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ABSTRACT
Backpressure-based adaptive routing algorithms have been
studied extensively in the literature. Although backpressure-
based adaptive routing algorithms have been shown to be
network-wide throughput optimal, they typically have poor
delay performance under light or moderate loads because
packets may be sent over unnecessarily long routes. Further,
backpressure-based algorithms have required every node to
compute differential backlogs for every destination queue
with the corresponding destination queue at every adjacent
node. This computation is expensive given the large number
of possible pairwise differential backlogs and requires many
exchanges of backlog information between adjacent nodes.
In this paper, we propose new backpressure-based adaptive
routing algorithms that only use shortest-path routes to des-
tinations when they are sufficient to accommodate the given
traffic load, but the proposed algorithms will incrementally
expand routing choices as needed to accommodate increas-
ing traffic loads. We show analytically by means of fluid
analysis that the proposed algorithms retain network-wide
throughput optimality, and we show empirically by means of
simulations that our proposed algorithms provide substan-
tial improvements in delay performance. Our evaluations
further show that in practice, our approach dramatically re-
duces the number of pairwise differential backlogs that have
to be computed and the amount of corresponding backlog in-
formation that has to be exchanged because routing choices
are only incrementally expanded as needed.
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1. INTRODUCTION
The backpressure algorithm first introduced in [16] has

been extensively studied in the literature [4, 19, 12, 13, 1, 14,
2]. It was initially introduced in the context of wireless radio
networks, but it can be easily adapted to wireline networks
as well, for example for packet routing in backbone net-
works for the Internet. Although backpressure-based adap-
tive routing algorithms have been shown to be network-wide
throughput optimal [16], they have been rarely used in prac-
tice due to several shortcomings.

First, backpressure-based algorithms typically have poor
end-to-end delay performance under light or moderate loads
because packets may be sent over unnecessarily long routes,
potentially even traversing routing loops. The original back-
pressure algorithm allows the routing of a packet to any ad-
jacent node as the next-hop, even if the routing decisions
will cause a packet to take long detours.

Second, backpressure algorithms typically maintain per-
destination queues, and the routing and scheduling decisions
are based on maintaining differential backlogs for every des-
tination queue with the corresponding destination queue at
every adjacent node. Although the implementation of per-
destination queues has often been cited as a concern, we
note that significant advances have been made in memory
architectures since the original backpressure routing work
for implementing huge packet buffers at line rates that sup-
port a very large number of logical queues [10, 15, 18, 17]1.

Despite these advances that address the practical imple-
mentation of per-destination queues, the need remains for
backpressure-based algorithms to compute differential back-
logs for every destination queue with the corresponding des-
tination queue at every adjacent node. This computation is
expensive given the large number of possible pairwise dif-
ferential backlogs. Further, the computation requires many
exchanges of backlog information between every pair of ad-
jacent nodes for every pair of destination queues. The sub-
stantial amount of computations and associated information

1Some of these memory architectures have been in com-
mercial use in modern Internet routers to support per-class
queuing or per-flow queuing, where the number of logical
queues far exceeds the number of destinations needed for
backpressure routing.
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exchanges remain significant impediments for practical im-
plementations.

To address the poor delay performance concern, the back-
pressure idea can be applied to a fixed routing problem,
where packets are forced to use shortest paths [4]. How-
ever, limiting routing choices shrinks the network stability
region and is thus not throughput optimal. As we shall later
see in the evaluation section, limiting the routing choices to
just shortest paths will cause the network to saturate much
earlier than if all routing choices are permitted.

Several prior works [12, 11, 8, 19] have recognized the
importance of favoring shorter paths instead of only con-
sidering shortest paths. However, all these approaches still
require the computation of differential backlogs for all desti-
nation queues between every pair of neighboring nodes and
the associated exchanges of backlog information. Although
the approach studied in [19] further offers provably minimal-
hop routing, their solution dramatically increases the num-
ber of queues that each node needs to maintain since their
approach requires per-hop queues for each destination. The
dramatic increase in the number of queues makes the asso-
ciated differential backlog computation problem even more
difficult.

Finally, [4, 2] introduced the idea of shadow queues for
making adaptive routing decisions. Their idea is to create a
shadow network in which a backpressure algorithm is used
to make routing decisions. Although their approach does
not require per-destination queuing of packets, their solu-
tion still incurs the same calculation complexity as the orig-
inal backpressure algorithm for the shadow queues in that
the same computation of differential backlogs for all des-
tinations between every pair of neighboring nodes and the
same associated exchanges of backlog information are still
required. Further, although their approach stores the actual
packets in per-neighbor queues instead of per-destination
queues, the amount of packet buffer storage that each node
needs remains the same2. We believe that our solution is
complementary to [4, 2] in that the algorithms described in
this paper can be used as the shadow queue algorithm in
their solution framework.

1.1 Our approach
In this paper, we propose several modified backpressure-

based algorithms that address the aforementioned concerns.
Our work applies to both wirelined and wireless networks.
In particular, our modified backpressure-based algorithms
are based on the idea that routing choices should be lim-
ited to next-hops that are along shortest path routes by
default. This approach significantly reduces the amount of
differential backlog calculations and associated information
exchanges as each node only has to consider a subset of
next hops for each destination. In addition, this approach
addresses the delay performance concern by only routing
packets along shortest path routes when the traffic load is
light or moderate.

We propose to detect congestion by monitoring destina-
tion queue lengths or the waiting times of packets in the
destination queues. When the length of a destination queue
or the waiting time of a packet at the head of a destina-
tion queue exceeds some threshold, the routing choices for

2The state-of-the-art DRAM-based packet buffers [10, 15,
18, 17] can store a huge number of packets, tens of gigabytes,
and support a very large number of logical queues.

the corresponding destination queue get expanded to include
next hops that are not along shortest path routes. This
expansion of routing choices is on a per-destination queue
and a per-node basis. Although a packet may be forwarded
to a next hop that is not along a shortest path route to
the destination, the packet may still be forwarded along a
shortest path route from this next hop to the destination if
the corresponding destination queue at this next hop is not
yet congested. This way, routing choices are incrementally
expanded at different nodes in the network as needed with
increasingly longer paths considered. In effect, a packet can
take a detour whenever it encounters congestion along the
way to the destination. When a node expands its routing
choices for packets for a particular destination, it notifies
other adjacent nodes to begin providing backlog informa-
tion, and it expands its differential backlog calculations with
those adjacent nodes as well.

