
29

Safe Randomized Load-Balanced Switching
By Diffusing Extra Loads

SEN YANG, Georgia Institute of Technology, USA
BILL LIN, University of California, San Diego, USA

JUN XU, Georgia Institute of Technology, USA

Load-balanced switch architectures are known to be scalable in both size and speed, which is of interest due to

the continued exponential growth in Internet traffic. However, the main drawback of load-balanced switches

is that packets can depart out of order from the switch. Randomized load-balancing of application flows by

means of hashing on the packet header is a well-known simple solution to this packet reordering problem in

which all packets belonging to the same application flow are routed through the same intermediate port and

hence the same path through the switch. Unfortunately, this method of load-balancing can lead to instability,

depending on the mix of flow sizes and durations in the group of flows that gets randomly assigned to route

through the same intermediate port. In this paper, we show that the randomized load-balancing of application

flows can be enhanced to provably guarantee both stability and packet ordering by extending the approach

with safety mechanisms that can uniformly diffuse packets across the switch whenever there is a build-up of

packets waiting to route through some intermediate port. Although simple and intuitive, our experimental

results show that our extended randomized load-balancing approach outperforms existing load-balanced

switch architectures.

CCS Concepts: • Networks → Packet scheduling; Routers; Bridges and switches; Packet-switching networks;
• Mathematics of computing→ Queueing theory;

Additional Key Words and Phrases: Load-balanced switches; packet reordering; throughput guarantees; low

latency

ACM Reference Format:
Sen Yang, Bill Lin, and Jun Xu. 2017. Safe Randomized Load-Balanced Switching By Diffusing Extra Loads.

Proc. ACM Meas. Anal. Comput. Syst. 1, 2, Article 29 (December 2017), 37 pages. https://doi.org/10.1145/3154487

1 INTRODUCTION
Internet traffic continues to grow exponentially, fueled by an increasing adoption of cloud computing

and video streaming and by an explosion of network-connected devices with increasing access

speeds. To keep up with the relentless traffic growth with reliable service, network operators

need high-performance switch architectures that can scale well in both size and speed, provide

throughput guarantees, achieve low latency, and maintain packet ordering. However, conventional

switch architectures like centrally-scheduled input-queued crossbar switches are not scalable.

Authors’ addresses: Sen Yang, Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta,

GA, USA, sen.yang@gatech.edu; Bill Lin, University of California, San Diego, Department of Electrical and Computer

Engineering, La Jolla, CA, USA, billlin@ece.ucsd.edu; Jun Xu, Georgia Institute of Technology, School of Computer Science,

Atlanta, GA, USA, jx@cc.gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

2476-1249/2017/12-ART29 $15.00

https://doi.org/10.1145/3154487

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

https://doi.org/10.1145/3154487
https://doi.org/10.1145/3154487

29:2 Sen Yang, Bill Lin, and Jun Xu

Input
Ports

Intermediate
Ports

Output
Ports

1

2

N

1

2

N

1

2

N

1st Stage
Switch

2nd Stage
Switch

Fig. 1. Generic load-balanced switch.

Alternatively, a promising scalable class of switch architecture is the load-balanced switch, which

was first introduced by Chang et al. [6, 7], and later further developed by others (e.g. [10, 14, 16,

18, 27]). These architectures all build upon the idea of Valiant load-balancing [26] which predated

the design of any IP switch or router. They rely on two switching stages for routing packets.

Figure 1 shows a diagram of a generic two-stage load-balanced switch. The first switching stage

connects the first stage of input ports to the center stage of intermediate ports, and the second

switching stage connects the center stage of intermediate ports to the final stage of output ports.

Both switching stages execute a deterministic connection pattern such that each input is connected

to each output of a switching stage
1

N th of the time. This can be implemented for example using

two identical N × N crossbar switching stages where each switching stage goes through the same

predetermined cyclic-shift connection pattern such that each input is connected to each output

of a switching stage exactly once every N cycles (time slots). Alternatively, as shown in [16], the

deterministic connection pattern can also be efficiently implemented using optics in which all

inputs are connected to all outputs of a switching stage in parallel at a rate of
1

N the line rate.

Although the basic load-balanced switch originally proposed in [6] is capable of achieving

throughput guarantees, it has the critical problem that packet departures can be badly out of

order. In the basic load-balanced switch, consecutive packets at an input port are spread to all N
intermediate ports upon arrival. Packets going through different intermediate ports may encounter

different queueing delays. Thus, some of these packets may arrive at their output ports out-of-

order. This is detrimental to Internet traffic since the widely used TCP transport protocol falsely

regards out-of-order packets as indications of congestion and packet loss. Therefore, a number of

researchers have explored this packet ordering problem.

One simple approach for ensuring packet ordering, called Application Flow-Based Routing (AFBR)

algorithm [16], is based on the following insight: To prevent harmful effects in TCP performance

due to out-of-order packets, only packets belonging to the same application flow (e.g. a TCP/IP

flow) have to depart from their output port in order. This can be achieved by forcing all packets

that belong to the same application flow to go through the same intermediate port. In doing so,

all packets belonging to the same application flow are guaranteed to take the same path through

the switch, which avoids reordering among them. The selection of intermediate port can be easily

achieved by hashing on the header field of every packet (source and destination IP addresses,

source and destination ports, and protocol identification) to obtain a value from 1 to N . Hence this

approach is nicknamed TCP hashing. Although simple and intuitive, the main drawback of TCP

hashing is that stability cannot be guaranteed, as we will elaborate shortly.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:3

Alternatively, most existing approaches that can guarantee both stability and packet ordering are

based on some form of complete or partial aggregation of packets into frames or stripes. Uniform

Frame Spreading (UFS) [16], Full-Order Frames First (FOFF) [16], Padded Frames (PF) [14], and

Sprinklers [10] are representative examples of such approaches. However, these methods pay a

significant price for ensuring packet ordering in that they perform significantly worse than the

originally proposed basic load-balanced switch [6].

1.1 Our Approach
In this paper, we investigate the sources of instability in the TCP hashing approach in order to

derive mechanisms that can mitigate them. In particular, at the first switching stage, each input port

i is only connected to an intermediate port once every N time slots, or equivalently at
1

N of the line

rate, via a deterministic connection pattern. Persistent overloading occurs at an input port when

the arrival rate of packets hashed to the same intermediate port exceeds
1

N of the line rate for a

long period of time, which can occur depending on the mix of flow sizes and durations in the group

of flows that gets randomly hashed to route through the same intermediate port. For example, such

persistent overloading can happen if there is a long-lived elephant flow in their midst. Although

the notion of instability used here is a practical one (with respect to the limited packet buffer a

switch has on each input or intermediate port), we will explain that TCP hashing could become

unstable also under a theoretical and more restrictive notion of stability called rate-stability [9]. In

comparison, the approach that we propose in this paper is provably rate-stable.

Similarly, at the second switching stage, each intermediate portm is also only connected to an

output port j at 1

N of the line rate. Packets queued at an intermediate port may come from different

input ports, possibly from all N of them. Overloading occurs at an intermediate port when the

arrival rate of packets destined to the same output port, from all N inputs, exceeds
1

N of the line

rate.

1.1.1 Two Safety Mechanisms. To remedy these problems, we extend the basic flow randomiza-

tion scheme with two safety mechanisms. First, let λi j be the arrival rate for VOQi j , the Virtual

Output Queue (VOQ) of packets arriving at input port i with output destination j. Depending on
the hash values of their flow identifiers, the set of TCP/UDP flows withinVOQi j can be partitioned

into N subsets called bins. Each binm,m = 1, 2, . . . ,N , corresponds to the set of flows that are

hashed (and hence need to be switched) to intermediate portm. Using a simple credit scheme that

we will describe in Section 3.1.4, without any knowledge or measurement of the value of λi j , we

can limit the rate at which packets in each bin are served (switched) to at most
λi j
N . We will show in

Section 3.1.4 that, the first safety mechanism, when enforced on every VOQ, ensures no overloading

at any input or intermediate port, by the “normal" (i.e., rate-limited) traffic, under any admissible
arrival traffic, and that it does so in the least restrictive manner in the following sense:

λi j
N is indeed

the maximum traffic rate that can be granted to each bin safely (i.e., without overloading any input

or intermediate port).

However, by limiting the service rate of each such bin at an input port to
λi j
N , those bins with

traffic arrival rates exceeding that limit (e.g., bins that contain elephant flows as mentioned above)

can grow in size. To ensure that these bins do not grow infinitely, thus leading to instability, we

implement a second safety mechanism in which once a build-up of packets at a bin exceeds some

thresholdW ≥ N in size, we “evacuate" the excess load by uniformly diffusing the build-up of

packets across all intermediate ports (i.e., a full-frame of N packets are uniformly spread one-to-one

to the N intermediate ports). We introduce an easy-to-implement technique to ensure packet

ordering when this evacuation mechanism kicks in, which involves requiring a “to-be-evacuated"

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:4 Sen Yang, Bill Lin, and Jun Xu

bin to wait till it is safe (from packet reordering) to do so. Due to this waiting, careful scheduling

is needed to coordinate an “orderly evacuation" of all bins being evacuated at any input port to

ensure that every bin has a fair chance to have its backlog duly cleared, which we will explain in

Section 3.1.5.

