
Efficient Data Protection for Distributed Shared Memory
Multiprocessors

Brian Rogers†, Milos Prvulovic‡, and Yan Solihin†

†Dept. of Electrical and Computer Engineering
North Carolina State University

{bmrogers,solihin}@ece.ncsu.edu

‡College of Computing
Georgia Institute of Technology

milos@cc.gatech.edu

ABSTRACT
Data security in computer systems has recently become an
increasing concern, and hardware-based attacks have emer-
ged. As a result, researchers have investigated hardware
encryption and authentication mechanisms as a means of
addressing this security concern. Unfortunately, no such
techniques have been investigated for Distributed Shared
Memory (DSM) multiprocessors, and previously proposed
techniques for uni-processor and Symmetric Multiprocessor
(SMP) systems cannot be directly used for DSMs. This
work is the first to examine the issues involved in protect-
ing secrecy and integrity of data in DSM systems. We first
derive security requirements for processor-processor commu-
nication in DSMs, and find that different types of coherence
messages need different protection. Then we propose and
evaluate techniques to provide efficient encryption and au-
thentication of the data in DSM systems. Our simulation re-
sults using SPLASH-2 benchmarks show that the execution
time overhead for our three proposed approaches is small
and ranges from 6% to 8% on a 16-processor DSM system,
relative to a similar DSM without support for data secrecy
and integrity.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Parallel Architectures;
K.6 [Management of Computing and Information Sy-
stems]: Security and Protection

General Terms
Security, Design, Performance

Keywords
DSM Multiprocessor, Memory Encryption and Authentica-
tion, Data Security

1. INTRODUCTION
Security is an increasingly important factor in the de-

sign of today’s computer systems, and researchers have re-
cently begun to investigate tamper-resistant execution envi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06,September 16–20, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

ronments as a way to protect the secrecy and integrity of sen-
sitive or copyrighted data in these systems. Providing this
secure execution environment has become more challenging
with the emergence of hardware attacks, such as snooping
devices which can be attached to various buses [7, 8]. Due
to the presence of such attacks, software-only approaches for
security are no longer adequate since sensitive information
used by security software, such as encryption keys them-
selves, can be compromised because they are kept as unen-
crypted program variables stored in the main memory and
transmitted over the system bus. Since software-based se-
curity mechanisms are themselves vulnerable to hardware
attacks, hardware-based security schemes are needed. This
hardware support has commonly been proposed in the form
of memory encryption to protect the secrecy of data and
memory authentication to protect the integrity of data [5,
6, 12, 13, 16, 17, 18, 21, 23, 24, 25]. With this type of
data protection, many important security issues in comput-
ing, such as Digital Rights Management violations, software
piracy, and reverse engineering of code, can be addressed
effectively.

One important class of systems that will require tamper-
resistant designs for data secrecy and integrity are Distri-
buted Shared Memory (DSM) Multiprocessors. This is es-
pecially evident when one considers the settings in which
many DSM systems will likely be used in the future. For
example, a growing use of large-scale DSM systems is in
the context of utility or on-demand computing where a com-
pany owning large systems will ”lease” computational and
storage resources of the system to customers who want to
outsource their IT operations or who need more compu-
tational resources to run their applications. For example,
DSM systems such as the HP Superdome are already being
used to offer on-demand computing services [15] to a variety
of users. Because large DSMs are powerful but expensive,
customers often run critical applications which access and
store secret corporate data (e.g. financial data, product in-
formation, client records, etc.) on them. As the utility
computing model grows in popularity, a more diverse array
of companies will adopt this model, and DSMs will host a
wider range of applications using many types of sensitive
data. In addition, DSM will be the predominant architec-
ture of these systems since SMP cannot scale to large sys-
tems easily. Since these DSM systems are in a physically
remote location relative to the customers, customers are of-
ten very concerned about the privacy and integrity of their
computations, especially against hardware attacks that may
be very hard to detect or trace. IndustryWeek pointed out
that data privacy is one of the major concerns that prevents
fast adoption of the on-demand computing model [4]. This
concern may prompt customers to require on-demand com-

 Appears in the Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques (PACT), September 2006.

puting providers to utilize tamper-resistant mechanisms in
their DSMs.

We note that it is unlikely for the utility computing pro-
vider itself to be malicious, as this would create a poor busi-
ness model. Instead, a large-scale DSM system owned by
a corporation will likely be protected with relatively tight
physical security that restricts system access to select em-
ployees. However, lessons from history have taught us that
it is unlikely that this single layer of security would be fail-
proof. For example, despite the relatively good physical
security protection and limited access for Automatic Teller
Machines, there have been repeated cases of ATM fraud by
some supposedly trusted employees [2]. In one case, an em-
ployee inserted a PC into an ATM machine to monitor and
steal customer accounts and PINs.

DSMs used for on-demand computing are in a similar sit-
uation in that the main ingredients that are conducive for
physical tampering are there. First, DSMs (like ATMs)
store highly valuable information belonging to many cus-
tomers. For DSMs, this information may include financial
data, product information, and client records. Second, the
financial motivation to perform an attack can be large be-
cause stolen information is valuable to other corporations
(corporate espionage) or criminals (identity theft). Finally,
there exist some forms of attacks that hardly leave any
traces. For example, physically inserting a snooping device
in a DSM would be quite easy due to the exposed intercon-
nection at the back of server racks. USB drive-sized devices
with multi-GB storage can likely be attached and removed
in a matter of seconds without shutting down the system,
and without leaving visible traces. Thus, many corpora-
tions will likely wish to add another, difficult to break, layer
of protection for the security of their data in the form of
tamper-resistant DSM systems.

Architectural support for data secrecy and integrity has
been studied extensively by researchers for uniprocessor sys-
tems [5, 6, 12, 13, 17, 18, 21, 23, 24], and more recently for
Symmetric Multi Processor (SMP) systems [16, 25]. Unfor-
tunately, such support for DSM systems has not yet been
studied in detail. Uniprocessor schemes provide data en-
cryption and authentication only for processor-memory com-
munication and the main memory but do not address data
protection for processor-processor communication present in
multiprocessor systems. Proposals for secure SMP systems
include encryption and authentication mechanisms for pro-
cessor-processor communication, but these mechanisms rely
on the assumption that each processor can observe every
coherence transaction in the system, which is satisfied due
to the single shared bus in the system. This assumption
cannot be made in DSMs, where communication is point-
to-point rather than through broadcast mechanisms. As a
result, new techniques for DSMs are needed.

Contributions. The first contribution of this paper is
an analysis of the security requirements for protecting DSM
systems against hardware attacks. The findings of this anal-
ysis are that passive/eavesdropping attacks are more likely
to be attempted because they are non-intrusive and leave
very few (if any) traces. Active attacks that modify coher-
ence messages and alter the behavior of the DSMs are less
likely to be attempted, especially if the system is augmented
with the ability to detect them. Therefore, we seek to pre-
vent passive attacks from succeeding, and we simply detect
and report active attacks. To achieve this, we find that dif-
ferent coherence protocol messages and different parts of a
message need to be protected differently: with both encryp-
tion and authentication, with authentication only, or with
no protection.