1.2 Contributions of the paper
The main contributions of this paper are as follows:

• We propose two modified backpressure-based algorithms,
called L-BP and A-BP, that are based on the incremen-
tal expansion of routing choices in response to conges-
tion at a node on a per-destination basis. L-BP detects
congestion by monitoring destination queue lengths,
whereas A-BP detects congestion by monitoring the
waiting times of packets at the heads of destination
queues. We refer to these algorithms as hybrid back-
pressure algorithms since some destination queues are
in shortest-path mode while others are allowed to be
forwarded to any neighbor node.

• We prove theoretically that both algorithms are network-
wide throughput optimal (i.e., the proposed algorithms
can explore the same network stability region as the
original backpressure algorithm). In particular, we use
a fluid model for our proofs, which models well the sys-
tem dynamics of our modified algorithms.

• Our proposed algorithms can be applied to both wire-
line and wireless networks. In particular, we exten-
sively evaluate our proposed algorithms on the adap-
tive Internet routing problem. We show our evalua-
tions on the Abilene network [9], a public PoP-level
academic network in the US, using actual traffic pro-
files measured on the network. Our simulation results
show that our proposed algorithms indeed provide sub-
stantial improvements in delay performance. Our sim-
ulation results further show that in practice, our ap-
proach dramatically reduces the number of pairwise
differential backlogs that have to be computed and the
amount of corresponding backlog information that has
to be exchanged because routing choices are only incre-
mentally expanded as needed. That is, only a subset
of destination queues in a subset of nodes need to con-
sider expanded routing choices even for traffic loads
that approach the edge of the network stability region.

The rest of the paper is organized as follows: In Section
2, we present the basic network model and summarize the
original backpressure algorithm. In Section 3, we present
our hybrid backpressure-based adaptive routing algorithms.
In Section 4, we use fluid analysis to prove that both of
these algorithms are throughput optimal. In Section 5, we
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describe our experimental setup and the simulation results.
We conclude our paper in Section 6.

2. BACKGROUND

2.1 The network model
We consider a multi-hop network represented by a directed

graph G = (N ,L), where N is the set of nodes, and L is
the set of directed links. All packets that enter the network
are associated with a particular commodity that corresponds
to the packet destination. A packet that is destined for
node c is regarded as a commodity c packet, c = 1, . . . , N .
We use Lc to denote the routing restrictions for commodity
c, which is the set of all links (a, b) that a commodity c
packet is allowed to use. Obviously, if there is no routing
restriction for commodity c packets, then Lc = L. The link
capacity μab(t) for link (a, b) is defined to be the maximum
number of packets that can be transmitted over link (a, b)
in one timeslot3. In general, multiple commodities might be
transmitted over this link during a single timeslot, but the
total rate cannot exceed the link capacity μab(t).

Each node i maintains a set of internal queues for storing
network layer packets according to their commodity. Let

A
(c)
n (t) represent the cumulative amount of new commod-

ity c packets that exogenously arrives to source node n by
timeslot t (since time 0). Assume these arrival processes are

admissible. Let D
(c)
ab (t) be the cumulative amount of com-

modity c packets sent from node a to node b via link (a, b)
by timeslot t (since time 0), a, b, c = 1, . . . , N .

Let Q
(c)
n denote the internal queue in node n that stores

packets destined for node c. With a slight abuse of notation,

let Q
(c)
n (t) represent the current backlog of commodity c

packets stored in an internal queue at node n. The queue

backlog Q
(c)
n (t) contains packets that arrived exogenously

by A
(c)
n (t) as well as packets that arrived endogenously from

other nodes by D
(c)
an (t), a = 1, . . . , N . We define Q

(c)
c (t) = 0

and D
(c)
cn (t) = 0 for all t, c = 1, . . . , N and n = 1, . . . , N , so

that any packet that has been delivered to its destination is
assumed to exit the network right away. The queue backlogs
then satisfy the following equation for all n = 1, . . . , N and
c = 1, . . . , N such that n �= c.

Q(c)
n (t) = Q(c)

n (0)−
N∑

b=1

D
(c)
nb (t) +

N∑
a=1

D(c)
an (t) +A(c)

n (t) (1)

2.2 The backpressure algorithm
The original backpressure algorithm was first introduced

in [16] in the context of wireless radio networks. It has been
shown to achieve optimal throughput [16] and can be served
as a solution to certain multi-commodity flow problems [3].

For each link (a, b), the algorithm defines the optimal com-
modity c∗ab(t) as the commodity that maximizes the differ-
ential backlog (ties broken arbitrarily):

c∗ab(t) � arg max
{c|(a,b)∈Lc}

[
Q(c)

a (t)−Q
(c)
b (t)

]
, (2)

3Although we define μab(t) here in terms of number of pack-
ets, our algorithms and results are applicable to any unit of
data as appropriate for the intended application. For exam-
ple, the unit of data can just be bits or be a rate.

and defines W ∗
ab(t) as the corresponding optimal weight:

W ∗
ab(t) � max

[
Q

(c∗ab(t))
a (t)−Q

(c∗ab(t))

b (t), 0

]
. (3)

If W ∗
ab(t) > 0, then the internal commodity c∗ab(t) queue is

scheduled to be served , and the packets will be transmitted
over link (a, b) during timeslot t. Otherwise, no packets will
be transmitted over link (a, b) during timeslot t.
It is common in wireless networks that only a subset of all

links, referred to as a schedule, can transmit packets simul-
taneously due to interference. Let S be the set of all possi-
ble schedules. The original backpressure algorithm finds the
optimal schedule, S∗(t) ∈ S as an optimization problem as
follows:

S∗(t) = argmax
S∈S

∑
(a,b)∈S

W ∗
ab(t)μab(t) (4)

At each timeslot t, for each link (a, b) ∈ S∗(t), μab(t) pack-

ets are removed from Q
(c∗ab)
a and transmitted to Q

(c∗ab)

b . If

Q
(c∗ab)
a does not have μab(t) packets, then all packets will

leave Q
(c∗ab)
a . For wireline networks, μab(t) is a typically

constant (e.g., one packet per timeslot), and S is always
the set of all links since all links can be activated without
interfering with each other.

The intuition behind the backpressure algorithm is that
packets may not be transmitted if the differential backlog
is non-negative, which indicates a congestion at the down-
stream node. The original backpressure algorithm considers
Lc = L for any commodity c packet. That is, any packet
in node a, no matter what commodity it belongs to, can
transmit to any neighbor node of node a, as long as Equa-
tion 3 is satisfied. This feature essentially exploits all feasible
paths in the network for any commodity packet, and as a
result, stabilizes the network under heavy traffic loads. How-
ever, this feature also incurs large end-to-end packet delays
when the network is only lightly or moderatey loaded be-
cause packets unnecessarily explore and traverse long paths.

