIA and ran all of the
inputs in each of the applications’ ATTACK sets. For each applica-
tion, we measured the percentage of attacks detected and reported
by AMNESIA. (As previously discussed, when AMNESIA de-
tects an attack, it throws an exception, which is in turn returned by
the web application. Therefore, it is easy to accurately detect when
an attack has been caught.)

The results for this study are shown in Table 2. The table shows
for each subject the number of unsuccessful attacks (Unsuccess-
ful), the number of successful attacks (Successful), and the number
of attacks detected and reported by AMNESIA (Detected), both
in absolute terms and as a percentage over the total number of suc-
cessful attacks, in parentheses. As the table shows, AMNESIA
achieved a perfect score. For all subjects, it was able to correctly
identify all attacks as SQLIAs, that is, it generated no false nega-
tives.

Subject Unsuccessful Successful Detected
Checkers 1195 248 248 (100%)
Office Talk 598 160 160 (100%)
Employee Directory 413 280 280 (100%)
Bookstore 1028 182 182 (100%)
Events 875 260 260 (100%)
Classifieds 823 200 200 (100%)
Portal 880 140 140 (100%)

Table 2: Results of Study 1.

6.4 Study 2: Efficiency and Precision
In the second study, we investigatedRQ2 andRQ3. To inves-

tigateRQ2 (i.e., the efficiency of our technique), we ran all of the
legitimate inputs in the LEGIT sets on the original (i.e., not instru-
mented) web applications and measured the response time of the
applications for each web request. We then ran the same inputs
on the versions of the web applications instrumented by AMNE-
SIA and again measured the response time. Finally, we computed
the differences between the response times in the two cases, which
corresponds to the overhead imposed by our technique.

We found that the overhead imposed by our technique is negligi-
ble and, in fact, barely measurable, ranging from 10 to 40 millisec-
onds. This amount of time should be considered an upper bound
on the overhead, as our implementation was not written to be ef-
ficient. For example, we accessed file IO each time we checked
a query, both to load the model and to log the results. In a more
performance oriented implementation, these IO accesses would be
minimized and cached to improve performance. The overhead re-
sults confirm our expectations. Intuitively, the time for the network
access and the database transaction completely dominates the time
required for the runtime checking. As the results show, our tech-

nique is efficient and can be used without affecting the response
time of a web application in a meaningful manner.

To investigateRQ3 (i.e., the rate of false positives generated by
our technique), we simply assessed whether AMNESIA identified
any legitimate query as an attack. The results of the assessment
were that AMNESIA correctly identified all such queries as legit-
imate queries and reported no false positives.

6.5 Discussion
The results of our study are fairly clear cut. For all subjects,

our technique was able to correctly identify all attacks as SQLIAs,
while allowing all legitimate queries to be performed. In other
words, for the cases considered, our technique generated no false
positives and no false negatives. The lack of false positives and
false negatives is very promising and provides evidence of the via-
bility of the technique.

In our study, we did not compare our results with alternative
approaches against SQLIAs because many of the automated ap-
proaches that we are aware of, only address a small subset of the
possible SQLIAs. (For example, the approach in [8] is focused on
type safety, and the one in [26] focuses only on tautologies.) There-
fore, we know analytically that such approaches would not be able
to identify many of the attacks in our test bed.

As for all empirical studies, there are some threats to the valid-
ity of our evaluation, mostly with respect to external validity. The
results of our study may be related to the specific subjects consid-
ered and may not generalize to other web applications. To mini-
mize this risk, we used a set of real web applications (except for
the two applications developed by students teams) and an extensive
set of realistic attacks. Although more experimentation is needed
before drawing definitive conclusions on the effectiveness of the
technique, the results we obtained so far are promising.

7. CONCLUSION AND FUTURE WORK
We presented a new fully automated technique for detecting, pre-

venting, and reporting SQL Injection Attacks (SQLIAs). The tech-
nique is based on the intuition that the web-application code im-
plicitly contains a “policy” that allows for distinguishing legitimate
and malicious queries. To extract and check this policy, the tech-
nique combines static and dynamic analysis. In the static phase,
the technique uses an existing string analysis to extract from the
web-application’s code a model of all the query strings that could
be generated by the application. In the dynamic phase, the tech-
nique monitors dynamically-created queries for conformance with
the statically-built model. Queries that are not compliant with the
model are identified as SQLIAs, blocked, and relevant information
is reported to developers and administrators.

In this paper, we also presented AMNESIA, a prototype tool
that implements our technique for Java-based web applications, and
an empirical evaluation of the technique. The empirical evaluation
of the technique was performed on a set of seven web applications
that consisted of two applications developed by a student team, but
also used by other researchers, and five real applications. AM-
NESIA was able to stop all of the 1,470 attacks that we performed
on the considered applications without producing any false positive
for the 3,500 legitimate accesses to the applications. Furthermore,
AMNESIA proved to be quite efficient in practice, at least for the
cases considered—the overhead imposed by the technique on the
web application was barely measurable.

In our future work we will investigate alternate techniques for
building SQL models for cases in which the static analysis cannot
be used (e.g., because of scalability issues). In particular, we will
study possible alternative static analysis techniques. In our cur-



rent approach, we use a very precise (and expensive) analysis [5] to
build the character-level model that we then compact and transform
into our SQL-query model. Our technique is mostly interested in
SQL keywords and operators, and the strings representing them are
typically constant strings that are rarely manipulated in the appli-
cation. Therefore, we may be able to use a simplified string analy-
sis to extract the SQL-query models that our monitoring technique
needs directly from a suitable representation of the code. Finally,
we will investigate combined static and dynamic approaches for
building models to handle cases in which the static analysis can be
successfully applied on only a subset of the application.
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