One possible approach to create a secure DSM is to pro-
vide direct encryption and authentication, in which direct

encryption (or decryption) and Message Authentication Co-
de (MAC) generation (or verification) are performed for each
coherence message sent (or received). However, this ap-
proach would directly add cryptographic latencies to the
already problematic communication latencies in DSM sys-
tems. Therefore, our second contribution is a new com-
bined counter-mode encryption/authentication scheme that
hides much of the cryptographic latencies due to protecting
processor-processor communication. Our scheme relies on
two essential techniques. First, we observe that if commu-
nicating processors share the same communication counter,
they can pre-generate one-time pads used for message en-
cryption and decryption. Hence, to hide encryption/de-
cryption latencies, we use per-processor pair communication
counters that are incremented asynchronously after each
message send/receive. Secondly, we also maintain data in-
tegrity through the use of GCM, a MAC-based authentica-
tion technique using a combined authenticated-encryption
mode [3, 14] to reduce the MAC computation latency to
only a few cycles after message ciphertext is available. Fi-
nally, we also show how our mechanisms can be seamlessly
combined with previously proposed processor-memory data
protection mechanisms to provide system-wide data protec-
tion for DSMs. Our results show a small performance over-
head for our techniques: ranging from 6% to 8% on average
across all SPLASH-2 [22] benchmarks when compared to a
DSM system with no support for data protection. We also
present a sensitivity analysis to show that overheads remain
low across different system configurations such as L2 cache
size and number of processors.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. We discuss our assumptions
and attack model in Section 3. Then, we present our con-
tributions on security requirement analysis in Section 4 and
our processor-processor communication protection scheme
in Section 5. Section 6 details our evaluation setup. Sec-
tion 7 presents our evaluation results and analysis. Finally,
section 8 summarizes our findings and conclusions.

2. RELATED WORK
Architectural support for data secrecy and integrity has

been studied extensively by researchers for uniprocessor sys-
tems [5, 6, 12, 13, 17, 18, 21, 23, 24]. These studies assume
that on-chip storage is secure, while off-chip communica-
tion is not secure and needs to be protected against passive
and active hardware attacks. They provide encryption and
authentication for data in the processor-memory communi-
cation path through direct encryption [6, 12, 13] or through
counter-mode encryption [17, 21, 23, 24]. In counter mode,
instead of directly encrypting the data, encryption is applied
to a seed to generate a pad. A seed typically consists of the
memory block address and a counter. To encrypt or de-
crypt a data block, it is XORed with with the pad. When a
block needs to be fetched from memory, if its counter is avail-
able on chip, pad generation can be overlapped with DRAM
access latency. Counter mode encryption’s security relies
on the uniqueness of the pad/counter each time it is used
for encryption (through incrementing the counter on each
write back), hence it is often referred to as a one-time pad
scheme. To provide data integrity, an authentication mech-
anism based on a Merkle Tree was proposed [5]. The Merkle
Tree maintains an authentication tree whose leaf nodes are
data blocks, and the root node is always stored securely on
chip. Merkle Trees were proposed as a way to prevent replay
attacks in which an attacker replays a previously observed
data value and corresponding MAC.

Because uniprocessor protection mechanisms only apply
to processor-memory communication, researchers have pro-

posed protection schemes for processor-processor communi-
cation in bus-based Symmetric Multi-Processor (SMP) sys-
tems [16, 25]. The fundamental assumption used for such
protection is that each processor can observe every coher-
ence transaction in the system provided naturally through
snooping the bus. In this system, each processor maintains a
global encryption counter or global pad used for processor-
processor communication. On each bus transaction, each
processor updates its counter [16], or uses the snooped data
to generate a new Cipher Block Chaining (CBC) encryption
pad [25]. The pad is used for both encrypting and authen-
ticating processor-processor communication.

Unfortunately, neither uniprocessor nor SMP protection
schemes can be extended directly to protect DSM systems.
Extending direct encryption/authentication for processor-
processor communication would incur a very high perfor-
mance overhead due to the added latencies at the sender
side for encrypting data and generating MACs, and at the
receiver side for decrypting data and verifying the MACs.
With a recent hardware implementation showing an AES
latency of 37ns and MD5 or SHA-1 over 300ns [11], this
approach is either too costly or not feasible.

Alternatively, one may imagine an approach in which uni-
processor counter-mode encryption is directly extended to
protect processor-processor communication by treating pro-
cessor-to-processor data transfer similarly to a processor-to-
memory writeback. However, this approach is problematic
to support due to the need to keep the counters in both
the sending and receiving processor coherent. For example,
in response to an intervention to a dirty line, a processor
flushes the line to the requester, and the flushed line would
be encrypted by XORing it with a pad obtained by incre-
menting the current counter for the block. This increment
would trigger invalidation of other cached copies of the same
counter. In order for the receiving processor to decrypt the
flushed line, it needs to obtain the new counter value for
the block. It would do so by sending a read request for the
cache block that contains the counter, which eventually ap-
pears as an intervention to the sender processor. Hence, the
latency for processor-processor communication is effectively
doubled (obtain data, then its counter). In addition, the
counter communication needs to be protected against tam-
pering as well, so it requires high-latency authentication.
Similar difficulties exist with maintaining coherency among
nodes in the Merkle tree.

It is also clear that SMP protection cannot be extended
easily for protecting DSM systems. The requirement that
each processor observes all coherence transactions would be
costly to support in terms of ensuring a global ordering of
all transactions as well as the large bandwidth requirement
needed for broadcasting each transaction to all processors.

Our work in this paper differs from previous approaches in
that it proposes architectural support for data secrecy and
integrity in DSM multiprocessors. It does not rely on main-
taining coherence for counters or the authentication tree,
and does not require broadcasting of coherence transactions.
Finally, while the use of GCM for processor-memory protec-
tion in uniprocessor system has been proposed in [23], this
paper applies GCM in the different context of processor-
processor communication protection. Hence, the input to
GCM is very different than that for uniprocessor systems.

3. ASSUMPTIONS AND ATTACK MODEL

3.1 Architecture Assumptions
Our first assumption is that the DSM system uses a home-

based directory protocol for maintaining cache coherence.
Figure 1 illustrates processor-processor communication in
such a DSM system. Suppose a processor PR sends a read

request to the home node PH which keeps the directory for
the requested address (Step 1). PH finds that the line is
currently owned (in a modified/dirty state) by another pro-
cessor PO. So it sends an intervention request to PO (Step
2), which will respond by downgrading its line to a clean
shared state, flushing its line to update the copy at home
(Step 3a), and replying with the data to the requester (Step
3b). The figure shows that some processor-processor coher-
ence messages only carry cache coherence protocol informa-
tion (command, address, message source and destination),
which we will refer to as non-data messages, while others
also carry data of the application program, which we will
refer to as data messages. In a DSM, data messages are
either responses to non-data coherence messages, such as
intervention or invalidation requests, or self-initiated write-
backs to the home memory.

R

H

OP P

P

Requestor Owner

Home

1
2

3b

3a

Figure 1: DSM processor-processor communication.

In addition, we assume a DSM system in which a node’s
directory controller is integrated in the processor chip, sim-
ilar to the configuration used in the IBM Power4 system [9]
and AMD Opteron [1]. In this case, any accesses to the home
memory consist of two steps: communication between the
home node’s directory controller and the requesting proces-
sor, and between the home node’s directory controller and
its local memory. For example, a reply to a remote read (to a
clean line) first causes the line to be fetched from the home’s
local memory into the home processor chip, and then for-
warded to other processor chips through an interconnection
network. This assumption enables us to employ two sepa-
rate protection mechanisms: processor-memory communica-
tion protection can be handled using well-studied uniproces-
sor memory protection techniques, while processor-processor
communication needs a new protection mechanism.