3. HYBRID BP ALGORITHMS
As it has been mentioned in Section 2.2, the original back-

pressure algorithm assumes that Lc contains all of the links
of the network, L. This unconstrained routing may intro-
duce large delays when the traffic load is light, as a packet
can unnecessarily explore long paths.

One way to reduce the end-to-end delay is to restrict Lc

to only shortest paths. We call this Shortest-Path Backpres-
sure algorithm (SPBP). Assume node a has two neighbors,
b and c. Neighbor c is on the shortest path for commodity
d packets, while neighbor b is not. In this case, commodity
d packets in node a can only transmit to node c on condi-
tion that d is the optimal commodity for link (a, c) and its
weight, computed by Equation 3, is positive. In compari-
son, the original backpressure algorithm allows commodity
d packets to transmit to both node b and c, as long as d
is the optimal commodity for each link and the weight is
positive.

While SPBP can reduce the delay, it also shrinks the net-
work stability region, as it limits the routing choices com-
pared with the original backpressure algorithm. On the
other hand, our hybrid backpressure algorithms can retain
the same stability region as the original backpressure and re-
duce delay for light or moderate traffic loads by incremental
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Figure 1: A simple network showing how Lc changes.

expansion of routing choices. It starts with the shortest-path
routing choices as described above for SPBP. To overcome
its shortcomings, a dynamic change of routing choices is in-
troduced.

Each internal queue in a node n has two phases of routing.
A queue in Phase I can switch over to Phase II when a
transition criterion is satisfied. A Phase II queue can also
return Phase I when the transition criterion is no longer met.

Similar to the SPBP, packets in a Phase I queue can only
go to a subset of the neighbor nodes, which are on the short-
est paths from current node to the destination. In Phase II,
similar to the original backpressure algorithm, packets in
that queue can be transmitted to any neighbor of the cur-
rent node. The rest of the backpressure scheduling rules are
the same.

For each link (a, b), the algorithm defines the optimal com-
modity c∗ab(t) as the commodity that maximizes the differ-
ential backlog (ties broken arbitrarily):

c∗ab(t) � arg max
{c|(a,b)∈Lc}

[
Q(c)

a (t)−Q
(c)
b (t)

]
, (5)

and define W ∗
ab(t) as the corresponding optimal weight:

W ∗
ab(t) � max

[
Q

(c∗ab(t))
a (t)−Q

(c∗ab(t))

b (t), 0

]
. (6)

Solve the optimization problem

S∗(t) = argmax
S∈S

∑
(a,b)∈S

W ∗
ab(t)μab(t) (7)

The routing choices Lc are changing dynamically. In the
beginning, all internal per-destination queues are in Phase
I. This is equivalent to restricting Lc to allow only links on
the shortest paths. When a transition criterion is satisfied,

queue Q
(c)
n switches over to Phase II, and we add all (n, k)

to set Lc for any neighbor k of node n. When the transition

criterion is no longer satisfied, Q
(c)
n returns back to Phase I,

and we remove those added links from Lc. When all queues
are in Phase II, the Lc becomes L, and this is equivalent to
the original backpressure algorithm.

Consider the network shown in Figure 1 as an example

and consider queueQ
(c)
a . In the beginning, (a, b), (a, d) ∈ Lc,

because node b and node c are on shortest paths to node c.

When Q
(c)
a switches over to Phase II, (a, e), (a, f) are added

to Lc. When Q
(c)
a returns back to Phase I, (a, e), (a, f) are

then removed from Lc.
We propose two transition criteria, a length-based crite-

rion and an age-based criterion, which we refer to the cor-

responding hybrid backpressure algorithms as L-BP and A-
BP, respectively:

• L-BP: Let a constant Lmax to be the maximum back-
log that a queue Q

(c)
n can stay in Phase I. Whenever

Q
(c)
n (t) > Lmax, the queue Q

(c)
n switches over to Phase

II. Whenever Q
(c)
n (t) ≤ Lmax, it returns back to Phase

I.

• A-BP: Consider the head packet of queue Q
(c)
n . Let

E
(c)
n (t) represent the age of the head packet, which

is the period from the timeslot that the head packet
enters the queue until current timeslot t. Let Amax to
be the maximum age of the head packet for its queue to

stay in Phase I. Whenever E
(c)
n (t) > Amax, the queue

switches over to Phase II. Whenever E
(c)
n (t) ≤ Amax,

it returns back to Phase I.

4. THROUGHPUT OPTIMALITY
In this section, we use fluid model to prove that both

the L-BP and A-BP hybrid backpressure algorithms are
throughput optimal.

4.1 Modeling and assumptions
At each timeslot, each node needs to make a schedule to

transmit data in the network. Let S be the set of all possible

schedules. Each schedule β = (β
(c)
ab : a, b, c = 1, . . . , N) ∈ S

is a vector in Z
N×N×N , where β

(c)
ab gives amount of com-

modity c data sent from node a to node b via link (a, b)

under schedule β. It is assumed that β
(c)
cn = 0 for all β ∈ S,

c = 1, . . . , N and n = 1, . . . , N . It is also assumed that S is
monotone in the following sense: if β ∈ Z

N×N×N and there
exists β′ ∈ S such that β ≤ β′, then β ∈ S. This is because
if β′ is a valid schedule and we decrease the amount of data
sent in some of the links, the resulted schedule must also be
a valid one.

We define S(t) ⊂ S as the set of valid schedules given
the scheduling strategy and the systems status at timeslot
t. We assume that S(t) maintains the monotonicity of S,
i.e., β ∈ S(t) if there exists β′ ∈ S(t) such that β ≤ β′. A
necessary constraint on S(t) is that we must have

N∑
b=1

β
(c)
nb ≤ Q(c)

n (t) (8)

for all β ∈ S(t) and n, c = 1, . . . , N . For each schedule β ∈
S, we define a “collapsed” schedule γ(β) = (γ

(c)
n (β) : n, c =

1, . . . , N) ∈ Z
N×N where γ

(c)
n (β) =

∑N
b=1 β

(c)
nb − ∑N

a=1 β
(c)
an

4



is the speed that schedule β empties the backlog in queue

Q
(c)
n . Let ΓS ⊂ Z

N×N be the set of all possible collapsed
schedules given S. Let < ΓS > be the convex hull of ΓS .
Assume each link (a, b), a, b = 1, . . . , N , has a finite maximal

transmission speed, i.e., ∃ R ≥ 0 such that β
(c)
ab ≤ R for all

β ∈ S and a, b, c = 1, . . . , N . Then both S and ΓS are finite
sets.