1.1.2 The Stability Proof. We prove that our Safe Randomization Switch (SRS) scheme can

achieve 100% throughput (i.e., rate-stability), while guaranteeing packet order, under any admissible

input traffic that is allowed to change rapidly dynamically over time. Proving the stability of SRS is

very challenging partly because it appears hard to make the standard machinery of fluid analysis [8]

work for this problem, despite our considerable efforts.

In arriving at this proof, we have invented a general methodology for proving the stability of

queues. Our proof is based on the following extremal argument. Suppose SRS is not stable so that

the total length Q(t) of a subset of queues in SRS, as a function of time t , does not satisfy the

stability condition limt→∞
Q (t)
t = 0. Then we define γ ≡ lim supt→∞

Q (t)
t > 0. Let ti , i = 1, 2, . . ., be

a sequence of times such that limi→∞ ti = ∞ and limi→∞
Q (ti)
ti
= γ . Starting with this time sequence

ti , by the properties of the aforementioned credit scheme (for rate-limiting “TCP hashed" traffic into

each intermediate port) and the aforementioned scheduler for the orderly evacuation, and through

standard busy period arguments, we can construct another sequence of times t ′i , i = 1, 2, . . ., such

that limi→∞ t ′i = ∞ and lim supi→∞
Q (t ′i)
t ′i
> γ , which contradicts the definition of γ .

1.2 Contributions of the Paper
The basic ideas of SRS were first proposed in an extended abstract [28]. In this paper, we expand

on these ideas significantly and provide a stability proof of SRS. This paper makes the following

three major contributions:

• First, we propose a new load-balanced switch architecture, called SRS, that solves the packet

reordering problem of load-balanced switches and has a delay performance that compares

favorably with other solutions.

• Second, we prove that, like other load-balanced switch solutions, the SRS architecture can achieve

100% throughput under any admissible arrival traffic, while guaranteeing packet order. The

methodology used in the proof, described above, is novel and general, and is a major contribution

by itself.

• Third, although the basic flow randomization approach has long been regarded as a simple and

intuitive solution to the load-balanced switching problem, its lack of stability guarantees thus

far has led many researchers to develop more complex solutions. We show that the basic flow

randomization approach can indeed be made stable through the proposed safety extensions.

The rest of the paper is organized as follows. In Section 2, we describe the packet reordering

problem in more details and provide background on the Uniform Frame Spreading (UFS) algorithm.

In Section 3, we describe the SRS architecture in details. In Section 4, we prove the stability of the

SRS architecture. In Section 5, we compare the average delay performance of SRS with other LBS

solutions. In Section 6, we provide a brief review of the literature, before concluding in Section 7.

2 BACKGROUND ON BASIC LBS AND UFS
In this section, we provide a brief description of the periodic sequences of connections executed

at both switching fabrics shown in Figure 1, explain the packet reorder problem of the basic

Load-Balanced Switch (LBS) in more details, and describe the Uniform Frame Spreading (UFS)

algorithm, a solution to this packet reorder problem and building block of our SRS architecture. In

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:5

this work, we make the standard assumption that all incoming variable-size packets are segmented

into fixed-size packets (sometimes referred to as cells), which are then reassembled when leaving

the switch. Hence we consider the switching of only fixed-size packets in the sequel, and each such

fixed-size packet takes exactly one time slot to transmit. We also make the standard homogeneity

assumption that every input, intermediate, or output port operates at the same speed: Each can

process and transmit exactly one (fixed-size) packet per time slot. We refer to this service rate as 1.

Every connection made in a switching fabric also has speed of 1 (i.e., one packet can be switched

per time slot). Since N connections are made by a switching fabric at any time slot, up to N packets

can be switched by it during each time slot.

The first switching fabric executes a periodic “increasing” sequence, that is, at any time slot t ,
each input port i is connected to the intermediate port ((i + t) mod N) + 1. The second switching

fabric, on the other hand, executes a periodic “decreasing" sequence, that is, at any time slot t , each
intermediate portm is connected to the output port ((m−t) mod N)+1. Following the sequence of

connection patterns in the first switching fabric, each input port i can “stripe" a frame of N packets,

or all packets that are ready for service if there are less than N of them, to intermediate ports

1, 2, . . . ,N respectively, in N consecutive time slots. As explained before, two packets belonging to

the same VOQ can go to two different intermediate ports, experience different queueing delays,

and arrive at the output port out of order.

Unlike the basic LBS, in which a frame of packets could come from different VOQs and be only

partially filled (when there are less than N of them as mentioned above), Uniform Frame Spreading

(UFS) [16] requires that every frame of packets belong to the same VOQ and the frame is fully

filled, before it can be served. Each such full frame is then striped across the N intermediate ports

like in a basic LBS. This ensures that for each full frame of N packets, the set of N queues at the

N intermediate ports that they travel through are of equal length, and hence induce the same

queueing delay on these N packets. Consequently, these N packets will (shortly) start to appear

respectively at the heads of these N queues in N consecutive time slots and be striped to their

respective destination output ports in the correct order by the second switching fabric. A drawback

of UFS, however, is that a low-rate VOQ could incur a long buffering delay waiting for a full frame

of N packets to fill in order for it to be eligible for service. SRS does not inherit this buffering delay

issue from UFS, because as mentioned earlier, it uses UFS only for “evacuating" a bin (consisting of

a subset of flows in a VOQ) that has too many (rather than too few) packets in it.

3 DESIGN OF SRS
Since the connection patterns at both switching fabrics are deterministic periodic sequences, as

explained in Section 2, the actions of an SRS switch are completely determined by its policies of

scheduling packets (for switching service) at both the input ports and the intermediate ports. We

describe the operations, including such scheduling policies and other supporting mechanisms, at

input ports and at intermediate ports in Sections 3.1 and 3.2 respectively.

3.1 Operations at an Input Port
Throughout this section, whenever possible, we describe only the operations at an input port i , since
those at other input ports are identical. We emphasize that all these operations are fully distributed

and have a total computational complexity ofO(1) per packet per port when properly implemented.

Readers may refer to Appendix C for detailed discussions on this and other complexities (e.g.,

space).

3.1.1 Two Modes of Operations: RSP and UFS. As described earlier, for each output (destination)

port 1 ≤ j ≤ N , packets in VOQi j are divided into N bins via “TCP-hashing", which we denote as

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:6 Sen Yang, Bill Lin, and Jun Xu

Bi12

Bi11

Bi22

Fig. 2. The N2 bins at input port i.

Bi j1,Bi j2, . . . ,Bi jN . A logical arrangement of the N 2
bins at input port i is illustrated in Figure 2.

Each column of bins correspond to a VOQ. For example, the jth column, highlighted in the figure,

contains N bins Bi j1, Bi j2, . . ., Bi jN that belong to VOQi j . Each bin is a FIFO queue: All packet

arrivals to the bin are to be served in the FIFO order.

By default, for any 1 ≤ m ≤ N , packets in bin Bi jm are routed through the intermediate port

m. We refer to this mode of operation as the Random Single Path (RSP) mode. A bin is in the RSP
mode by default, unless it enters the other mode of operation called the UFS mode (described next)

due to exceeding its rate limit, as mentioned earlier. With the RSP mode, all packets belonging

to the same application (TCP or UDP) flow are routed along the same path through the switch,

thereby ensuring their packet order. As explained earlier, we limit, the rate at which packets in

each bin Bi jm can be served under the RSP mode to
λi j
N , where λi j is the arrival rate ofVOQi j . This

rate-limiting is achieved using a simple credit-based mechanism (to be described in Section 3.1.4),

in which a bin Bi jm is eligible for service under the RSP mode, if and only if the bin is in the RSP

mode (i.e., has not entered the UFS mode) and has enough credit left to pay for the (RSP) service;

we call such a bin RSP-ready.
When the packet arrival rate to a bin Bi jm exceeds this rate limit

λi j
N , the nonconforming packets

have to be queued at the bin, due to having no credit left to pay for their service under the RSP

mode, and the length of the queue can become very long. Our solution is, once the queue length

reaches a thresholdW (≥ N), the switch will eventually allow all packets in the bin to “evacuate"

through all N intermediate ports simultaneously, one frame (of N packets) at a time and hence

at a very high rate, until the queue is cleared. We refer to this mode of operation as UFS, named

after the prior work (described earlier) that serves packets within each VOQ frame by frame to

avoid packet reorder [16]. As discussed earlier, when the service of a bin is switched from the

RSP mode to the UFS mode, care needs to be taken so that packet reorder will not happen during

the transition, which we will elaborate on in Section 3.1.3. In the meantime, we simply call a bin

UFS-ready when it is safe (from packet reorder) to do so.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:7

Algorithm 1 The “master" bin scheduling policy at input port i .