3.2 Security Assumptions and Attack Model
As mentioned earlier, our goal is to protect DSM systems

against hardware attacks in the context of on-demand com-
puting. We assume that the system has relatively strong
physical security, but is not immune to attacks by a select
few employees or other parties who have physical access to
the machine. Since it is likely that only a few people have
physical access to the machine, any attacks that leave traces
may easily provide sufficient information that can lead to
the attacker. We define a trace as a detectable anomaly of
the system behavior. Hence, the fundamental assumption is
that the goal of an attacker is to perform traceless attacks in
order to steal sensitive data that belongs to the application.

We broadly categorize hardware attacks into three cate-
gories. The first category is sabotage attacks in which the
attacker’s goal is to crash the application or even damage
the system. Our scheme does not seek to protect against
sabotage attacks, including application or system crashes,
since it is extremely difficult to protect the system against
such sabotage when the attacker has physical access to the
machine. On the other hand, the attacker lacks the incen-
tive to do so because the attack can be easily traced back

to him/her, and there is probably little financial reward for
sabotage attacks.

Another category is passive attacks in which the attacker’s
goal is to eavesdrop on processor-processor or processor-
memory communication, as illustrated in Figure 2. An ex-
ample of this attack is the physical insertion of a snooping
device onto the exposed interconnect at the back of server
racks. A small USB drive-sized device with multi-GB stor-
age can likely be attached and removed in a matter of sec-
onds without shutting down the system if the system can
recover from temporary link failures. Cable clutter may also
hide the device from cursory visual inspections.

 Engine
Execution Registers

Caches

Authentication HW
Encryption /

Mem/Dir Ctrl
Interconnect

Insecure Mem/Dir Ctrl

Registers

Caches

Encryption /
Authentication HW

Insecure
Memory

Processor / Secure Boundary

Execution
 Engine

Insecure
MemoryAttacks

Hardware

Processor / Secure Boundary

Figure 2: Attack model, secure boundary, and loca-
tion of our encryption and authentication hardware.

Finally, in active attacks, the goal of the attacker is to
steal sensitive information by modifying coherence messages
communicated between processors, or data in a node’s local
memory or on the memory bus. Although active attacks
are certainly more difficult to perform than passive attacks,
we cannot rule out the possibility of an attacker attempt-
ing them, especially if passive attacks are no longer fruitful
due to the system encrypting all off-chip communication,
and if the attack does not result in any traces. A coherence
message typically contains message type, memory block ad-
dress, routing information (source and destination proces-
sors), and, for data messages, user data. We do not make
any assumptions as to the specific abilities of attackers to
modify signals, so we assume the worst case in which the
attacker is able to modify any parts of the message. We
distinguish between attacks that modify application data as
data spoofing versus ones that modify other information as
non-data spoofing. The attacker may also be able to re-
play an old message. Finally, the attacker may also modify
the coherence protocol directory information stored at each
node.

4. SECURITY ANALYSIS FOR DSM
PROTECTION

This section analyzes the requirements for secure data
protection in DSM systems. We note that the security re-
quirement for protecting against passive attacks on data
confidentiality is straightforward: application data in data
messages must be securely encrypted during communica-
tion. Thus we focus our discussion on the requirements for
protection against active attacks. At first glance, it may
seem that this requirement is also obvious: simply authen-
ticate all parts of every coherence message through the use
of a MAC. However, we note that this requirement would
introduce excessive performance overhead, and it is actually
overly strong for DSM systems and can be relaxed.

Specifically, we can derive a new security requirement for
authentication based on the assumption that the goal of an
attacker is to perform traceless attacks (Section 3.2). This
assumption implies that the protection requirement can be

met by two components: (1) Ensuring that every attempt
at an active attack results in a trace of the attack, and (2)
Traces prompt analysis and preventative/corrective actions
to block the active attack attempts from succeeding. We
define a trace of an attack as a detectable anomaly of sys-
tem behavior. More specifically, in the context of DSMs, we
can define a trace as incorrect/anomalous coherence protocol
behavior or cryptographic errors such as a failed message au-
thentication. Interestingly, many active attack attempts will
naturally result in detectable coherence protocol anomalies.
In this paper, we assume that mechanisms are in place to de-
tect such anomalies, and the discussion of these mechanisms
is outside the scope of this paper. Hence, we only need to
ensure that attacks that do not result in coherence protocol
anomalies can still be detected as cryptographic errors.

We first analyze this requirement for non-data messages.
These messages contain coherence message type, address,
and routing information (source and destination processor
IDs). If a message’s type is modified by an attacker, a proto-
col anomaly will result because the receiving processor can
check whether the message is allowed based on the stored
coherence state for that address. Examples of anomalies
would be receiving an invalidation acknowledgment with-
out a matching invalidation request, or not receiving ac-
knowledgment or negative acknowledgement as expected,
etc. Similarly, if a message’s address or source/destination
processor IDs are changed, a protocol anomaly will likely re-
sult. There may be special cases in which no anomaly results
because the cache state of a line allows such an operation.
However, we note that the attacker in this case can only
either force a data write back, force data in the cache to be
sent across the interconnect (and data secrecy is not com-
promised as long as data messages are protected), or cause
denial of service (which we do not seek to protect against
because its success is itself an easily detected trace). An
attacker may also attempt to delete messages rather than
tamper with them. This can achieve an effect similar to a
replay attack because the attacker can, by not delivering in-
validation messages, force a processor to use stale data from
its cache. In this case, we assume that the protocol logs
an anomaly if, after a certain period of time, it has not re-
ceived a response to its invalidation or intervention message.
Finally, some protocol anomalies can be expected to occur
naturally due to protocol races. For example, an invalida-
tion may be received while a line is being written back to
the home, so an invalidation message to a line that is not
in the cache may not signal an active attack attempt. In
this case, we rely on the protocol to detect unusual patterns
such as an excessive number of anomaly cases. Again, hard-
ware extension for recording protocol anomalies is beyond
the scope of this paper.

Now we consider data messages which carry sensitive data
that belongs to the application program. Since application
data is not used directly in the coherence protocol, it may be
modified by an attacker without raising any protocol anoma-
lies. Therefore, application data needs to be protected by
authentication codes so that tampering with this data is de-
tected. Finally, attacks such as routing application data to
another processor, or faking the address of the data may
achieve a similar effect to data tampering (i.e. causing a
processor to use the wrong data value). Therefore, for data
messages, we also need to authenticate all parts of the mes-
sage including the message header information. In addition,
an attacker may attempt to replay an old message together
with its authentication code, so a separate mechanism must
be used to detect such replays.

In summary, the security requirement for message integ-
rity is met in the following way. We do not encrypt or au-
thenticate non-data messages, but assume that the coher-

ence protocol tracks protocol anomalies and raises an alarm
if anomalies are detected. We encrypt application data and
authenticate all parts of data messages so that data tam-
pering is completely avoided, and any attempt at data tam-
pering results in cryptographic errors, which also raises an
alarm. Finally, we provide a separate mechanism to detect
message replay attacks.

5. PROCESSOR-PROCESSOR DATA
PROTECTION FOR DSM

As we discussed in Section 4, our goal is to provide protec-
tion against hardware attacks on data messages in DSM sys-
tems. To accomplish this goal it is necessary to have mech-
anisms to encrypt and authenticate data during processor-
processor data transfers across the interconnection network.
Section 2 has discussed that direct encryption and authenti-
cation of data messages incurs a high overhead, while direct
extension of uniprocessor or SMP protection is either costly
or infeasible. To make DSM protection practical, our mech-
anism should significantly reduce or hide encryption, de-
cryption, and MAC generation/verification latencies, while
meeting the security requirements discussed in Section 4.