To analyze the stability of our schemes, we first define a
family of generalized max-weighted scheduling schemes as
follows. Define the weight W (β,Q(t)) of schedule β given
queue length Q(t) as

W (β,Q(t)) �
N∑

a=1

N∑
b=1

N∑
c=1

β
(c)
ab [Q

(c)
a (t)−Q

(c)
b (t)]

At each timeslot, a schedule β ∈ S that solves the following
optimization problem will be selected for activation.

max
β

W (β,Q(t))

s.t. β ∈ S(t)
Both the baseline backpressure scheme and our hybrid back-
pressure schemes belong to this family of generalized max-
weighted scheduling schemes. The only difference among
these schemes is the definition of the valid schedule set S(t)
at each timeslot.

Let SBP (t) be the set of valid schedules at timeslot t for
the baseline backpressure scheme. Let SL(t) be the set of
valid schedules at timeslot t for the L-BP hybrid backpres-
sure scheme. Let SA(t) be the set of valid schedules at
timeslot t for the A-BP hybrid backpressure scheme. We
have

SBP (t) =

{
β ∈ S

∣∣∣∣
N∑

b=1

β
(c)
nb ≤ Q(c)

n (t) for all n, c = 1, . . . , N

}

SL(t) ⊆ SBP (t)

SA(t) ⊆ SBP (t)

SL(t) ⊇
{
β ∈ SBP (t)

∣∣∣β(c)
nb = 0 if Q(c)

n (t) < Lmax,

n, b, c = 1, . . . , N

}
(9)

SA(t) ⊇
{
β ∈ SBP (t)

∣∣∣∣∣

}

(10)


 : β
(c)
nb = 0 if at the begining of timeslot t the head

packet in Q
(c)
n has waited for more than Amax timeslots,

n, b, c = 1, . . . , N .
Let Tβ(t), β ∈ S, be the cumulative number of time slots

that schedule β was employed by timeslot t. From (8) , we
have

D
(c)
ab (t) =

∑
β∈S

t∑
�=1

β
(c)
ab · (Tβ(�)− Tβ(�− 1)) (11)

To formulate the fluid model, we extend the above discrete
time functions to the continuous time domain. Specifically,
for t ∈ [0,+∞), we define

A(c)
n (t) = A(c)

n (�t) n, c = 1, . . . , N

Q(c)
n (t) = Q(c)

n (�t) n, c = 1, . . . , N

D
(c)
ab (t) = D

(c)
ab (�t) + (t− �t)(D(c)

ab (�t�)−D
(c)
ab (�t)),

a, b, c = 1, . . . , N

Tβ(t) = Tβ(�t) + (t− �t)(Tβ(�t�)− Tβ(�t)) β ∈ S
where �t� is the largest integer that is smaller than or equal
to t and �t is the smallest integer that is larger than or
equal to t.
Assume the arrival process A(t) satisfies a strong law of

large numbers (SLLN), i.e., there exists a constant arrival

rate matrix λ = (λ
(c)
n : n, c = 1, . . . , N), such that, with

probability one,

lim
t→∞

A
(c)
n (t)

t
= λ(c)

n ∀ n, c = 1, . . . , N (12)

Without loss of generality, we assume that λ
(c)
c = 0 for all

c = 1, . . . , N for simplicity.

4.2 Basic fluid model equations
We now investigate the stochastic process (Q(t), D(t), T (t)),

where

Q(t) �
{
Q(c)

n (t)
∣∣n, c = 1, 2, . . . , N

}
D(t) �

{
D

(c)
ab (t)

∣∣ a, b, c = 1, 2, . . . , N
}

T (t) �
{
Tβ(t)

∣∣β ∈ S}
Let (Ω,F ,P) be the probability space that this stochastic
process is defined on, where Ω is the sample space, F is a
σ-field on Ω, and P is the probability measure on (Ω,F).
We shall sometimes use the notations Q(·, ω), D(·, ω) and
T (·, ω) to explicitly denote the dependency on the sample
path ω ∈ Ω.
Now, for each r > 0, we define fluid scaled processes(
Q̂r(t, ω), D̂r(t, ω), T̂ r(t, ω)

)
� 1

r

(
Q(rt, ω), D(rt, ω), T (rt, ω)

)
Proposition 1 (Fluid Model). For each sample path

ω ∈ Ω satisfying (12) and any sequence {rn} with rn → ∞,
there exists a subsequence {rnk} and continuous functions

(Q̂, D̂, T̂ ) with Q̂(0) = 0, such that(
Q̂rnk (·, ω),D̂rnk (·, ω), T̂ rnk (·, ω)

)
→

(
Q̂, D̂, T̂

)
u.o.c as k → ∞ (13)

where the convergence is uniform on compact sets (u.o.c).

The three-tuple (Q̂, D̂, T̂ ) is said to be a fluid limit path of
the system. It satisfies the following fluid model equations

Q̂(c)
n (t) = λ(c)

n t+

N∑
a=1

D̂(c)
an (t)−

N∑
b=1

D̂
(c)
nb (t)

n, c = 1, . . . , N and n �= c (14)

Q̂(c)
c (t) = 0 c = 1, . . . , N (15)

D̂
(c)
ab (t) =

∑
β∈S

β
(c)
ab T̂β(t) a, b, c = 1, . . . , N (16)

∑
β∈S

T̂β(t) = t (17)

Q̂(c)
n (t) ≥ 0 n, c = 1, . . . , N

T̂β(0) = 0, T̂β(·) is non-decreasing β ∈ S
T̂β(t)− T̂β(s) ≤ t− s for 0 ≤ s < t β ∈ S

5



The proof of Proposition 1 is somewhat standard. We refer
the reader to [5].

4.3 Main results
We first give the formal definition of throughput optimil-

ities.

Definition 1 (Rate Stability). We say the system
is rate stable, if with probability one,

lim
t→∞

∑N
n=1 D

(c)
nc (t)

t
=

N∑
n=1

λ(c)
n c = 1, . . . , N (18)

for any arrival process satisfying (12).

Note that the left-hand-side of (18) is actually the long-
run average rate of commodity c packets that depart from
the network, while the right-hand-side is the long-run aver-
age rate of commodity c packets that arrive to the network.
In other words, the system is guaranteed to achieve 100%
throughput whenever it is rate stable.

Definition 2 (Throughput Optimal). We say an ar-
rival process A(t) is admissible if its arrival rate matrix λ
belongs to < ΓS >. The system is said to be throughput op-
timal if it is rate stable under any admissible arrival process.