When connected to intermediate port 1:
1: if at least one bin is UFS-ready then
2: Transmit the HOL frame (of N packets) of a UFS-ready bin (say Bi jm) in the next N time

slots;

3: else
4: Switch packets in the RSP mode in the following N time slots, as described in Algorithm 2;

3.1.2 The “Master" Bin Scheduling Policy. The “master" bin scheduling policy, which governs

the order in which these N 2
bins are serviced (by the first switching fabric), is shown in Algorithm

1. It essentially states that, when there are both RSP-ready and UFS-ready bins waiting for their

respective services, UFS-ready bins take priority. This policy makes sense because UFS kicks in

only when a bin has a very long queue and needs to be “evacuated" quickly. However, as we will

elaborate in Appendix F, it may unfairly starve (i.e., deny service to) certain bins while sparing

others, when the switch is persistently overloaded, although ideally it should starve every bin in a

proportional fair way.

The “pseudocode" of this policy is shown in Algorithm 1. Whenever the input port i is connected
to intermediate port 1 (by the first switching fabric), it checks whether one or more of these N 2

bins are UFS-ready. If so, the input port i selects one of the UFS-ready bins – according to the

aforementioned “orderly evacuation" policy that we will elaborate on in Section 3.1.5 – for a full

frame of UFS service: It transmits the HOL frame (i.e., the first N packets) of the selected bin in the

next N time slots to the intermediate ports 1, 2, . . . ,N respectively.

Otherwise, input port i instead serves packets in the RSP mode during the next N time slots

as follows. Recall that the input port i is connected to intermediate port 1, 2, ...,N respectively

in next N time slots. This corresponds to rows 1, 2, . . . ,N (of bins) in Figure 2 taking turns to

receive a unit (packet) of switching service. When it is the turn of rowm (highlighted in Figure 2

and containing bins Bi1m ,Bi2m , . . . ,Binm), to receive service, if one or more of these bins are both

RSP-ready and non-empty, one such bin will be selected – in a round-robin manner – to receive

RSP service (i.e., to have its HOL packet switched to intermediate portm) during this time slot.

This round-robin scheduling can be implemented by maintaining, for each “row"m, a linked list of

non-empty RSP-ready bins, and the computational complexity of this implementation is only O(1)
per packet per port, as we will elaborate in Appendix C. Note that, adopting the round-robin policy

here for scheduling non-empty RSP-ready bins (in each rowm) is for optimizing the overall delay

performance of the switch, and for providing a certain degree of fairness to these bins. It is not

essential for ensuring switch stability: Our rate-stability proof assumes only that this scheduling

policy is work-conserving in the sense the input port i must serve a non-empty RSP-ready bin in

rowm if at least one such bin exists.

3.1.3 UFS Waiting and Evacuation Phases for Packet Reorder Avoidance. Recall that when the

queue length of a bin Bi jm reaches or exceeds the aforementioned evacuation thresholdW , its

service mode is changed to UFS (from RSP). When this happens, Bi jm is no longer eligible for RSP

service, even if it still has unused credits, until its queue is eventually cleared by UFS. In this case,

the intermediate portm is informed of this change. This notification can be piggybacked to the

next packet (RSP or UFS) destined for intermediate portm, and hence does not have to consume a

time slot.

This bin Bi jm is however not eligible for the UFS service right away (i.e. not UFS-ready) for the

following reason. One or more packets sent earlier from the same input bin Bi jm to the intermediate

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:8 Sen Yang, Bill Lin, and Jun Xu

port may still be queued at intermediate portm, and more specifically at intermediate bin Hi jm , as

will be explained in Section 3.2. Suppose Bi jm is allowed to start receiving UFS service right away

and sends out one or more UFS frames to the intermediate ports. Because UFS packets also take

strict priority over RSP packets at intermediate ports, as we will explain in Section 3.2, those UFS

packets sent to intermediate portm from Bi jm may arrive at and then depart from the output port

j before those RSP packets queued in Hi jm do, causing packet reorder. We refer to the status of bin

Bi jm at this moment as in the UFS waiting phase, in the sense that it has entered the UFS mode, but

is not yet eligible for UFS service.

When the aforementioned intermediate bin Hi jm has been cleared at intermediate port m, a

notification message is sent back to input port i . Upon receiving the notification, Bi jm exits the UFS

waiting phase, becomes UFS-ready, and joins the ranks of other UFS-ready bins for the “orderly

evacuation". We say that the bin Bi jm enters the UFS evacuation phase at this moment. By waiting

for Hi jm to clear before evacuating Bi jm , which prevents the reordering between an earlier RSP

packet and a later UFS packet within the same VOQ, SRS ensures correct packet order in every

VOQ because, as discussed earlier, reordering cannot happen between two RSP packets or two

UFS packets within the same VOQ. Note the overhead caused by such notifications is quite small,

considering that even an excessively overloaded bin (say with a traffic rate close to 90% of the VOQ

it belongs to) triggers such a notification no more frequent than once everyO(W) time slots, where

W ≥ N is the aforementioned UFS evacuation threshold.

So far, our description of the operations at an input port i is complete except for the following

two critical components: (i) the credit-based mechanism for limiting the rate at which each bin

Bi jm can receive (switching) service under the RSP mode to
λi j
N , where λi j is the traffic arrival rate

to VOQi j , and (ii) the scheduling policy for ensuring the “orderly evacuation" of UFS-ready bins.

They will be described in the next two sections respectively.

3.1.4 Credit-Based Mechanism for RSP Rate-Limiting. In this section, we describe the aforemen-

tioned credit-based mechanism for limiting the rate, at which each bin Bi jm can receive switching

service under the RSP mode, to
λi j
N . Before we do so, however, we need to first explain the rationale

behind setting this rate limit to
λi j
N . Recall that RSP is the preferred and default mode of operation

due to its low buffering delay, so we would like to make this rate limit as high as possible. Our

rationale for this rate-limit is simple yet subtle: For any 1 ≤ i, j,m ≤ N , λi jN is the highest RSP traffic
rate the input port i can grant, under any “nondiscriminatory policy" (i.e., with a policy statement
that does not “discriminate against" any particular values of i, j,m), to the bin Bi jm without risking
compromising the rate-stability of the set of bins that buffer packets destined for the output port j,
at the intermediate portm.We will elaborate on the details and the subtleties of this rationale in

Appendix A.

It is actually more appropriate to consider this objective of rate-limiting a fair resource allocation

scheme: Under this scheme, for any 1 ≤ i, j ≤ N , the switch provides almost equal amount of RSP

service to the N bins Bi j1, Bi j2, . . ., Bi jN that traffic inVOQi j splits into (via TCP-hashing). How to

perform such a fair resource allocation, using various token bucket, leaky bucket, credit counter

primitives, and their combinations, has been thoroughly studied for more than three decades

[3, 17, 21, 24, 25]. In fact, many techniques for accomplishing this fair resource allocation task, all

of which are slight variants of one another and provide similar or identical guarantees, can be

pieced together using these “off-the-shelf" primitives.

We piece together one that is simple to state, cheap to implement, and low in computational

complexity (O(1) per packet per port), but do not consider it a contribution of this work. It is a

credit redistribution mechanism, shown in Algorithm 2 and Algorithm 3. In this mechanism, each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:9

Algorithm 2 Scheduling RSP packets at input port i

When connected to intermediate port m = 1, 2, . . . ,N:
1: Pick an nonempty RSP-ready bin Bi jm with CR

i jm ≥ 1, in round-robin order, from

{Bi1m ,Bi2m , . . . ,BiNm} (i.e., bins in rowm as highlighted in Figure 2);

2: if such a Bi jm exists then
3: Switch the HOL packet of Bi jm ;
4: Update RSP credit counters per Algorithm 3;

5: else
6: Idle;

Algorithm 3 Updating RSP credit counters at input port i

1: Initialize: Set all RSP credit counters CR
i jm , j,m = 1, 2, . . . ,N to a positive integer constant

C ≥ 1;

After switching the HOL packet of Bijm, for i, j,m = 1, 2, . . . ,N:
2: Decrement counter CR

i jm by 1;

3: Increment counters CR
i j1,C

R
i j2, . . . ,C

R
i jN each by

1

N ;

bin Bi jm has a credit counterCR
i jm associated with it. As shown in Line 1 of Algorithm 3, initially all

credit counters are initialized to a positive constant C . Once an RSP-ready bin (say Bi jm) is chosen

for service in the RSP mode – in the round-robin fashion as described above (Line 1 in Algorithm 2)

– 1 unit of credit is subtracted fromCR
i jm (Line 2 in Algorithm 3), and

1

N unit of credit is deposited to

each of the N credit counters associated respectively with the N bins in the jth column highlighted

in Figure 2 (Line 3 in Algorithm 3). In other words, the unit of credit paid by Bi jm for the RSP

service, will be evenly distributed to all N bins belonging to VOQi j , including Bi jm itself. We will

prove in Appendix G that this credit redistribution mechanism provides the following fair resource

allocation guarantee.