SENDER

Verify MACRECEIVER

Transfer

Gen. MACEncrypt

Decrypt Data Use

(a) Direct encryption and ciphertext-based MAC.

Verify MAC

Transfer

Gen. MAC

Data Use

SENDER

RECEIVER

(b) Pre-generated pads for
encryption.

SENDER

RECEIVER

Gen. MAC

Data Use

GHASH

GHASH

Verify MAC

Transfer

(c) Pre-gen. pads for enc.
and auth.

Figure 3: Processor-processor communication laten-
cies using various mechanisms for enc. and auth.

We achieve this goal through counter-mode encryption
and GCM authentication. Let us discuss encryption issues
first. First, it is well known that if two communicating pro-
cessors agree on a common stream of counter values used
for encryption, they can pre-generate encryption pads be-
fore data is ready to be sent or received. To encrypt or
decrypt data, it only needs to be XORed with the pre-
generated pad. Figure 3(b) shows the new reduced en-
cryption/decryption latencies compared to direct encryp-
tion (Figure 3(a)). However, the latency of authentication
is still not hidden. To hide authentication latency, we use a
combined counter-mode encryption/authentication scheme,
Galois Counter Mode [3, 14]. GCM offers many benefits.
First, its security strength has been thoroughly studied and
proven to be as strong as the underlying AES encryption
algorithm [3, 14]. Second, GCM utilizes the existing AES
hardware already used for encryption. Finally, since GCM
relies on the use of counters, if a counter value is known,
the authentication pad can be pre-generated, hiding most
of the authentication latency. The only exposed part of the
latency is GHASH computation, which is a short chain of
Galois Field Multiplications and XORs, each of which can
be performed in one cycle [3]. Figure 3(c) illustrates this re-

duced authentication delay and compares it to direct MAC
generation (Figures 3(a) and 3(b)).

Figure 4 shows our processor-processor encryption mecha-
nism in the upper part and authentication in the lower part.
The encryption pad is obtained through AES encryption of
the encryption seed. To ensure that pads are not reused,
which is the security requirement of counter-mode schemes,
the seed must be unique for each message in the system.
Thus, we choose the concatenation of the communication
counter (Ctr), processor ID of the sender (ID(S)), proces-
sor ID of the receiver (ID(R)), and an arbitrary Encryption
Initialization Vector (EIV). Once a data transfer needs to
be made for a certain cache line, the plaintext of the data
Ptext is XORed with the pre-generated pad to produce the
ciphertext Ctext. The seed selection is such that a pad is
always unique for any processor pair, and even for a proces-
sor pair it is unique if the role of the sender and receiver are
switched. The counter is incremented after each message is
sent or received, hence the pad is also unique across messages
communicated by a processor pair. Therefore, each pad is
globally unique across all messages, so the attacker cannot
discover application data through passive/eavesdropping at-
tacks. Finally, note that the seed we choose still allows pads
to be pre-generated because the seed input is independent
of application data.

GHASH

AES

C
lip

AES

GHASH

AES

C
lip

=?

AES

Seed = Ctr || ID(S) || ID(R) || AIV
Auth

Ptext
Ctext

Addr || Type

SENDER

GCM

Pad

Enc

Pad

MAC

ID(S)
Ctr . . .

MAC

Ctext

Addr || Type

RECEIVER

GCM

Pad

Auth result

Enc

Seed

Pad
Ptext

Seed = Ctr || ID(S) || ID(R) || EIV Enc

Seed
Auth

Enc

Figure 4: Our mechanism for processor-processor
secure data transfer in DSM systems.

For authentication, recall that the security requirement
requires us to authenticate all parts of a data message. Ther-
efore, the MAC must encompass the counter, processor IDs
of the sender and receiver, address, and type of the coher-
ence message. This ensures that tampering with any part
of a data message will be detected as a cryptographic er-
ror (Section 4). The authentication seed is chosen as the
concatenation of Ctr, ID(S), ID(R), and an arbitrary Au-
thentication Initialization Vector (AIV). Such a seed en-
sures that each authentication pad is unique across all mes-
sages in the system, and is different from encryption pads.
We note that in GCM, additionally authenticated data (i.e.
data that is authenticated but not encrypted) can be sup-
plied along with the data ciphertext into the GHASH func-
tion to generate the MAC. We leverage this feature in order
to protect the message header information such as address
and message type. The counter along with sender and re-
ceiver processor IDs are accounted for in the MAC since they
are part of the seed used to pre-generate the authentication
pad. When encryption has produced the ciphertext of a
cache line to be transferred, the ciphertext and additionally
authenticated data is input into the GHASH function. The

output of the GHASH function is XORed with the authen-
tication pad, and the result may be clipped to the desired
MAC size [14]. Therefore, the GHASH and XOR latencies
are the only part of the MAC generation latency that can-
not be hidden. Fortunately, with GCM the GHASH latency
is only a few cycles [3].

Finally, the coherence message sent must now contain the
ciphertext of the application data and the MAC. Additional
fields need to be sent also, including the counter and the
processor ID of the sender. The counter is needed because
the counters kept by the sender and by the receiver may oc-
casionally be out of synch. The counter sent along with the
message allows the receiver to verify that its pre-generated
pad corresponds to the correct counter value. The need for
sending the processor ID of the sender along with the mes-
sage will be described in the following subsections.

In order for our mechanisms to operate efficiently, it is
clear that the key issue is how to manage the communi-
cation counters and their pre-generated pads so that the
counters are synchronized at the sender and receiver side
most of the time. If counters and pads are not available, or
the sender and receiver get out of sync, then we will suffer
the full pad generation latency before data can be encrypted
or decrypted and authenticated. Thus, a counter manage-
ment scheme should ideally incur a low performance over-
head, low storage overhead, and at the same time have no
scalability restrictions which prevent the DSM from scaling
to a large number of processors. We propose three counter
management techniques which we describe in the following
subsections. They differ in how they meet the criteria we
just outlined.

5.1 Private Counter Stream (Private)
Our first scheme is a straightforward approach in which a

processor uses a separate counter stream for sending data to
each of the other processors. In this scheme, each processor
pair maps one-to-one to a counter for each communication
direction. If P denotes the total number of processors in
the system, each processor contains a send table with P − 1
entries for encrypting and sending data messages, and a re-
ceive table with P − 1 entries for receiving and decrypting
data messages. Separate send and receive tables are neces-
sary because when the two processors switch roles as sender
and receiver, the order of concatenation of their processor
IDs is different, and thus the pre-generated pads are dif-
ferent. Between a specific sender and a receiver, counters
are kept synchronized by having each processor increment
the corresponding counter each time time that counter’s
pad is used to encrypt or decrypt a data transfer. Each
send or receive table entry contains a 64-bit counter value,
a 512-bit pre-generated encryption pad (assuming 64-byte
cache block size), a 128-bit pre-generated authentication pad
(assuming 128-bit MACs), and a valid bit indicating that
the pad has been pre-generated but has not been consumed
(used for encryption/decryption and authentication). The
total storage per entry is 1+64+512+128 = 705 bits. The
total table overhead is small except for very large DSMs.
For example, for a 64-processor DSM, the table overhead is
(2× 64× 705)/8 = 11, 280 bytes per processor.

To send a data data message, a processor first looks up its
send table to find the entry that corresponds to the receiving
processor. If it finds the entry with the valid bit set (i.e., a
pad hit), the pads can be immediately used for encrypting
and authenticating the data. After the pads are consumed,
the counter value is incremented, the valid bit is cleared, and
new pads based on the new counter value are generated. If
the sender finds the entry with the valid bit cleared (i.e.,
a pad half-miss), it waits until the pads that are currently
being generated become available. Note that a pad half-miss

is relatively rare: it only occurs when two data requests
to/from the same processor are separated in time by less
than the AES unit’s latency.