The main results of this section are stated as follows.

Theorem 1. The system is throughput optimal when work-
ing under the L-BP hybrid backpressure scheme.

Theorem 2. The system is throughput optimal when work-
ing under the A-BP hybrid backpressure scheme.

We’ll give the proof of these results using fluid model in
the rest of this section. More specifically, we’ll first prove
that their fluid model is weakly stable as defined in Defini-
tion 3 and the stability of the original system is then guar-
anteed by Proposition 2.

Definition 3 (Weak Fluid Stability). The fluid model
is said to be weakly stable if for each fluid limit path with
Q̂(0) = 0 we have Q̂(t) = 0 for all t ≥ 0.

Proposition 2. For a given arrival rate matrix λ, the
system is rate stable if the corresponding fluid model is weakly
stable.

Proof. From our assumptions in Section 4.1, we know

that β
(c)
cn = 0 for all β ∈ S and n, c = 1, . . . , N . Then by

(16), we know that D̂
(c)
cn (t) = 0 for all n, c = 1, . . . , N . This

equality will be used in justifying Equation (19) below.
Denote N = {1, . . . , N} as the set of nodes in the network.

From (14) and (15), for each commodity c, we have

N∑
n=1

Q̂(c)
n (t) =

∑
n∈N\{c}

Q̂(c)
n (t)

=
∑

n∈N\{c}

(
λ(c)
n t+

N∑
a=1

D̂(c)
an (t)−

N∑
b=1

D̂
(c)
nb (t)

)

=
∑

n∈N\{c}
λ(c)
n t+

∑
n∈N\{c}

N∑
a=1

D̂(c)
an (t)

−
∑

n∈N\{c}

N∑
b=1

D̂
(c)
nb (t)

=

N∑
n=1

λ(c)
n t+

∑
n∈N\{c}

N∑
a=1

D̂(c)
an (t)−

N∑
n=1

N∑
b=1

D̂
(c)
nb (t)

(19)

=

N∑
n=1

λ(c)
n t−

N∑
c=1

D̂(c)
nc (t) (20)

Equation (19) stands because (1) λ
(c)
c = 0 for c = 1, . . . , N

from our assumptions in in Section 4.1; and (2) D̂
(c)
cn (t) = 0

for n, c = 1, . . . , N .
If the fluid model is weakly stable, by Definition 3, we

know that
∑N

n=1 Q̂
(c)
n (t) = 0 for all t ≥ 0. Then by (20), we

have

N∑
c=1

D̂(c)
nc (t) =

N∑
n=1

λ(c)
n t

Thus

N∑
c=1

D̂(c),r
nc (t, ω) →

N∑
n=1

λ(c)
n t u.o.c as r → ∞

In particular,
∑N

c=1 D̂
(c),r
nc (1, ω) → ∑N

n=1 λ
(c)
n as r → ∞ or

lim
r→∞

∑N
n=1 D

(c)
nc (r)

r
=

N∑
n=1

λ(c)
n

which is actually the same to (18), proving the theorem.

4.4 Throughput Optimality of L-BP
We first present a lemma that will be used in the Proof of

Theorem 1.

Lemma 1. Each of the fluid limit paths satisfies the fol-
lowing fluid equation if the system works under the L-BP
hybrid backpressure scheme.

For each β ∈ S, d

dt
T̂β(t) = 0 if W (β, Q̂(t)) < max

α∈S
W (α, Q̂(t))

(21)

Proof. The proof is similar to the proof of Lemma 4 in
[6]. For completeness, we produce a full proof here.

Suppose (Q̂, D̂, T̂ ) is a fluid limit path. Fix a sample path
ω ∈ Ω such that (12) and (13) hold. There exists a sequence
{rk} with rk → ∞ as k → ∞, such that(

Q̂rk (·, ω),D̂rk (·, ω), T̂ rk (·, ω)
)

→
(
Q̂, D̂, T̂

)
u.o.c as k → ∞ (22)

Fix a time t ≥ 0. Define A(Q̂(t)) = {(a, c) | Q̂(c)
a (t) > 0}.

Let α̃ = argmaxα∈S W (α, Q̂(t)). Define β̃ via

β̃
(c)
ab =

{
α̃
(c)
ab if (a, c) ∈ A(Q̂(t))

0 otherwise

We have β̃ ∈ S since β̃ ≤ α̃. We now prove thatW (β̃, Q̂(t)) =

maxα∈S W (α, Q̂(t)). Note that
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W (α̃, Q̂(t)) =
N∑

a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)]

=
N∑

a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)] · 1

Q̂
(c)
a (t)=0

+

N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)] · 1

Q̂
(c)
a (t)>0

=

N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [0− Q̂

(c)
b (t)] · 1

Q̂
(c)
a (t)=0

+

N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)] · 1

Q̂
(c)
a (t)>0

≤
N∑

a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)] · 1

Q̂
(c)
a (t)>0

=

N∑
a=1

N∑
b=1

N∑
c=1

β̃
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)] · 1

Q̂
(c)
a (t)>0

=

N∑
a=1

N∑
b=1

N∑
c=1

β̃
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)]

Then we must have

W (β̃, Q̂(t)) = W (α̃, Q̂(t)) = max
α∈S

W (α, Q̂(t)).

Fix a schedule β ∈ S with W (β, Q̂(t)) < W (β̃, Q̂(t)).
There exists a constant ε > 0 such that

W (β̃, Q̂(t))−W (β, Q̂(t))〉 ≥ ε, Q̂(c)
a (t) > ε for (a, c) ∈ A(Q̂(t))

By the continuity of Q̂(·), there exists τ > 0 such that for
each s ∈ [t− τ, t+ τ ]

W (β̃, Q̂(t))−W (β, Q̂(t)) ≥ ε

2

Q̂(c)
a (s) >

ε

2
for (a, c) ∈ A(Q̂(t))

Let R be the maximal link speed all over the network as
defined in Section 4.1. By (22), there exists K > 0 such
that, for any k > K we have ε

4
rk > max(Lmax, NR) and for

each s ∈ [t− τ, t+ τ ]

∣∣∣∣
(
W (β̃, Q̂rk (s))−W (β, Q̂rk (s))

)

−
(
W (β̃, Q̂(s))−W (β, Q̂(s))

)∣∣∣∣ ≤ ε

4

∣∣∣Q̂(c),rk
a (s)− Q̂(c)

a (s)
∣∣∣ ≤ ε

4
, for (a, c) ∈ A(Q̂(t))