Lemma 1. Let DR
i jm(t), i, j,m = 1, . . . ,N , be the cumulative number of packet departures from Bi jm

in RSP mode by time slot t . Then for any two different input port bins in the same VOQ, say Bi jm and
Bi jm′ in VOQ(i, j) and for any time t > 0, we have

|DR
i jm(t) − DR

i jm′(t)| ≤ NC (1)

It follows as an immediate “corollary" from this lemma that during any time interval [t1, t2] that
is “long enough," the respective average rates at which RSP service is provided to two different bins

belonging to the same VOQ is roughly the same. This is precisely the aforementioned fair resource

allocation objective we would like to achieve. While this credit mechanism is easy to describe, it

is very computationally expensive (O(N) per packet per port) to implement. In Appendix C, we

will describe a low complexity (O(1) per packet per port) algorithm that provides almost the same

guarantee.

3.1.5 Orderly Evacuation in UFS Mode. Recall there are altogether N 2
bins at input port i , and

many of them can be UFS-ready (i.e., in the UFS evacuation phase) at the same time, especially when

the traffic load is heavy. As discussed in Section 1.1, these UFS-ready bins need to be evacuated (via

UFS) in an orderly fashion. The idealized objective of this orderly evacuation is that, for any bin,

once it enters the UFS evacuation phase, its queue length should be strictly non-increasing over

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:10 Sen Yang, Bill Lin, and Jun Xu

time despite new packet arrivals to this bin, until it exits the UFS mode (after its queue length drops

under N). This objective is however unrealistic in practice due to the following service granularity

restriction: The smallest unit of UFS service is a frame (of N consecutive time slots), and while a

bin is being served during these N time slots, queue lengths of some other UFS-ready bins can

increase due to new packet arrivals. Hence our realistic objective is to ensure that the queue length

of any UFS-ready bin is roughly non-increasing over time except for a fluctuation caused by this

service granularity restriction.

This objective again can be formulated as a proportional fair resource (traffic rate) allocation

problem: to serve a bin at a rate no smaller than its average packet arrival rate. Again, we achieve

this objective using a scheduler comprised of aforementioned “off-the-shelf" primitives, but do not

consider this scheduler a contribution of this work. More specifically, this scheduler achieves the

following guarantee (that the bin length is roughly non-increasing), which we prove in Appendix J.

Lemma 2. Let Bi jm(t), i, j,m = 1, . . . ,N , denote the queue length of the bin Bi jm at time slot t . If
Bi jm remains in UFS evacuation phase during a time interval [t1, t2], we must have

Bi jm(t2) − Bi jm(t1) ≤ N 3

The basic idea of this scheduler is to keep track of increases in backlog to a bin after it has become

UFS-ready. This is achieved by associating a UFS “pressure" counter with each bin that keeps

track of the number of new packet arrivals since the bin has become UFS-ready (i.e., the “pressure

build-up"), minus the “pressure relief" in the form of UFS service provided to this bin. Whenever

the scheduler needs to pick a UFS frame to serve next, it will pick the HOL frame of the bin with

the highest pressure counter value. The detailed design of this scheduler is shown in Appendix

B. The computational complexity of this scheduler is O(1) per packet per port, as we explain in

Appendix C.

3.2 Operations at an intermediate port
In SRS, intermediate ports play a passive role in packet and frame scheduling. They mostly follow

the RSP and UFS scheduling decisions made by the input ports. More specifically, like input ports,

intermediate ports also prioritize UFS frames over RSP packets. In addition, intermediate ports

serve UFS frames in the order dictated by the input ports, which, as far as the intermediate ports

are concerned, is the FIFO order.

We describe operations at an intermediate portm: Operations at other intermediate ports are

identical. As shown in Figure 3, at intermediate port m, N 2
RSP bins Hi jm are maintained for

i, j = 1, 2, . . . ,N . Bin Hi jm buffers RSP packets switched from input port i that are destined for

output port j. It is clear that all these packets come from input bin Bi jm . In addition, N UFS bins

Ujm , for j = 1, 2, . . . ,N , are maintained for buffering UFS packets sent to it from all N input ports,

with all UFS packets destined for output port j appended to the end of the bin Ujm . Whenever

intermediate port m is connected to output port j, the intermediate port m first checks if the

corresponding UFS queueUjm is non-empty. If so, it first serves its HOL packet. Otherwise, it serves
a RSP packet from one of H1jm ,H2jm , . . . ,HN jm in the round-robin

1
order. Finally, when a bin Hi jm

is cleared and Bi jm is in the UFS waiting phase, a notification to input port i is triggered.

1
Note that our stability proof, shown in the next section, assumes only that this service discipline is work-conserving. We

choose round-robin scheduler simply because it is computationally cheap (O (1) per packet per port) to implement, as we

explain in Appendix C.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:11

Gjm

Fig. 3. How bins are served at intermediate portm. Queue group G jm , highlighted here, will be defined in
Section 4.

3.3 Variation based on input port load
In this section, we describe a variant of the baseline SRS architecture that can improve its delay

performance when the traffic load is high, as will be shown in Section 5. Its basic idea is that if

the total traffic arrival rate to an input port is very high, the switch simply serves it using the

UFS scheme. Note this UFS scheme, which serves each VOQ frame by frame, is different than the

UFS mode, which serves each bin frame by frame. We call this variant “SRS-UFS". A more detailed

description of this variation is provided in Appendix D.

4 STABILITY ANALYSIS
In this section, we prove that SRS can achieve 100% throughput

2
. Equivalently, we prove that the

total backlog in the Bi jm , Hi jm orUjm bins does not accumulate at a positive rate over time, even

when the switch is 100% loaded. This notion of (queue) stability is known as rate-stability [9],

because it implies that the long-run average of packet departure rate is equal to that of packet

arrival rate when the switch is no more than 100% loaded.

At the first glance, this stability is guaranteed since as queues grow longer the algorithm switches

to UFS, which is known to be (rate) stable. However, the short stability explanation/proof in the

UFS paper [16] does not apply to SRS for several reasons. Chief among them is that, in SRS, an

input port bin can start transmitting in the UFS mode only after its corresponding intermediate

port bin is cleared, which may never happen with poorly designed safety mechanisms, whereas in

UFS, this transmission does not have to wait. To implicitly (i.e., woven into the fabric of the stability

proof) prove that this clearance will happen because of the properly designed safe mechanisms

(fair RSP rate-limiting and orderly UFS evacuations) contributes to the length and the perceived

complexities of the proof.

Recall that Bi jm(t) denotes the queue length of bin Bi jm at time t ; Hi jm(t) andUjm(t) are defined
similarly. Our main result is:

2
The rate-stability of SRS-UFS can be derived from that of SRS and of UFS.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:12 Sen Yang, Bill Lin, and Jun Xu

Theorem 1.

(a) lim

t→∞

Bi jm(t)
t

= 0, i, j,m = 1, . . . ,N

(b) lim

t→∞

Hi jm(t)
t

= 0, i, j,m = 1, . . . ,N

(c) lim

t→∞

Ujm(t)
t
= 0, j,m = 1, . . . ,N

for any deterministic packet arrival process that satisfies a mild admissible condition (to be stated next)
and for any arbitrary initial queue lengths of B, H , andU (at time 0).

Note that in the proof, we actually assume all queues in the switch are empty at time 0. It is

however not hard to extend this proof to accommodate arbitrary initial queue lengths, as will be

explained at the end of Section 4.2.

We now state the only (mild) admissible condition that we have to exogenously impose on the

traffic arrival process. Let Ai jm(t) be the cumulative number of packet arrivals into bin Bi jm by

time slot t (since time 0). Define Aj (t) ≡
∑N

i,m=1
Ai jm(t). Aj (t) is the total number of packets that

have arrived at all input ports by time slot t and are destined for output port j. The admissible

condition, which we exogenously impose, is that, for each output port j , that there exist a constant
λj ∈ [0, 1] such that

lim

t→∞

Aj (t)
t
= λj j = 1, 2, . . . ,N (2)

In other words, the long-run-average total rate of all traffic destined for output port j must exist

and is no more than 1 (i.e., 100% loaded). This admissible condition is weaker than the usual notion

of admissibility, in which the long-run-average of each λi j , for i = 1, 2, . . . ,N , must exist.

In the worst case, up to N packets destined for output j can arrive, one at each input port, during

a single time slot. Therefore, for any t ≥ 0, we always have

Aj (t) ≤ Nt (3)

Note that, in our proof, we do assume another admissible condition that at most one packet can

arrive at each input port in a single time slot. This condition is however imposed “endogenously"

by the maximum rate of the network link and the clock speed of the input line card circuitry, not

“exogenously" by us.

In the following, we first develop a property of the packet arrival process Aj (t) in the form of

a general lemma, and then describe some important queuing dynamics of the switch that result

from the aforementioned RSP credit redistribution mechanism and the aforementioned UFS orderly

evacuation scheduler. Then we prove Theorem 1 in Section 4.2.