Upon receiving the message, the receiver locates the sen-
der’s entry in its receive table, and decrypts and authenti-
cates the message immediately if it has valid pads and the
counter value of the entry matches the counter value in the
message. Otherwise, it waits until it finishes computing the
correct pads. If messages are delivered in-order through the
interconnection, then decryption and authentication laten-
cies will always be fully or partially hidden. However, if
messages from a single sender can arrive out-of-order, per-
formance of the receiver could be degraded because the re-
ceiver must generate a pad that corresponds to the counter
value in the message. Since in general out-of-order message
delivery is quite rare, the extra pad generation latency also
occurs rarely, so we choose to tolerate it. An alternative
solution would keep a few counter values per processor and
their pads in the receive table, at the expense of having a
larger receive table.

5.2 Shared Counter Stream (Shared)
The Private scheme is simple and has almost perfect pad

hit rates, but its counter storage overhead can be non-trivial
for very large DSMs (e.g. 180KB for 1024-processor DSM).
The second table organization scheme which we refer to as
Shared seeks to reduce the storage overhead by a factor of
two. To achieve this, we replace the send table of a processor
with a single counter and pad for sending data messages to
any processor. This shared counter is incremented after each
sent message, so pad uniqueness is still guaranteed. In order
to pre-generate a sender’s pad that is usable for sending a
message to any receiver, the encryption and authentication
seeds used for pad computation do not include the receiver
processor ID (i.e., ID(R)). Pads are still unique because
a processor updates its sending counter and pad after each
sent message. To meet the security requirement for authen-
tication, ID(R) is now concatenated with the block address
and message type as input to the GHASH function.

As in Private, upon receiving a data message, the receiv-
ing processor accesses the entry corresponding to the sending
processor and checks whether a pre-generated pad is avail-
able for that sender. However, since the sending processor
uses the same counter to send messages to all processors,
it is less likely for a receiving processor to see back-to-back
messages with contiguous counter values. Non-contiguous
counters occur when a processor receives a message from a
particular sender, while the sender’s previous message was
sent to different processor. As a result, the receiver will
suffer from a higher pad miss rate and full decryption and
MAC generation latencies. The ability of the receive ta-
bles to pre-generate the correct pad more often could be
enhanced through prediction of sharing patterns, but this is
left as future work.

5.3 Cached Counter Stream (Cached)
Recall that Private achieves high performance due to a

low pad miss rate, but needs larger storage overhead, while
Shared sacrifices performance for lower storage overhead.
However, both Private and Shared are not scalable in the
sense that the tables are designed to support only a fixed
number of processors. Unless the tables are very large, they
prevent DSMs from scaling to larger numbers of processors.
In this section we introduce the Cached table configuration
to address the scalability drawback of previous schemes.

Our Cached scheme can scale to an arbitrary number of
processors with fixed send and receive table sizes, while still
providing good performance. The intuition behind its de-
sign is that processors in a DSM system often communicate

with a set of neighbors that is much smaller than the total
number of processors in the system. Therefore we can limit
the table size of each processor’s send and receive table to
some number of entries that is a fraction of the number of
processors in the system. This table can operate similarly
to a cache, where a send/receive to/from a processor that
does not have an entry in the table will create a new entry
for this processor in the table, replacing the entry that has
been unused for the longest time. However, unlike a reg-
ular cache, displaced entries are simply discarded, instead
of written back to other storage. By simply discarding dis-
placed entries, we avoid the need to allocate off-chip storage
for them, which would need to be protected against attacks
with additional security mechanisms.

This Cached scheme raises the question of which counter
value should be used to generate the encryption/decryption
pad if no table entry is found. For receiving, a straight-
forward solution is to use the counter that is sent with the
data. For sending, we must select a counter that has not
been used before, in order to prevent pad reuse. To achieve
that, we keep track of the maximum counter value that has
been used by a given sender to generate a pad across all
receivers (maxCtr). Furthermore, as an optimization, we
always keep a pre-generated pad for a counter maxCtr + 1.
If the sender finds a table entry corresponding to a receiver,
it simply uses the pads in that entry. If it does not find an
entry, it creates a new entry by replacing the LRU entry in
the send table, then immediately uses maxCtr + 1 and its
pre-generated pads to encrypt and authenticate its message,
increments maxCtr, and generates its next pads. This opti-
mization avoids pad-miss stalls at the sender in most cases.
Compared to Shared, Cached will tend to have more consec-
utive counter values at the receiver, so it will have fewer pad
misses and better performance than Shared. However, it is
still expected to perform worse than Private.

Finally, in order for the maxCtr + 1’s pads to be usable
for any receiver, the encryption/authentication seed used
for the maxCtr + 1’s pad computation does not include the
receiver processor ID (ID(R)). However, pads stored in
the table still include the receiver processor ID in the seed.
For the receiver to handle this correctly, each message is
augmented with a bit to tell the receiving processor which
seed to use for pad generation.

5.4 Detecting Replay Attacks
Section 4 states that data messages need to be fully au-

thenticated, and a special mechanism is needed to detect
replay attacks. While we have satisfied the former require-
ment (Figure 4), this section presents the mechanism to deal
with the latter. Note that due to the full protection of data
messages, the attacker cannot modify any part of a message
without causing failed authentication. Therefore, the only
replay attack an attacker can do is to send an old copy of a
message together with its valid old MAC.

One way to detect such replay attempts is to note that
a counter’s value is monotonically increasing. A replayed
old message is detected when a received message’s counter
is smaller than the current counter stored in the receive ta-
ble. An alarm can be raised when this situation is detected.
However, we note that out-of-order message delivery can
also cause out-of-order counter values. Thus, false positives
due to out-of-order delivery of messages could occur.

We may like to distinguish between a replay attack and
out-of-order message delivery more definitively. To achieve
that, first we observe that data messages are either responses
to data request/intervention/invalidation messages, or a nat-
ural write back of modified lines. In the former case, we
can send an authenticated counter value along with the re-
quest/intervention/invalidation message. We will refer to

this counter value as the originator counter. The receiv-
ing processor then sends the data message reply augmented
with the authenticated originator counter value. The origi-
nator of the request/intervention/invalidation message (the
receiver of the data message) keeps a list of outstanding
transactions and their corresponding originator counter val-
ues. If the received data message has an originator counter
not matching any in its outstanding transactions, it has de-
tected a real replay attack. For the latter case of natural
write backs, the sender of the written-back cache line can
keep track of outstanding write back transactions and their
originator counter values. Upon receiving the written back
cache line, the home node is now required to send a fully
authenticated write-back acknowledgment that contains the
originator counter from the write back message. Upon re-
ceiving the acknowledgment, the sender detects a replay at-
tack if the originator counter in the acknowledgment mes-
sage does not match any one from its outstanding write back
transactions. This protection works because, even though
an attacker knows the value of the originator counter, he
could not have produced a reply containing the encrypted
and authenticated originator counter unless the attacker has
the encryption/authentication key. So the message reply re-
ceived by the originator must have been produced by a le-
gitimate sender. In addition, the reply message is accepted
only once by the originator because it keeps a list of out-
standing transactions, and a transaction is removed from
the list if its legitimate reply has been received.

With the ability to detect replay attacks, combined with
full protection of data messages, we have satisfied all the en-
cryption and authentication security requirements discussed
in Section 4.