Thus for k > K and each s ∈ [t− τ, t+ τ ], we have

W (β̃, Q̂rk (s))−W (β, Q̂rk (s)) ≥ ε

4

Q̂(c),rk
a (s) ≥ ε

4
for (a, c) ∈ A(Q̂(t))

Therefore, for each time s ∈ [(t− τ)rk, (t+ τ)rk], we have

W (β̃, Q(s, ω)) > W (β,Q(s, ω)) (23)

Q(c)
a (s, ω) ≥ ε

4
rk > max(Lmax, NR) for (a, c) ∈ A(Q̂(t))

(24)

Condition (24) implies that schedule β̃ only serves queue
that has queue backlog larger than max(Lmax, NR) through-
out time interval [(t − τ)rk, (t + τ)rk] and the queues it
serves all have sufficient backlog to send. By (9), it must
be a valid schedule under the L-BP hybrid backpressure
scheme throughout time interval [(t − τ)rk, (t + τ)rk]. By
(23), the weight of schedule β is always less than that of

β̃, and thus should never be employed throughout time in-
terval [(t − τ)rk, (t + τ)rk]. Therefore, for any u1 ≤ u2,
u1, u2 ∈ [(t− τ)rk, (t+ τ)rk] we have

Tβ(u2, ω)− Tβ(u1, ω) = 0

Thus, for any u1, u2 ∈ [(t−τ), (t+τ)] with u1 ≤ u2, we have

Tβ(u2rk, ω)− Tβ(u1rk, ω) = 0

i.e.,

T̂
rk
β (u2, ω)− T̂

rk
β (u1, ω) = 0

Taking the limit as k → ∞, we have

T̂β(u2)− T̂β(u1) = 0

for any u1, u2 ∈ [(t − τ), (t + τ)] with u1 ≤ u2, from which
(21) follows, proving the lemma.

Proof of Theorem 1.
Proof. The proof is similar to the proof of Theorem 1 in

[5]. For completeness, we produce a full proof here.
It’s sufficient to show that the fluid model is weakly stable

for any arrival rate matrix λ that belongs to < ΓS >. Fix
an arrival rate matrix λ that belongs to < ΓS >. Suppose
(Q̂, D̂, T̂ ) is a fluid limit path with |Q̂(0)| = 0. Define a
Lyapunov function

f(t) =

N∑
n=1

N∑
c=1

(
Q̂(c)

n (t)
)2

We have f(0) = 0, f(t) ≥ 0 and f(t) = 0 ⇔ Q̂(t) = 0 for all
t > 0. It’s then sufficient to prove that such that f(t) = 0
for all t ≥ 0.

Since λ belongs to < ΓS >, there exist constants pβ ∈
[0, 1], β ∈ S, such that

λ(c)
n =

∑
β∈S

pβ · γ(c)
n (β) =

∑
β∈S

pβ

(
N∑

b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)
,

c = 1, . . . , N∑
β∈S

pβ ≤ 1 (25)

Let Wmax(Q̂(t)) = maxβ∈S W (β, Q̂(t)). For t ≥ 0 we have

Wmax(Q̂(t)) ≥
∑
β∈S

pβW (β, Q̂(t))

=
∑
β∈S

pβ

N∑
a=1

N∑
b=1

N∑
c=1

β
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)]

=
∑
β∈S

pβ

N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑

b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)
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=

N∑
n=1

N∑
c=1

Q̂(c)
n (t) ·

∑
β∈S

pβ

(
N∑

b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)

=

N∑
n=1

N∑
c=1

Q̂(c)
n (t) · λ(c)

n (26)

Let t be a fixed value such that Q̂(·) is differentiable at

t. Let S ′ be the set of schedules β such that W (β, Q̂(t)) =

Wmax(Q̂(t)). Then we have d
dt
W (β, Q̂(t)) = d

dt
Wmax(Q̂(t))

for β ∈ S ′ (see proof of Lemma 3.2 of [7]). By (17) and
Lemma 1, we have ∑

β∈S′

d

dt
T̂β(t) = 1

It follows that

N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑

b=1

d

dt
D̂

(c)
nb (t)−

N∑
a=1

d

dt
D̂(c)

an (t)

)

=
N∑

n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑

b=1

∑
β∈S′

β
(c)
nb

d

dt
T̂β(t)

−
N∑

a=1

∑
β∈S′

β(c)
an

d

dt
T̂β(t)

)

=
∑
β∈S′

d

dt
T̂β(t)

N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑

b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)

=
∑
β∈S′

d

dt
T̂β(t)

N∑
a=1

N∑
b=1

N∑
c=1

β
(c)
ab [Q̂

(c)
a (t)− Q̂

(c)
b (t)]

=
∑
β∈S′

d

dt
T̂β(t) ·W (β, Q̂(t))

= Wmax(β, Q̂(t))
∑
β∈S′

d

dt
T̂β(t)

= Wmax(β, Q̂(t))

Thus,

d

dt
f(t) = 2

N∑
n=1

N∑
c=1

Q̂(c)
n (t) · d

dt
Q̂(c)

n (t)

= 2

N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
λ(c)
n +

N∑
a=1

d

dt
D̂(c)

an (t)−
N∑

b=1

d

dt
D̂

(c)
nb (t)

)

= 2

N∑
n=1

N∑
c=1

Q̂(c)
n (t)λ(c)

n

− 2
N∑

n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑

b=1

d

dt
D̂

(c)
nb (t)−

N∑
a=1

d

dt
D̂(c)

an (t)

)

= 2

(
N∑

n=1

N∑
c=1

Q̂(c)
n (t)λ(c)

n −Wmax(Q̂(t))

)

≤ 0

In other words, we have d
dt
f(t) ≤ 0 for almost every t such

that f is differentiable at t. Since f(0) = 0, it follows that
f(t) = 0 for all t ≥ 0 (see, for example, the proof of Lemma
1 of [5]), proving the theorem.

4.5 Throughput Optimality of A-BP

Proof of Theorem 2.
Proof. It’s sufficient to prove that each of the fluid limit

paths satisfies the fluid equation (21) if the system works
under the A-BP hybrid backpressure scheme. The proof is
quite similar to that of Lemma 1.

Similarly, suppose (Q̂, D̂, T̂ ) is a fluid limit path. Fix a
sample path ω ∈ Ω such that (12) and (13) hold. There
exists a sequence {rk} with rk → ∞ as k → ∞, such that(

Q̂rk (·, ω),D̂rk (·, ω), T̂ rk (·, ω)
)

→
(
Q̂, D̂, T̂

)
u.o.c as k → ∞ (27)

Fix a time t ≥ 0. Define A(Q̂(t)) = {(a, c) | Q̂(c)
a (t) > 0}.