4.1 System dynamics and notations
We develop only the dynamics of queues that hold packets destined for (i.e., associated with) an

arbitrary (but fixed) output port j; Queues associated with any other output port have the same

dynamics. To facilitate the following presentation, for i,m = 1, 2, . . . ,N , we define a set of queue

groups as follows

Bj ≡
{
Bi jm

�� i,m = 1, 2, . . . ,N
}

Bi j ≡
{
Bi jm

��m = 1, 2, . . . ,N
}

G jm ≡
{
Ujm

}
∪
{
Hi jm

�� i = 1, 2, . . . ,N
}

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:13

Let Bj (t) ≜
∑N

i,m=1
Bi jm(t) be the total number of packets in queue group Bj at time slot t . Similarly

we define G jm(t) ≜
∑N

i=1
Hi jm(t) +Ujm(t),m = 1, . . . ,N .

As mentioned earlier, throughout this paper, time is slotted and is numbered by nonnegative

integers, and we use the terms “time" and “time slot" interchangeably. By convention, time starts at

(slot) 0 and packets start to arrive at or after (slot) 1. When we say “at/by time (slot) t”, we mean

“at/by the end of time slot t”. For example, the queue length of Bi jm at time t refers to that at the

end of time slot t , which accounts for any (packet) arrival and/or any departure that has happened

during time slot t .

4.1.1 Arrival process dynamics. In this section, we state a purely mathematical lemma (i.e., has

nothing to do with switching or networking by itself) that applies to any deterministic arrival

process whose long-run average converges to a constant, including the aforementioned Aj (t).

Lemma 3. Let {X (t), t ≥ 0}, be an arbitrary deterministic time series. If there exists a constant
λ ∈ R such that limt→∞

X (t)
t = λ, then for any ϵ > 0 and p ∈ (0, 1], there exists a constant TX > 0,

such that
T ≥ TX
0 ≤ t1 < t2 ≤ T
t2 − t1 ≥ pT

 ⇒ X (t2) − X (t1) ≤ (λ + ϵ)(t2 − t1) (4)

Proof. As limt→∞
X (t)
t = λ, for ϵ

′ = pϵ/4, there exists a constant T ′ > 0, such that

t ≥ T ′⇒
����X (t)t − λ

���� < ϵ ′

2

Let TX = max

(
2T ′
p ,

T ′
p +

X (T ′)
ϵ
2
·p

)
.

As T ≥ TX ≥ 2T ′
p and t2 ≥ pT , we have t2 −T ′ ≥ t2 − pT /2 ≥ pT /2. Then we must have T ′ ≤

(1− 1

2
p)t2 or equivalentlyT ′ ≤ 2−p

p (t2 −T ′). Otherwise, we’ll have t2 ≥ T ′+
1

2
pT > (1− 1

2
p)t2 + 1

2
pT ,

which implies t2 > T . But this contradicts our assumption that t2 ≤ T . Note that t2 ≥ pT > T ′, we
must have,

X (t2) − X (T ′) < (λ +
ϵ ′

2

)t2 − (λ −
ϵ ′

2

)T ′

= (λ + ϵ
′

2

)(t2 −T ′) + ϵ ′T ′

≤ (λ + ϵ
′

2

)(t2 −T ′) + ϵ ′
2 − p
p
(t2 −T ′)

=

(
λ +

ϵ ′

2

+
2 − p
p

ϵ ′
)
(t2 −T ′)

=

(
λ +

4 − p
2p

ϵ ′
)
(t2 −T ′)

≤
(
λ +

2

p
ϵ ′
)
(t2 −T ′)

=
(
λ +

ϵ

2

)
(t2 −T ′)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:14 Sen Yang, Bill Lin, and Jun Xu

Furthermore, we have t2 ≥ pT ≥ pTX ≥ X (T ′)
ϵ/2 + T

′
, which implies X (T ′) − X (t1) ≤ X (T ′) ≤

ϵ

2

(t2 −T ′). Hence,

X (t2) − X (t1) = (X (t2) − X (T ′)) + (X (T ′) − X (t1))

=
(
λ +

ϵ

2

)
(t2 −T ′) +

ϵ

2

(t2 −T ′)

≤ (λ + ϵ) (t2 −T ′)
≤ (λ + ϵ) (t2 − t1)

□

Remark: We will show in Appendix E that an arrival process could be extremely bursty yet

still has a long-run average rate. Hence, for such an arrival process, a time interval [t1, t2] has to
be “very long" (at least a constant fraction of T here) for its average rate during the interval to be

bounded by λ + ϵ .

4.1.2 RSP rate-limiting dynamics. How RSP rate-limiting mechanism affects the queuing dy-

namics of the switch is captured in the following two lemmas.

Lemma 4. For any two intermediate portsm andm′, we have |Ijm(t) − Ijm′(t)| ≤ N 2C + 1.

Here Ijm(t) is defined as the cumulative number, by time slot t , of packets that arrive at the

queue group G jm , the jth row of bins at intermediate portm as shown in Figure 3. In other words,

Ijm(t) accounts for all packets destined for output port j that arrive at intermediate portm during

time interval [0, t]. Lemma 4 states that, the set of packets destined for output j that depart from
all input ports of the switch during [0, t] (denoted as Φj (t)), arrive at every intermediate port in

roughly equal numbers. Its proof, based on Lemma 1, is provided in Appendix H.

We denote as D j (t) the size of this set Φj (t), i.e., D j (t) ≜ |Φj (t)|. The following lemma states

that if a “long enough" busy period of queue group G jm starts at t1 and contains t2 > t1, then
D j (t2) −D j (t1), the number of packets that belong to the set Φj (t) and have departed from the input

ports during [t1, t2], is roughly equal to t2 − t1. Intuitively, this is because (i) Lemma 4 implies these

D j (t2) − D j (t1) packets arrive at at every intermediate port also in roughly equal numbers, and (ii)

at least
1

N (t2 − t1) such packets must arrive at G jm during [t1, t2] to keep it continuously busy. Its

formal proof is provided in Appendix I.

Lemma 5. For 0 ≤ t1 < t2, if there exists an intermediate port m such that G jm(t1) = 0 and
G jm(t) > 0 for any t ∈ [t1 + 1, t2], we have D j (t2) − D j (t1) ≥ (t2 − t1) + NG jm(t2) − 5N 3C .

4.1.3 UFS orderly evacuation dynamics. The effect of the aforementioned “orderly evacuation”

scheduler on the dynamics of input port bins is characterized in Lemma 2 (see Section 3.1.5).

For proving Theorem 1 however, we need the following lemma that is a slight generalization of

Lemma 2.

Corollary 1. If Bi jm has never been in UFS waiting phase during [t1, t2], we have
Bi jm(t2) − Bi jm(t1) ≤W 3

Proof. If Bi jm is in RSP mode at time t2, we have Bi jm(t2) <W and thus

Bi jm(t2) − Bi jm(t1) ≤ Bi jm(t2) <W ≤W 3

Otherwise, if Bi jm is in UFS evacuation phase at t2, it must be in UFS evacuation phase throughout

[t1, t2]. By Lemma 2, we have Bi jm(t2) − Bi jm(t1) ≤ N 3 ≤W 3
. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:15

4.2 Proof of Theorem 1
In this section we present the proof of Theorem 1 in details. We first prove Theorem 1(a) (i.e., the

stability of B bins) using the aforementioned extremal argument. Theorem 1(b) and (c) (i.e., the

stability of H and U bins) are then much easier to prove, and their proofs will be presented in

Appendix L. The following theorem implies that limt→∞
Bi jm (t)

t = 0, i, j,m = 1, 2, . . . ,N , which is

Theorem 1(a).

Theorem 2.

lim sup

t→∞

Bj (t)
t
= 0 j = 1, 2, . . . ,N

To prove Theorem 2, we need the following technical lemma concerning the busy period of a bin.

Lemma 6. Suppose Bi jm remains in UFS waiting phase throughout time slots t1 to t2, there must
exist a time slot t0 ≤ t1 such that G jm(t0) = 0 and G jm(t) > 0 for any t ∈ [t0 + 1, t2].

Proof. Since Hi jm should be non-empty whenever Bi jm is in the UFS waiting phase, we have

G jm(t) ≥ Hi jm(t) > 0 for any t ∈ [t1, t2]. Note that initially we have G jm(0) = 0. Thus there must

exist a time slot t0 ≤ t1 such that G jm(t0) = 0 and G jm(t) > 0 for any t ∈ [t0 + 1, t2]. □

4.2.1 Intuition to the proof of Theorem 2. We provide some intuitions to the proof of Theorem 2

in this section, deferring the formal proof to Section 4.2.2. In describing these intuitions, we will

liberally use vague phrases such as “roughly", “not by much", and “very large". To rid the formal

proof of this vagueness accounts for the bulk of its length and perceived complexities. Following

the “limsup argument" mentioned in Section 1.1.2, we assume

lim sup

t→∞

Bj (t)
t
= γ > 0 (5)

This implies that given any ϵ > 0 we have

(i) There exists an integer T ′ ≥ 0, such that t ≥ T ′⇒ Bj (t)
t < (γ + ϵ).

(ii) Given any integer T ≥ 0, there exists t ≥ T such that
Bj (t)
t > (γ − ϵ).