5.5 Implementation Issues
The size of the counters for encrypting processor-processor

messages can be chosen to be large enough so that they will
not overflow for the expected life of the system, but not too
large to cause too much increase in bandwidth. In this work,
we use 64-bit counters to avoid counter overflows for many
years, and all of our evaluation results take into account the
extra bandwidth necessary to transmit these counters with
the encrypted data and MAC. 64-bit counters do not present
a storage problem in our schemes because we only deal with
processor-processor communication, so our counters are only
needed in send and receive tables.

Finally, we apply uniprocessor counter-mode encryption
similar to [24], and Merkle tree authentication to the each
node’s main memory including data and directory informa-
tion, using state-of-the art GCM-based Merkle tree unipro-
cessor authentication similar to [23]. To avoid coherence
problems for uniprocessor counters and Merkle trees, each
node only protects its own local memory. A reply to a
remote request is protected with uniprocessor processor-
memory protection when it is brought from the main mem-
ory to the local node’s processor, and with our processor-
processor protection when it is sent from the local node to
the remote requester.

6. EXPERIMENTAL SETUP
In order to evaluate our approaches for data protection in

DSM systems, we added DSM support and implemented our
proposed mechanisms in SESC [10], a detailed execution-
driven simulator. Table 1 shows the relevant architectural
features of our simulated system. The important features of
our simulated DSM system to note are the use of the MESI
coherence protocol with a hypercube network and fixed-path
routing protocol. Also note that the on-chip counter cache
is used to store counters for use in processor-memory data
encryption, not for storing counters for our schemes. In

addition, we model an 80 cycle latency for the AES engine,
which similar to the 37ns implementation described in [11]
on a 2 GHz processor.

We assume round-robin page allocation. More optimized
systems may employ first touch policy which minimizes ac-
cesses to remote memory. Note that round-robin alloca-
tion stresses our schemes more compared to an unprotected
system because of the high number of remote memory ac-
cesses, and each remote memory access results in processor-
processor communication. Our simulations also take into
account the extra bandwidth usage due to sending counters,
MACs, and other information along with data messages in
our processor-processor data protection schemes.

Table 1: Architectural Parameters.
Processor 2 GHz, 3-way out-of-order issue

L1-Inst: 16KB, 2-way, 64B line, WT, 2 cycles
L1-Data: 16KB, 2-way, 64B line, WT, 2 cycles

Memory L2-Unif:256KB, 8way, 64B line, WB, 10 cycles
Round robin page allocation, 4KB pages
Memory bus: 1 GHz, 4-Byte wide, split-trans.
RT memory latency: 200 cycles (uncont.)

Proc-Mem Counter-mode, 64-bit counters
Encryption SN Cache: 32KB, 4-way, 64B line, WB

GCM-based Merkle Tree authentication
Proc-Proc Counter-mode encryption, 64-bit counters
Encryption Send and receive table size depend on scheme.

Authenticated-Encryption [14]
Encryption 1 AES unit for all encr./decr. and auth.
HW 16 stage AES pipe: 80 cycle lat., 5 cycle occp.
Network Hypercube, fixed-path routing

Link BW 6GB/s, 50ns hop delay (as in [20])
Coherence MESI, full bit vector, home-based directory,
Prot. reply forwarding

We use the SPLASH-2 benchmark suite [22] to evaluate
our techniques. The relevant application parameters are
shown in Table 2, along with the global L2 cache miss rate
of each application. Applications are simulated from start
to completion without fast forwarding or sampling.

Table 2: Applications used in our evaluation. The
L2 global miss rate is the number of L2 misses di-
vided by the number of L1 cache accesses.

Global L2
Application Input Miss Rate

Barnes 16K particles 0.18%
Cholesky tk25.O 0.41%
FFT 1M points 2.69%
FMM 8K particles 0.22%
LU 512x512 matrix,16x16 blocks 0.20%
Ocean 258 x 258 ocean 2.12%
Radiosity -test 6.23%
Radix 4M keys, radix 1024 1.95%
Raytrace car 1.03%
Volrend head 0.78%
Water-n2 512 molecules 0.12%
Water-sp 512 molecules 0.08%

7. EVALUATION
In this section we use several different DSM configurations

to evaluate the data protection and counter management
schemes proposed in this paper. The P2M Only configura-
tion refers to protection for data in main memory and for
processor-memory communication within each DSM node,
using previously proposed uniprocessor counter-mode mem-
ory encryption and Merkle Tree authentication. Note that

this configuration has no protection for data communicated
between nodes. The Direct configuration uses the AES block
cipher and SHA-1 MAC generation algorithm to encrypt and
authenticate processor-processor data communication. In
order to not penalize the Direct configuration too greatly,
an 80 cycle latency is assumed for both AES and SHA-
1, which is optimistic compared to over 300ns in a recent
hardware implementation [11]. Lastly, Private, Shared, and
CachedX, where X denotes the number of send and receive
table entries, represent our protection schemes described
in Section 5 for processor-processor data protection. All
schemes also include the mechanisms of P2M Only for pro-
tecting processor-memory data communications. All figures
showing execution time overheads are relative to a baseline
DSM system with no support for data protection.

7.1 DSM Data Protection Schemes
In order to evaluate the performance of our processor-

processor communication data secrecy and integrity protec-
tion, Figure 5 compares the execution time overheads of the
P2M Only and Direct configurations with our approaches,
Private, Shared, and Cached4 on a 16-processor DSM sys-
tem. With these configurations, the total send and receive
table size of Shared and Cached4 are a half and a quarter of
that of Private, respectively. This figure shows that adding
just processor-memory data protection (P2M Only) results
in a very modest overhead of under 5% for most benchmarks
and on average. However, the straightforward approach to
processor-processor data protection (Direct) results in an
average slowdown of 15% across all applications, and more
than 20% in cholesky, ocean, radiosity, and volrend, even
with a very optimistic assumption on the MAC generation
latency. This execution time overhead is not likely to be
tolerable for real-world DSM systems, motivating the need
for more efficient techniques.

As shown in the figure, each of our proposed techniques is
able to reduce the overhead of processor-processor data pro-
tection significantly over Direct, with Private being the best
in terms of execution time overhead at only 6%, and with
Shared and Cached4 performing just slightly worse despite
much smaller storage overheads. The figure also shows that
Cached4 gives better performance than Shared in almost all
applications, although it has only half the table storage over-
head of Shared. However, on average it is only slightly better
because of the pathological case in barnes, where Cached4
has twice the performance overhead of Shared. Finally, we
note that the majority of the overhead in most applications
comes from processor-memory protection rather than from
our processor-processor protection.

We also observe that the overheads for ocean and radios-
ity are significantly larger than the average, so we examine
their behavior more closely. For ocean, most of the overhead
comes from processor-memory protection, as opposed to our
mechanisms. Prior studies on uniprocessors [5, 17, 21, 23,
24] showed that two main components of processor-memory
overhead are counter cache misses and reduced L2 capacity
due to storage of Merkle Tree nodes. Ocean’s counter cache
miss rate is very high (30%) and its L2 misses increase by
50% due to Merkle Tree caching. For radiosity, processor-
memory and processor-processor protection each account for
about half of the total overhead. We observe that the main
cause of overhead is over-utilization of the AES unit due to
frequent memory traffic (high L2 miss rate as shown in Ta-
ble 2). The average time that a pad generation request is
buffered until it starts to be serviced by the AES unit for
radiosity is 126 cycles, which is 3 to 10 times higher than for
other applications. One possible solution to reduce radios-
ity’s overhead is to use a second or deeper-pipelined AES
unit.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

barnes cholesky fft fmm lu ocean radiosity radix raytrace volrend water-n2 water-sp average

 E
x
e

c
u

ti
o

n
 T

im
e

 O
v
e

rh
e

a
d

P2M Only Direct Private Shared Cached4

Figure 5: Execution time overheads for processor-memory data protection only, versus schemes with addi-
tional processor-processor data protection on 16 processors.