Let α̃ = argmaxα∈S W (α, Q̂(t)). Define β̃ via

β̃
(c)
ab =

{
α̃
(c)
ab if (a, c) ∈ A(Q̂(t))

0 otherwise

We have β̃ ∈ S and W (β̃, Q̂(t)) = maxα∈S W (α, Q̂(t)).

Fix a schedule β ∈ S with W (β, Q̂(t)) < W (β̃, Q̂(t)).
There exists a constant ε > 0 such that

W (β̃, Q̂(t))−W (β, Q̂(t))〉 ≥ ε

and Q̂
(c)
a (t) > ε for (a, c) ∈ A(Q̂(t)). By the continuity of

Q̂(·), there exists τ > 0 such that for each s ∈ [t− τ, t+ τ ]

W (β̃, Q̂(t))−W (β, Q̂(t)) ≥ ε

2

Q̂(c)
a (s) >

ε

2
for (a, c) ∈ A(Q̂(t))

Let R be the maximal link speed all over the network as
defined in Section 4.1. By (27), there exists K > 0 such
that, for any k > K we have ε

4
rk > max(RAmax, RN),

τ
2
rk > Amax and for each s ∈ [t− τ, t+ τ ]

∣∣∣∣
(
W (β̃, Q̂rk (s))−W (β, Q̂rk (s))

)

−
(
W (β̃, Q̂(s))−W (β, Q̂(s))

)∣∣∣∣ ≤ ε

4

∣∣∣Q̂(c),rk
a (s)− Q̂(c)

a (s)
∣∣∣ ≤ ε

4
for (a, c) ∈ A(Q̂(t))

Thus for k > K and each s ∈ [t− τ, t+ τ ], we have

W (β̃, Q̂rk (s))−W (β, Q̂rk (s)) ≥ ε

4

Q̂(c),rk
a (s) ≥ ε

4
for (a, c) ∈ A(Q̂(t))

Therefore, for each time s ∈ [(t− τ)rk, (t+ τ)rk], we have

W (β̃, Q(s)) > W (β,Q(s)) (28)

Q(c)
a (s) ≥ ε

4
rk > max(RAmax, RN), for (a, c) ∈ A(Q̂(t))

(29)

Condition (29) implies that for (a, c) ∈ A(Q̂(t)), the length

of queue Q
(c)
a is always larger than RAmax. Thus the delay

of the head-of-line packet in Q
(c)
a is always larger than Amax

throughout time interval [(t− τ)rk +Amax, (t+ τ)rk]. Since
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τ
2
rk > Amax, we have [(t − τ

2
)rk, (t +

τ
2
)rk] ⊂ [(t − τ)rk +

Amax, (t + τ)rk]. In other words, schedule β̃ only serves
queue with delay of head-of-line packets larger than Amax

throughout time interval [(t− τ
2
)rk, (t+

τ
2
)rk] and the queues

it serves all have sufficient backlog to send. By (10), it must
be a valid schedule under the A-BP hybrid backpressure
scheme throughout time interval [(t − τ

2
)rk, (t +

τ
2
)rk]. By

(28), the weight of schedule β is always less than that of β̃,
and thus should never be employed throughout time interval
[(t − τ

2
)rk, (t +

τ
2
)rk]. Therefore, for any u1 ≤ u2, u1, u2 ∈

[(t− τ
2
)rk, (t+

τ
2
)rk], we have

Tβ(u2, ω)− Tβ(u1, ω) = 0

Therefore, for any u1, u2 ∈ [(t − τ
2
), (t + τ

2
)] with u1 ≤ u2,

we have

Tβ(u2rk, ω)− Tβ(u1rk, ω) = 0

i.e.,

T̂
rk
β (u2, ω)− T̂

rk
β (u1, ω) = 0

Taking the limit as k → ∞, we have

T̂β(u2)− T̂β(u1) = 0

for any u1, u2 ∈ [(t− τ
2
), (t+ τ

2
)] with u1 ≤ u2, from which

(21) follows, proving the theorem.

5. EVALUATIONS
In this section, we present evaluations of our two pro-

posed hybrid backpressure algorithms. These algorithms
can be applied to both wireline and wireless networks. To
evaluate these algorithms, we focus on the adaptive routing
problem for the wireline case. In particular, we present our
evaluations using a real, large PoP-level backbone network,
namely the Abilene[9] network. The Abilene network has
been studied and discussed in the research literature. Its
network topology, traffic dataset, and routing information
are available in the public domain [20]. In the following, we
first describe our experimental setup and then present our
simulation results.

5.1 Experiment setup
The Abilene network is a public academic network in the

U.S. with 12 nodes interconnected by OC192, 9.92 Gbits/s
links. We use the traffic matrices obtained in [20] in the ex-
periments. Each traffic matrix consists of the demand rate
of every source destination pair within five minutes. There-
fore, these traffic matrices provide a snapshot of real total
demand offerings between each source-destination pair in
the Abilene network every five minutes. The actual dataset
spans from March 1, 2004 to September 4, 2004. As the traf-
fic matrices indicate, the Abilene network is underutilized.
To demonstrate that our hybrid backpressure algorithm im-
proves delay performance while retaining optimal through-
put, we selected the traffic matrix with the highest traffic
load, and scaled it by different factors. We incrementally
increased the scaling factor until the resulting arrival rates
exceed the network’s stability region. Then we normalized
that largest scaling factor.

We implemented our simulator in C++. Traffic genera-
tion follows a Bernoulli arrival process with probability

p =
traffic demand

link capacity
.

We assume μab(t) = 1. That is, at each timeslot, at most one
packet may be transmitted over each link. The end-to-end
delay is measured by the time period from the timeslot when
a packet enters the network by the traffic generation function
to the timeslot when the packet arrives at its destination
and thus leaves the network. The packets generated are
put into internal commodity queues directly based on their
destinations. To get reliable results, the simulation time
should be long enough so that the network is in its stable
status. We simulated for 40 million timeslots for each scaling
factor. For the results presented in this section, Lmax = 10
was used for the L-BP algorithm, and Amax = 2 was used
for the A-BP algorithm.