We fix a “tiny" ϵ (that is “much smaller" than γ), and T ′ based on this choice of ϵ . Let T2 be a

“very large" positive integer (with respect to T ′ and a few other large constants) such that

Bj (T2)
T2

> (γ − ϵ) (6)

and T2(γ − ϵ) is also “very large". Starting with this inequality, we would like to show that there

exists T1 that satisfies T
′ < T1 < T2, such that

Bj (T1) > (γ + ϵ)T1 (7)

a contradiction to Implication (i) of Equation (5). The argument we use to establish Inequality (7) is

straightforward: It is literally “something just doesn’t add up". More specifically, we prove that this

T1 is smaller than T2 by “a significant amount" (of time), but the increase of Bj (t), over this “very
long" time interval [T1,T2], is smaller than (T2 −T1)γ − (T2 +T1)ϵ , the minimum amount needed to

prevent Inequality (7) from happening, as follows.

Recall that the queue group Bj consists of N
2
bins, N at each input port, whose packets are

destined for the output port j. They are {Bi jm}Ni,m=1
. Let [t [i jm]

1
, t [i jm]

2
], i,m = 1, 2, . . . ,N , be the

last UFS waiting phase of Bi jm before or at timeT2. If Bi jm has never been in the UFS waiting phase

throughout [0,T2], we simply set t [i jm]
1

= t [i jm]
2

= 0 (the degenerated case). If Bi jm is still in a UFS

waiting phase at T2, we set t
[i jm]
2

= T2 (truncated by T2). We sort these bins in the decreasing order

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:16 Sen Yang, Bill Lin, and Jun Xu

Bj(t)

B(1)

B(2)

B(N2)

UFS-waiting phase

RSP mode or UFS-
evacuation phase

T1 t
(d)
1 t

(d)
2

a busy period of Gjm0

T1 t
(d)
1 t

(d)
2

B(d)

Bj(T1)

T2 time

timeT2

Bj(T2)

(a)

(b)

lower bound of Bj(t)

B(3)

(� + ")t

(� � ")t

B(N2�1)

t
(N2�1)
1 t

(N2)
2

Bj(t
(d)
2)

Fig. 4. Proof of Theorem 2.

of their (t [i jm]
2
)’s, the ending times (possibly truncated or degenerated) of their last UFS evacuation

phases before or atT2, and relabel these bins as B(k), k = 1, . . . ,N 2
by the standard (reversed) order

statistics notation (A more rigorous definition of this relabeling is provided in Appendix K). For

each bin B(k), we also relabel this starting and ending times as t (k)
1

and t (k)
2

respectively. Hence, we

have T2 ≥ t (1)
2
≥ t (2)

2
≥ · · · ≥ t (N

2)
2

, and for any k , B(k) should never be in the UFS waiting phase

throughout [t (k)
2
,T2]. Figure 4 (a) shows, from top to bottom, an example instance of these N 2

bins

in this sorted order. For each bin B(k), its last UFS waiting phase before T2 is shown as a yellow

strip; it is followed by the interval [t (k)
2
,T2], shown as a light grey strip (if not degenerated).

Recall that, according to Lemma 2, once a bin enters the UFS evacuation phase, its queue length

will not increase “much" (i.e., by more than a constant) and may go down. Recall also that when a

bin is in the RSP mode, its queue length is less thanW , the threshold that would trigger the bin

entering the UFS mode. Now we zoom in to see how Bj (t) can grow to the very large value of (at

least) T2(γ − ϵ) at time T2. For each bin B(k), its queue length B(k)(t) at time t (k)
1

, when B(k) just
enters its last UFS accumulation phase (from the RSP mode), is at mostW as just explained. In

addition, B(k)(t) will not increase “much" (and may decrease) during [t (k)
2
,T2], because B(k) is either

in the UFS evacuation phase or in the RSP mode at any time t ∈ [t (k)
2
,T2]. In other words, for each

B(k), it can grow its queue length (of no more thanW at time t (k)
1

) at a rate no more than 1 (packet

per time slot) – and contribute to the growth of Bj (t) – “pretty much" only during its “yellow strip"

[t (k)
1
, t (k)

2
].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:17

Based on this “growth picture" of Bj (t), we establish a lower bound of Bj (t) for t ∈ [0,T2] by
“walking back in time" starting from t = T2. Figure 4 (b) shows this lower bound curve. The rightmost

point on this curve (T2,Bj (T2)) lies above the line y = (γ − ϵ)x due to Implication (ii) of Inequality

(5). As shown in Figure 4 (b), within each interval [t (k)
1
, t (k)

2
] (for k = 1, . . . ,N 2

), this lower bound

curve drops as t decreases; otherwise (i.e., outside all these intervals) this curve is flat. The rate (i.e.,
slope) of this drop follows the aforementioned fact that each queue B(k) grows at a rate strictly
no more than 1 when t increases. For example, in Figure 4 (b), the slope of the curve is 2 during

the interval [t (N
2−1)

1
, t (N

2)
2
] because the bins B(N 2−1) and B(N 2) can each potentially grow at the

maximum rate of 1 during this interval.

Suppose, as shown in Figure 4 (b), [t (d)
1
, t (d)

2
] is the first “very long" yellow strip, in the sense that

none of the d − 1 “earlier" yellow strips (i.e., [t (k)
1
, t (k)

2
], for 1 ≤ k ≤ d − 1) is “very long". Suppose

B(d) corresponds to Bi0 jm0
. We know from Lemma 6 that [t (d)

1
, t (d)

2
] is covered by a busy period,

highlighted in Figure 4 (a), of the intermediate port queue group G jm0
. The starting time of this

busy period is precisely the aforementioned T1 we are looking for. In Lemma 5, we proved that

the average departure rate of queue group Bj is “roughly" 1 during this “very long" busy period.

However, since this busy period is “very long", the average (total) arrival rate to all queues in the

queue group Bj during this busy period is “roughly" λj ≤ 1, according to Lemma 3. Hence, during

the interval [T1, t
(d)
2
], the value of Bj (t) “roughly" does not increase. This effect is illustrated in

Figure 4 (b) as a horizontal line from the point

(
t (d)
2
,Bj (t (d)

2
)
)
“back in time" to the point

(
T1,Bj (T1)

)
.

However, since the lower bound curve does not drop much when t decreases fromT2 to t
(d)
2

(because

none of the d − 1 yellow strips before [t (d)
1
, t (d)

2
] is “very long") and as just explained flattens out

when t decreases from t (d)
2

to T1, the point

(
T1,Bj (T1)

)
is “forced" to stick out above the curve

(γ + ϵ)t . In other words, we have Bj (T1) > (γ + ϵ)T1, the Inequality (7) we are trying to prove.

4.2.2 Formal proof of Theorem 2.

Proof. We prove the theorem by contradiction. Suppose there exists an output port j such that

lim sup

t→∞

Bj (t)
t
= γ > 0 (8)

Note that we must have γ ≤ 1 as lim supt→∞
Bj (t)
t ≤ limt→∞

Aj (t)
t . Let f (x) ≜ γ+5x

2

(
1+ 1

γ +x

)N 2
− 3x ; this

f is defined only for introducing the number sequence {ak }N
2

k=0
in (13). Since f (x) is a continuous

function of x in a neighborhood of 0 and f (0) > 0, there must exist an ϵ ′ > 0 such that f (x) > 0

for x ∈ (0, ϵ ′). Let ϵ = min(γ
4
, ϵ
′

2
), by (8), there exists an integer T ′ > 0, such that

t > T ′⇒
Bj (t)
t
< (γ + ϵ) (9)

By Lemma 3, for p = min

(
f (ϵ)

2(γ+ϵ) , 1
)
, there exists an integer TA > 0, such that

T > TA
0 ≤ t1 < t2 ≤ T
t2 − t1 ≥ pT

 ⇒ Aj (t2) −Aj (t1) ≤ (1 + ϵ)(t2 − t1) (10)

From (8), for the same ϵ , there exists another integer

T2 > max

(
TA,

16W 5C

f (ϵ) ,
4W 5

γ − ϵ ,
2(NT ′ + 8W 5C)

γ − 3ϵ

)
(11)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:18 Sen Yang, Bill Lin, and Jun Xu

such that

Bj (T2)
T2

> (γ − ϵ) (12)

Define two number sequences {ak }N
2

k=0
and {Sk }N

2

k=0
as

ak =

f (ϵ)T2 + 8W 5C

©« 1(
1+ 1

γ +ϵ

)N 2
− 1

ª®¬ if k = 0

1

γ+ϵ

(
1 + 1

γ+ϵ

)k−1 (
a0 + 3ϵT2 + 8W 5C

)
if k ≥ 1

(13)

Sk =
k∑
i=0

ai k = 0, 1, . . . ,N 2

It is not hard to verify the following properties of these two sequences.