In order to gain more insight into the performance of our
techniques from the previous figure, we introduce the terms
pad hit, pad half-miss, and pad miss. A pad hit refers to the
case in which the correct encryption and authentication pads
have been fully pre-generated and only an XOR is needed
to encrypt, decrypt, or authenticate the data. A pad half-
miss refers to the case in which one or both of the correct
encryption and authentication pads are in the process of
being generated, so only part of the pad generation latency
is hidden. Lastly, a pad miss refers to the case in which the
correct pads are not currently in the table or in the AES
pipeline, so they must be generated directly and none of the
pad generation latency is hidden.

Figure 6 shows the average (across all benchmarks) pad
hit, pad half-miss, and pad miss rates. In Private, the pad
miss rate is nearly zero, so this scheme has the lowest execu-
tion time overheads. This is expected, because a dedicated
counter and its pre-generated set of pads are kept for each
processor pair in Private. In Shared, we reduce the storage
overhead relative to Private by using one counter and pad
in place of the send table. However, this results in an in-
creased pad half-miss rate for sending data, and a relatively
large miss rate in the processors’ receive tables for receiving
and decrypting data. This is due to the fact that a pro-
cessor’s decryption pads are only kept synchronized with a
particular sender’s encryption pad if consecutive messages
from a particular sending processor go to the same receiv-
ing processor. Finally, we see that the table performance
of Cached4 is between Private and Shared. The pad half-
miss rate for sending data is almost as low as in the Private
scheme, and the pad miss rate for receiving data is signifi-
cantly lower than that observed for Shared.

0%

20%

40%

60%

80%

100%

Send Receive Send Receive Send Receive

Pad Hit Rate Pad Half-Miss Rate Pad Miss Rate

Private Cached4Shared

Figure 6: Send and receive table performance for
our schemes on 16 processors.

7.2 Scalability of theCached Scheme
Since the motivation for our Cached scheme was to have

an approach with a small storage overhead that could scale
to work well on an arbitrary number of processors, we now
evaluate its effectiveness in achieving these goals. Figure 7

shows the execution time overhead of Cached8 as the system
size varies from 16 to 32 to 64 processors. As before, note
that the overhead shown for each system size is relative to
a DSM system of the same size, but without any data pro-
tection mechanisms. This figure shows that for most bench-
marks, and on the average, the execution time overhead ac-
tually decreases as the number of processors increases, but
in some cases the reverse is true. This can be explained by
two opposing performance factors we observe as the system
size increases. First, the size of the interconnection net-
work size increases as the number of processors increases,
and therefore data sent from one processor to another trav-
els more link hops on average to reach its destination. This
amortizes the encryption/decryption and authentication la-
tency for sending and receiving data over a greater total
network delay, and reduces the execution time overhead rel-
ative to the baseline system. The second factor is the pad
miss rate at the processors’ receive tables. As the system
size increases, the 8 table entries cover a smaller percentage
of the total number of processors. Therefore we observe in-
creasing pad miss rates for our applications as the DSM size
grows. Overall, no matter which factor dominates the total
execution time overhead, this figure shows that our Cached8
scheme indeed scales quite well to relatively large DSM sys-
tems, even with a small, fixed, table storage overhead of
2×8×705

8
bytes, or slightly less than 1.5 KB.

To further evaluate our Cached scheme, we also determine
how well this scheme performs at correctly caching counters
and pre-generated pads of frequently communicating proces-
sor pairs, even with small table sizes and a large number of
processors. Figure 8 shows the pad miss rate at the receive
tables for Cached8 with 16, 32, and 64 processors. This fig-
ure shows that our Cached8 scheme is effective at storing
the correct pre-generated pads most of the time. Even with
small, 8-entry tables, the pad miss rate only increases from
15% to 26% to 31% on average for 16, 32, and 64 proces-
sor DSM systems respectively. This is promising because it
indicates that even as the DSM size doubles, the pad miss
rate for our tables only suffers slightly.

7.3 Sensitivity Analysis
In this section, we present several sensitivity studies to

confirm that our schemes perform well for a variety of sys-
tem parameters. We first evaluate our schemes under var-
ious AES latencies and occupancies. Then we evaluate the
performance of our schemes with various DSM system sizes.
Lastly we examine the performance of our schemes as the
size of the L2 cache is varied.

Figure 9 shows the performance of Direct, Private, Shared,
and Cached4 averaged across all benchmarks as the AES
latency and occupancy is increased from 1× (the default
value) to 2× and 4×. The 4× latency corresponds to a 320-
cycle AES latency and 20-cycle occupancy, which is very

0%

5%

10%

15%

20%

25%

30%

35%

40%

barnes cholesky fft fmm lu ocean radiosity radix raytrace volrend water-n2 water-sp average

E
x
e
c
u
ti
o
n
 T
im
e
 O
v
e
rh
e
a
d

16p 32p 64p

Figure 7: Execution time overheads for our Cached8 scheme across 16, 32, and 64 processors.

0%

20%

40%

60%

80%

100%

16p 32p 64p

barnes

cholesky

fft

fmm

lu

ocean

radiosity

radix

raytrace

volrend

water-n2

water-sp

average

Figure 8: Pad miss rate at the receive tables for our
Cached8 scheme across 16, 32, and 64 processors.

pessimistic. This figure shows that as the AES latency and
occupancy increase, the overhead of all schemes increases,
especially for the 4× configuration. We investigate this fur-
ther and found that most of the increase in overheads is due
to the increase in occupancy of the AES unit which cannot
keep up with the arrival rate of encryption and authenti-
cation requests for both processor-memory and processor-
processor communication. Therefore, these additional over-
heads can be reduced by providing if more than one AES
unit. Also note that with one AES unit the performance gap
between the performance of Direct and our schemes becomes
larger (a percentage-point difference of 7% between Direct
and Cached4 for 1× vs. 15% for 4×). This indicates that
our latency-hiding techniques work even better with longer
AES unit latencies and AES queueing latencies.

0%

10%

20%

30%

40%

50%

60%

D
ir
e
ct

P
ri
va
te

S
h
a
re
d

C
a
ch
e
d
4

D
ir
e
ct

P
ri
va
te

S
h
a
re
d

C
a
ch
e
d
4

D
ir
e
ct

P
ri
va
te

S
h
a
re
d

C
a
ch
e
d
4

E
x
e
c
u
ti
o
n
 T
im
e
 O
v
e
rh
e
a
d

1x AES Lat. & Occp. 4x AES Lat. & Occp.2x AES Lat. & Occp.

Figure 9: Execution time overheads for 1x, 2x, and
4x the base AES latency and occupancy.

Figure 10 examines the execution time overhead of Di-
rect, Private, Shared, and Cached(p/4) (where p = number
of processors) as size of the DSM system varies from 16 (the
default value) to 32 to 64 processors. Again, because of
the amortization of the encryption/decryption and authen-
tication delays over more network hops in a large system, we
observe that our schemes perform well on large systems. We
note that even on a 64 processor system, however, the over-

head of Direct is still almost 10%, and each of our schemes
reduces this overhead by almost 50% or better.