5.2 Experiment results

5.2.1 Delay performance
In this section, we present and compare the end-to-end de-

lay performance in the simulation results for original back-
pressure algorithm(BP), Open Shortest Path First (OSPF),
Equal-cost multi-path routing (ECMP), Shortest-path back-
pressure algorithm(SPBP), L-BP hybrid backpressure (L-
BP), and A-BP hybrid backpressure (A-BP) in Figure 2.
From these results, we can observe the following:

• Original BP: We observe in Figure 2a that under
Original BP, the delay first decreases and then in-
creases with increasing traffic loads. This phenomenon
validates that original BP incurs large delays under
light or moderate traffic loads, because packets explore
unnecessary long paths.

• OSPF and ECMP: OSPF and ECMP are popular
routing algorithms in the industry. From Figure 2b, we
observe that OSPF and ECMP have low average end-
to-end delay compared with Original BP. However,
they both saturate the network early. That means,
OSPF and ECMP shrinks the network stability region
to only about 75% of that under original BP.

• SPBP: Figure 2c illustrates that although SPBP re-
duces delay, it is not throughput optimal because it
saturates the network early compared with the original
backpressure algorithm. This is to be expected since
reducing routing choices shrinks the network stability
region.

• L-BP and A-BP: Figure 2d shows that both the L-
BP and A-BP hybrid backpressure algorithms achieve
the same optimal throughput as the original backpres-
sure algorithm. Besides, they offer much lower delay
under light or moderate traffic loads. We can further
observe that A-BP has even better delay performance
than L-BP.

5.2.2 Backlog information exchanges
In this section, we examine two metrics: the backlog infor-

mation exchange frequency and the percentage of queues in
the network that are in Phase II. A backlog information ex-
change is recognized when an internal per-destination queue
needs its neighbor’s corresponding per-destination queue back-
log information to compute the backpressure. For exam-
ple, according to the original backpressure algorithm, if a
node has three neighbors, then each internal per-destination
queue has to know the backlog information from its three

9
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Figure 2: Delay comparison under different traffic loads.
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Figure 3: Backlog information exchange frequency and per-
centages of Phase II queues under all traffic loads.
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Figure 4: Backlog information exchange frequency and per-
centages of Phase II queues for L-BP under the maximum
traffic load.
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neighbors, and the corresponding differential backlogs need
to be computed for these three neighbors. However, in our
proposed algorithms, if a queue is in Phase I, then the back-
log information only needs to be exchanged with a subset
of neighbor nodes that are a part of some shortest path
routes, and the differential backlog calculations only need
to be computed with respect to these nodes.

It should be noted that, among BP, SPBP, L-BP, and A-
BP algorithms, BP has the maximum number of backlog
information exchanges, which is the upper bound. SPBP
has the least and thus is the lower bound. For the L-BP/A-
BP algorithms, whether their backlog information exchange
frequencies are closer to BP or SPBP depends on how many
queues in L-BP/A-BP are in Phase II. If no queue in L-
BP/A-BP is in Phase II, then L-BP/A-BP is the same as
SPBP. If all queues in L-BP/A-BP are in Phase II, then
L-BP/A-BP is the same as BP.

Compared with SPBP, which is not throughput optimal,
L-BP/A-BP adaptively adds the number of queues that switch
over to Phase II from Phase I as needed to achieve the op-
timal throughput. The more queues are in Phase II, the
more bandwidth is taken by exchanging the backlog infor-
mation, and the more problems need to be considered for
the exchange (e.g., the backlog information is not up-to-
date). To some extend, compared with SPBP, the hybrid
backpressure algorithms sacrifice the frequency of backlog
information exchanges for the optimal throughput. In the
following experiments, we would like to explore how much
the cost is.

Figure 3 shows that the cost for the optimal throughput
is very small when our proposed hybrid backpressure algo-
rithms are used. Figure 3a shows the backlog information
exchange frequency for BP, SPBP, L-BP, and A-BP algo-
rithms, under different traffic loads. As expected, BP has
the maximum number of exchanges, which is a constant at
330. On the other hand, SPBP has the least number of ex-
changes, which is also a constant at 149. What is surprising
is that the L-BP/A-BP algorithms only have slightly more
backlog information exchanges compared with SPBP, even
at very high traffic loads. This means that, by adding a
bit more backlog information exchanges, L-BP/A-BP algo-
rithms can achieve the optimal throughput, which is a much
higher throughput than SPBP. In Figure 3b we can see an
increasing number of queues are switched over to Phase II
when the traffic load increases. However, the change is negli-
gible for L-BP. For A-BP, even under very high traffic loads,
the percentage is still below 23%. All of this translates to
much lower computational requirements for calculating the
necessary different backlogs. We simulate the network for
40 million timeslots for each traffic load, though the net-
work becomes stable enough to measure the performance
after 20 million timeslots. From timeslots 20 million to 40
million, we sample for every 100,000 timeslots, and thus we
have 200 data points for each traffic load. We finally average
over these 200 data points to obtain Figure 3.

Figure 4 and Figure 5 take the maximum traffic load as an
example, and show the number of backlog information ex-
changes and the percentages of Phase II queues from times-
lot 20 million to 40 million for L-BP and A-BP, respectively.
In Figure 4a, most data points for the backlog information
exchanges are between 149 and 151. Recall that the lower
bound from SPBP for the number of the backlog information
exchange frequency is 149. So Figure 4a shows that most
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Figure 5: Backlog information exchange frequency and per-
centages of Phase II queues for A-BP under maximum traffic
load.

of the time the backlog information exchange frequency of
L-BP is comparable to the SPBP algorithm. As can be seen
from Figure 4b, most of the time the majority of queues are
in Phase I.

In Figure 5, most of the 200 data points are between 176
and 178. Recall that the upper bound from BP for the num-
ber of the backlog information exchange is 330. Figure 5a
indicates that most of the time the addition of the backlog
information exchange is limited, and Figure 5b shows that
most of the time only less than 24% queues switch over to
Phase II. We also observe by comparing Figure 4b and Fig-
ure 5b that more queues switch over to Phase II for A-BP.
The reason is that we use a smaller number as Amax for A-
BP. Therefore, the queues in A-BP can more easily satisfy
the transition condition.

6. CONCLUSION
In this paper, we proposed two new hybrid backpressure-

based adaptive routing algorithms, called L-BP and A-BP,
that are based on the incremental expansion of routing choices
in response to congestion at a node on a per-destination ba-
sis. Both variants are shown to be throughput optimal by
means of a fluid model analysis. Simulation results using
actual traffic profiles on a public network demonstrate that
our proposed algorithms indeed provide substantial improve-
ments in delay performance. The simulation results further
show that in practice, our approach dramatically reduces
the number of pairwise differential backlogs that have to be
computed and the amount of backlog information that has
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to be exchanged because routing choices are only incremen-
tally expanded as needed.
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