• The following equation holds for k = 1, 2, . . . ,N 2

ak =
1

γ + ϵ
Sk−1 +

1

γ + ϵ
(3ϵT2 + 8W 5C) (14)

• Since ϵ < ϵ ′ and T2 >
16W 5C
f (ϵ) , we have f (ϵ) > 0 and

a0 ≥ f (ϵ)T2 − 8W 5C ≥ f (ϵ)
2

T2

Note that ak+1 > ak for k ≥ 1, thus for k = 1, 2, . . . ,N 2
we have

ak ≥ a1 ≥
1

γ + ϵ
a0 ≥

f (ϵ)
2(γ + ϵ)T2 ≥ pT2

• When k = N 2
, we have

SN 2 =
γ − ϵ

2

T2

As mentioned in Section 4.2.1, we relabel the input port bins {Bi jm}Ni,m=1
as {B(k)}N

2

k=1
in the

decreasing order of the end times of their last UFS waiting phases beforeT2, and denote as [t (k)
1
, t (k)

2
]

the last UFS waiting phase of B(k) before T2. Also to make the reasoning easier, we define a dummy

bin B(0) with B(0)(t) ≡ 0, and a corresponding dummy interval t (0)
1
= t (0)

2
= T2. Thus, for any integer

k ∈ [1,N 2], we have t (k)
2
≤ t (k−1)

2
≤ T2, and B(k) should never be in UFS waiting phase throughout

[t (k)
2
,T2], as shown in Figure 4 (a). From Corollary 1, we know that

B(k)(T2) − B(k)(t (k)2
) ≤W 3 k = 0, 1, . . . ,N 2

(15)

Hence

Bj (T2) =
N∑

i,m=1

Bi jm(T2) =
N 2∑
k=0

B(k)(T2)

=

N 2∑
k=0

(
B(k)(t (k)2

) − B(k)(t (k)1
)
)
+

N 2∑
k=0

B(k)(t (k)1
)

+

N 2∑
k=0

(
B(k)(T2) − B(k)(t (k)2

)
)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:19

≤
N 2∑
k=0

(
t (k)
2
− t (k)

1

)
+

N 2∑
k=1

W +
N 2∑
k=1

W 3
(16)

≤
N 2∑
k=0

(
t (k)
2
− t (k)

1

)
+ 2W 5

which implies that

∑N 2

k=0

(
t (k)
2
− t (k)

1

)
≥ Bj (T2) − 2W 5 ≥ (γ − ϵ)T2 − 2W 5 ≥ γ−ϵ

2
T2 = SN 2 ≡ ∑N 2

k=0
ak .

The last inequality holds since T2 ≥ 4W 5

γ−ϵ (due to (11)). Therefore, there must exist an integer

k ′ ∈ [1,N 2] such that t (k
′)

2
− t (k

′)
1
≥ ak ′ (note that t

(0)
2
− t (0)

1
= 0 < a0). Let d be the smallest such

integer; the corresponding interval [t (d)
1
, t (d)

2
] is precisely the first “very long" yellow strip as defined

in the last paragraph of Section 4.2.1. In other words, we have t (k)
2
− t (k)

1
< ak for k = 0, 1, . . . ,d − 1

and t (d)
2
− t (d)

1
≥ ad . Note that for any k ≥ d , B(k) must never be in UFS waiting phase throughout

[t (d)
2
,T2]. By Corollary 1, we have B(k)(T2) −B(k)(t (d)2

) ≤W 3
, k = d, . . . ,N 2

. This inequality and (15)

will be used in the first inequality below. Similar to (16), we can prove that

Bj (T2) =
N 2∑
k=0

B(k)(T2) =
d−1∑
k=0

B(k)(T2) +
N 2∑
k=d

B(k)(T2)

=

d−1∑
k=0

B(k)(t (k)1
) +

d−1∑
k=0

(
B(k)(t (k)2

) − B(k)(t (k)1
)
)

+

d−1∑
k=0

(
B(k)(T2) − B(k)(t (k)2

)
)

+

N 2∑
k=d

B(k)(t (d)2
) +

N 2∑
k=d

(
B(k)(T2) − B(k)(t (d)2

)
)

≤
d−1∑
k=0

W +
d−1∑
k=0

(
t (k)
2
− t (k)

1

)
+

d−1∑
k=0

W 3

+

N 2∑
k=d

B(k)(t (d)2
) +

N 2∑
k=d

W 3

≤
N 2∑
k=d

B(k)(t (d)2
) +

d−1∑
k=0

(
t (k)
2
− t (k)

1

)
+ 3W 5

≤
N 2∑
k=0

B(k)(t (d)2
) +

d−1∑
k=0

ak + 3W 5C

=Bj (t (d)
2
) + Sd−1 + 3W 5C (17)

By Lemma 6, there exists a time slot T1 ≤ t (d)
1

and an intermediate port queue group G jm such that

G jm(T1) = 0 and G jm(t) > 0 for any t ∈ [T1 + 1, t (d)
2
]. Since T2 ≥ TA and t (d)

2
−T1 ≥ ad > pT2, by

(10), we know that

Aj (t (d)
2
) −Aj (T1) ≤ (1 + ϵ)(t (d)

2
−T1) (18)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:20 Sen Yang, Bill Lin, and Jun Xu

By Lemma 5, we have D j (t (d)
2
) − D j (T1) ≥ (t (d)

2
−T1) − 5N 3C . Hence,

Bj (t (d)
2
) = Bj (T1) +

(
Aj (t (d)

2
) −Aj (T1)

)
−
(
D j (t (d)

2
) − D j (T1)

)
≤ Bj (T1) + (1 + ϵ)(t (d)

2
−T1) −

(
(t (d)

2
−T1) − 5N 3C

)
= Bj (T1) + ϵ (t (d)

2
−T1) + 5N 3C

≤ Bj (T1) + ϵT2 + 5W 3C (19)

Substituting (19) into (17), we have

Bj (T2) ≤ Bj (t (d)
2
) + Sd−1 + 3W 5C

≤ Bj (T1) + ϵT2 + Sd−1 + 8W 3C

We need only to consider the following two cases. Both lead to conclusions that contradict (12).

(i) IfT1 > T
′
, we haveT1 ≤ T2 − (t (d)

2
− t (d)

1
) ≤ T2 − ad and Bj (T1) ≤ (γ + ϵ)T1 ≤ (γ + ϵ)(T2 − ad)

(due to (9)). We have

Bj (T2) ≤ Bj (T1) + ϵT2 + Sd−1 + 8W 5C

≤ (γ + ϵ)(T2 − ad) + ϵT2 + Sd−1 + 8W 5C

= (γ + 2ϵ)T2 −
(
(γ + ϵ)ad − Sd−1

)
+ 8W 5C

= (γ + 2ϵ)T2 − (3ϵT2 + 8W 5C) + 8W 5C

= (γ − ϵ)T2 (20)

The second equality above holds due to Equation (14).

(ii) If T1 ≤ T ′, by (3), we have Bj (T1) ≤ Aj (T1) ≤ NT1 ≤ NT ′ and then

Bj (T2) ≤ Bj (T1) + ϵT2 + Sd−1 + 8W 5C

≤ NT ′ + ϵT2 + SN 2 + 8W 5C

=NT ′ + ϵT2 +
γ − ϵ

2

T2 + 8W 5C

=NT ′ +
γ + ϵ

2

T2 + 8W 5C

≤ (γ − ϵ)T2 (21)

The last inequality holds because ϵ = min(γ
4
, ϵ
′

2
), which implies γ − 3ϵ > 0, and because

T2 ≥ 2(NT ′+8W 5C)
γ−3ϵ . □

Remark. As mentioned at the beginning of Section 4, SRS remains stable when B, H ,U queues

are not empty to start with (at time 0). More specifically, it can be shown that all results in Sections

4.1 and 4.2 continue to hold with some minor changes, when initial queue lengths can be nonzero.

For example, in that case, we can only claimG jm′(t1) ≤ G jm′(0) in Lemma 5, (instead ofG jm′(t1) = 0)

so its conclusion has to be changed to D j (t2) − D j (t1) ≥ (t2 − t1) + N (G jm′(t2) −G jm′(0)) − 5N 3C .

5 EVALUATION
In this section, we compare the performance of our proposed SRS approach, as well as the SRS-UFS

variant, with other existing load-balanced switching algorithms, including the basic load-balancing

scheme [6], Uniform Frame Spreading (UFS) [16], Full-Ordered Frame First (FOFF) [16], Padded

Frames (PF) [14], the Sprinklers scheme [10] and the Concurrent Matching Switch (CMS) [18]. The

basic load-balancing scheme (labeled “Basic") does not guarantee packet ordering, but it provides

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:21

the lower bound of the delay that a load-balanced switch can achieve. UFS, FOFF, PF, Sprinklers

and CMS are known to provide reasonably good performance and all of them guarantee packet

ordering.

To simulate the effects of grouping application flows (i.e., TCP/UDP flows) into bins by hashing in

SRS, we generate application flows over the simulation period using flow statistics measured from

real-world Internet traffic traces as follows. We assume that the arrivals of new application flows

to an input port follows a Poisson process, and each application flow contains only fixed-length

packets, each of which takes exactly 1 time slot to switch. We also assume that the rate (in number

of fixed-length packets per second) and the duration of each new application flow, viewed as a

random vector ⟨ν ,ψ ⟩, follows the joint empirical distribution measured from the traffic traces. In

measuring this rate ν from a packet trace, we “segment" each variable-length packet (whose length

information is included in the trace) into fixed-length packets in the sense that we consider a packet

of length L (bytes) in the trace ⌈ L
500
⌉ fixed-length (500-byte-long) packets. The rate of this Poisson

process is set according to the intended traffic rate λ of the input port in a simulation run, and the

measured empirical average size (in number of fixed-length packets) of an application flow (i.e.,

νψ). When a new flow is thus generated with rate ν (ω), its traffic arrival process is modeled as i.i.d.