0%

2%

4%

6%

8%

10%

12%

14%

16%

16
p
32
p
64
p

16
p
32
p
64
p

16
p
32
p
64
p

16
p
32
p
64
p

E
x
e
c
u
ti
o
n
 T
im
e
 O
v
e
rh
e
a
d

Direct Private Shared Cached(P/4)

Figure 10: Execution time overheads across 16, 32,
and 64 processor DSM systems.

Figure 11 validates our schemes against a number of L2
cache sizes, ranging from 256KB (the default value) to 512-
KB to 1MB. For the increased cache sizes of 512KB and
1MB, we adjust the L2 access latencies using the Cacti 3.0
toolkit [19]. This figure shows that in general the execution
time overhead decreases as the L2 cache size increases be-
cause the L2 cache miss rate decreases and less data must
be communicated between processors. This figure also vali-
dates that our schemes perform well across a variety of L2
cache sizes in a DSM system.

0%

2%

4%

6%

8%

10%

12%

14%

16%

2
5
6
K
B
 L
2

5
1
2
K
B
 L
2

1
M
B
 L
2

2
5
6
K
B
 L
2

5
1
2
K
B
 L
2

1
M
B
 L
2

2
5
6
K
B
 L
2

5
1
2
K
B
 L
2

1
M
B
 L
2

2
5
6
K
B
 L
2

5
1
2
K
B
 L
2

1
M
B
 L
2

E
x
e
c
u
ti
o
n
 T
im
e
 O
v
e
rh
e
a
d

Direct Private Shared Cached4

Figure 11: Execution time overheads for 256KB,
512KB, and 1MB L2 cache sizes.

8. CONCLUSIONS
While hardware memory encryption and authentication

schemes have been studied in detail for uniprocessor and
SMP systems recently, no such work has been done for DSM
systems. This paper presented the first study of data pro-
tection with hardware memory encryption and authentica-
tion mechanisms for processor-processor communication in
DSM systems. Through security analysis, we found that if
coherence protocol anomalies are detected, only data mes-

sages need to be fully protected by encryption, authentica-
tion, and a mechanism against message replays. We find
that all of our schemes perform well, and the performance
overheads due to security protection decreases as the DSM
size is increased. Through careful design, we found that
our Cached8 scheme with a fixed total storage overhead
of roughly 1.5KB allows efficient protection even for large-
scale DSMs. Cached also achieves relatively low performance
overheads across different DSM sizes and L2 cache sizes.
Across SPLASH-2 applications in a 16-processor DSM sys-
tem, the average overhead is 6-8%, of which the majority
comes from processor-memory protection rather than our
processor-processor protection.

9. ACKNOWLEDGMENTS
This research was supported by NSF Early Faculty Career

Awards CCF-0347425 and CCF-0447783, NSF award CCF-
0429802, IBM Faculty Partnership Award, North Carolina
State University and Georgia Institute of Technology. The
authors would like to thank all of the anonymous reviewers
for their helpful comments.

10. REFERENCES
[1] AMD. AMD Opteron Processor for Servers and Work-

stations. http://www.amd.com/us-en/Processors/ Pro-
ductInformation/0,,30 8796 8804,00.html, 2005.

[2] R. Anderson. Why cryptosystems fail. In Proceedings of
the 1st Conf. Computer and Communications Security
(CCS ’93), pages 215–227, 1993.

[3] R. K. B. Yang, S. Mishra. A high speed architecture for
galois/counter mode of operation (gcm). In Cryptology
ePrint Archive: Report 2005/146, 2005.

[4] D. Bartholomew. On Demand Computing – IT On Tap?
http://www.industryweek.com/ReadArticle.aspx? Arti-
cleID=10303&SectionID=4, June 2005.

[5] B. Gassend, G. Suh, D. Clarke, M. Dijk, and S. De-
vadas. Caches and Hash Trees for Efficient Memory
Integrity Verification. In Proc of the 9th International
Symposium on High Performance Computer Architec-
ture (HPCA-9), 2003.

[6] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. Enhanc-
ing the Security in the Memory Management Unit. In
Proc. of the 25th EuroMicro Conference, 1999.

[7] A. Huang. Hacking the Xbox: An Introduction to Re-
verse Engineering. No Starch Press, San Francisco, CA,
2003.

[8] A. B. Huang. The Trusted PC: Skin-Deep Security.
IEEE Computer, 35(10):103–105, 2002.

[9] IBM. IBM Power4 System Architecture White Paper.
http://www-1.ibm.com/servers/eserver/pseries/ hard-
ware/whitepapers/power4.html, 2002.

[10] J. Renau, et al. SESC. http://sesc.sourceforge.net,
2004.

[11] T. Kgil, L. Falk, and T. Mudge. ChipLock: Support for
Secure Microarchitectures. In Proceedings of the Work-
shop on Architectural Support for Security and Anti-
Virus (WASSA), Oct. 2004.

[12] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz.
Specifying and Verifying Hardware for Tamper- Re-
sistant Software. In IEEE Symposium on Security and
Privacy, 2003.

[13] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. MItchell, and M. Horowitz. Architectural Support
for Copy and Tamper Resistant Software. In Proc. of
the 9th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, 2000.

[14] D. A. McGrew and J. Viega. The Galois/Counter
Mode of Operation (GCM). http://csrc.nist.gov/ Cryp-
toToolkit/modes/proposedmodes/gcm/, 2004.

[15] T. Olavsrud. HP Issues Battle Cry in High-End Unix
Server Market. ServerWatch, http://www.serverwatch.
com/news/article.php/1399451, 2000.

[16] W. Shi, H.-H. Lee, M. Ghosh, and C. Lu. Architec-
tural Support for High Speed Protection of Memory In-
tegrity and Confidentiality in Multiprocessor Systems.
In Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques, pages
123–134, September 2004.

[17] W. Shi, H.-H. Lee, M. Ghosh, C. Lu, and A. Boldyreva.
High Efficiency Counter Mode Security Architecture
via Prediction and Precomputation. In Proceedings of
the 32nd International Symposium on Computer Archi-
tecture, June 2005.

[18] W. Shi, H.-H. Lee, C. Lu, and M. Ghosh. Towards the
Issues in Architectural Support for Protection of Soft-
ware Execution. In Proceedings of the Workshop on Ar-
chitectureal Support for Security and Anti-virus, pages
1–10, October 2004.

[19] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An inte-
grated cache timing, power, and area model. In Tech-
nical Report WRL Technical Report 2001/2. Compaq
Western Research Laboratory, Aug 2001.

[20] Silicon Graphics, Inc. SGI Altix 3000 Data Sheet.
http://www.sgi.com/products/servers/altix, 2004.

[21] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Efficient Memory Integrity Verification and
Encryption for Secure Processor. In Proc. of the 36th
Annual International Symposium on Microarchitecture,
2003.

[22] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The splash-2 programs: characterization and method-
ological considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture,
pages 24–36, 1995.

[23] C. Yan, B. Rogers, D. Englender, Y. Solihin, and
M. Prvulovic. Improving cost, performance, and secu-
rity of memory encryption and authentication. In Proc.
of the International Symposium on Computer Architec-
ture, 2006.

[24] J. Yang, Y. Zhang, and L. Gao. Fast Secure Proces-
sor for Inhibiting Software Piracy and Tampering. In
Proc. of the 36th Annual International Symposium on
Microarchitecture, 2003.

[25] Y. Zhang, L. Gao, J. Yang, X. Zhang, and R. Gupta.
SENSS: Security Enhancement to Symmetric Shared
Memory Multiprocessors. In International Symposium
on High-Performance Computer Architecture, February
2005.