Bernoulli in the sense during each time slot, there is a (fixed-length) packet arrival from this flow

with probability ν (ω).
The traces that we used were collected by University of North Carolina (UNC) on a 1 Gbps access

link connecting the campus to the rest of the Internet on April 24, 2003. It contains 198,944,706

packet headers and around 13.5 million flows. In our simulation study, traffic into each input port is

generated according to the empirical flow statistics measured from this trace. We also use different

traffic patterns in our evaluation. The size of the switch in the simulation study is N = 64. The

RSP-to-UFS mode threshold is set toW = 2N and the initial RSP credit is set to C = 100N . For the

SRS-UFS variant, the load thresholds that trigger the transitioning between the baseline SRS and

the UFS at an input port is set to ρ = 0.75 and ρ̄ = 0.85 (see Appendix D for the definitions of ρ

and ρ̄).
Here are the rough guidelines we follow in setting these parameters. First, we make C ≫W to

make sure that if the service of a bin is switched from the RSP mode to the UFS mode, it is likely

not due to the lack of credit. Second, in setting parametersW and C , we take into consideration

the system performance under different traffic loads. Generally speaking, largerW and C values

lead to better system performance when traffic load is low to moderate, as such settings keep the

system operating mainly in the RSP mode, resulting in a lower delay. However smallerW and C
values work better when the traffic load is heavy, as the packets could accumulate rapidly in this

case, and should be evacuated in the UFS mode as soon as possible.

Our first set of experiments assumes uniform distribution of the destination ports for the arrival

flows – i.e. a new flow goes to output j with probability
1

N . The results are shown in Figure 5. The

second set of experiments assumes a quasi-diagonal distribution. A new flow arriving at input port

i goes to output j = i with probability
1

2
, and goes to any other output port with probability

1

2(N−1) .
The results are shown in Figure 6.

The following three observations can be made from the average delay results (Figures 5a and 6a)

of the above experiments. First, for uniform traffic, the average delay of baseline SRS is significantly

better than the existing methods of UFS, FOFF, PF, and Sprinklers for all traffic loads up to about

λ < 0.85. Similarly, for quasi-diagonal traffic, the average delay of baseline SRS is significantly better

than the existing methods of UFS, FOFF, PF, and Sprinklers for all traffic loads up to about λ < 0.8.
Second, in comparison to the basic LBS that does not guarantee packet order, the performance of

SRS follows roughly the same trend in both experiments. Third, our SRS-UFS variant improves the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:22 Sen Yang, Bill Lin, and Jun Xu

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load

100

101

102

103

104

105
Av

er
ag

e
D

el
ay

Basic
SRS
SRS-UFS
UFS
FOFF
PF
Sprinkler
CMS

(a) Average delay

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load

100

101

102

103

104

105

95
-P

er
ce

nt
ile

 D
el

ay

Basic
SRS
SRS-UFS
UFS
FOFF
PF
Sprinkler
CMS

(b) 95-percentile delay

Fig. 5. Average and 95-percentile delay under uniform traffic.

performance of the baseline SRS at high loads. In both experiments, the SRS-UFS variant scheme

performs almost the same as the baseline SRS when the traffic load is low to moderate (λ ≤ 0.75),

and as the UFS scheme when traffic load is high (λ > 0.75).

Similar observations can be made from the 95-percentile delay results shown in Figures 5b and

6b, except that the degree to which the baseline SRS performs worse than other algorithms under

very heavy traffic loads (0.9 and above) in terms of 95-percentile delay is larger than that in terms

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load

100

101

102

103

104

105
Av

er
ag

e
D

el
ay

Basic
SRS
SRS-UFS
UFS
FOFF
PF
Sprinkler
CMS

(a) Average delay

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load

100

101

102

103

104

105

95
-P

er
ce

nt
ile

 D
el

ay

Basic
SRS
SRS-UFS
UFS
FOFF
PF
Sprinkler
CMS

(b) 95-percentile delay

Fig. 6. Average and 95-percentile delay under quasi-diagonal traffic.

of average delay. In other words, the baseline SRS has also a larger delay variance than other

algorithms under very heavy loads. Our explanation for this phenomenon is as follows. In SRS,

since UFS packets take strict priority over RSP packets at both input and intermediate ports, the

latter in general have larger delays than the former. The differences between the delays of these

two types of packets widen when the traffic load is high, because in this case the RSP packets stuck

at an intermediate port can take a long time to clear as they have to “yield” to “passing-by” UFS

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:24 Sen Yang, Bill Lin, and Jun Xu

packets, delaying not only themselves but also packets waiting on them (in the UFS waiting phase)

at their respective input ports. As shown in Figures 5b and 6b, the SRS-UFS variant effectively

mitigates this problem, because as described in Section 3.3, when the total traffic arrival rate is

high, the switch simply serves it using the UFS scheme and hence avoids such long waitings.

As shown in Figures 5 and 6, CMS has excellent delay performance under low-to-moderate

loads. However, this comes with high communication and implementation costs, as compared to

SRS and other LBS schemes. In terms of the communication cost, CMS requires, for each packet

transmission, the exchange of two token messages. In terms of the implementation cost, CMS

requires the computation of a matching between the input ports and the output ports, every N time

slots. Although in CMS, the complexity of this computation is amortized (over N time slots) toO(1)
per time slot, using the SERENA matching algorithm [11], which has O(N) complexity, the need to

implement, and to have a fast processor execute, SERENA undoubtedly adds to the implementation

cost of the switch. In comparison, no other LBS solution requires any matching computation. Finally,

the delay performance of CMS is poor under high loads (≥ 0.9) for non-uniform traffic, as shown

in Figure 6.

6 RELATEDWORK
This section briefly reviews existing solutions to the packet reordering problem in load-balanced

switches. As already discussed, Uniform Frame Spreading (UFS) [16] prevents reordering by requir-

ing that each VOQ first accumulates a full-frame of N packets before they are uniformly spread

across the N intermediate ports. The main drawback of UFS is that it suffers fromO(N 3) delay in the
worst-case. Full Ordered Frames First (FOFF) [16] also uniformly spreads full-frames when available.

When no full-frame is available, FOFF will serve incomplete frames in a round-robin manner, but

it suffers from O(N 2) delay in the worst-case for packet reordering at the output. Padded Frames

(PF) [14] is another method that avoids the need to accumulate full-frames. When no full-frame is

available, PF will pad the longest incomplete frame with fake packets to create a full-frame, which

is then uniformly spread across the N intermediate ports, just like UFS. However, its worst-case

delay is stillO(N 3). Recently, an approach called Sprinklers [10] was proposed based on the idea of

variable-size striping. Sprinklers uses the arrival rate of packets to a VOQ to determine a variable

stripe size L rather than always requiring a full-frame. It then only requires the accumulation of L
packets in a VOQ before uniformly spreading them across a randomly chosen contiguous block of

L intermediate ports, where VOQs with slower arrival rates are given smaller stripe sizes. Finally,

packet ordering can be guaranteed via another approach called a Concurrent Matching Switch

(CMS) [18], which enforces packet ordering throughout the switch by using a fully distributed

load-balanced scheduling approach.

The technique of flow hashing (i.e., “TCP-hashing”) has also been used to solve network-level

traffic load balancing problems in hierarchical switch architectures (e.g., a datacenter) [12, 20]. It

is widely known [1, 4, 5, 15, 22, 23] however that a naive flow hashing scheme (e.g., Equal-Cost

Multipath) does not perform well in balancing loads since it could map too many large long-lived

flows to the same path, leading to instability. One possible way of avoiding this instability issue

is to divide each flow into small pieces and route them along different paths [2, 13], but this may

again lead to the packet reorder problem. To address this packet reorder problem, in CONGA [2],

packets in a flow are divided into bursts of packets (with a sizable time gap between any two

consecutive bursts) called “flowlets”; if the time gap between two consecutive flowlets is larger than

the maximum difference in latency among the paths, the second flowlet can be sent along a different

path than the first without causing packet reordering. However, there could be a long tail in the

length distribution of the flowlets, and in this case the collision on the hashing of elephant flowlets

can still result in non-negligible congestion issue [13]. Presto [13] avoids this congestion issue by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:25

dividing each flow into uniform-sized pieces called flowcells and re-sequencing the out-of-order

packets at the receiver, with a caveat that a significantly out-of-order (late) packet might be dropped

due to the timeout of the re-sequencing timer.

7 CONCLUSIONS
In this paper, we proposed SRS, a simple randomized load-balanced switch architecture based on

the hashing of application flows, combined with safety mechanisms to prevent unstable build-up

of packets at intermediate queues throughout the switch. It has the lowest possible computational

complexity (O(1) per packet per port) and is easy to implement. We rigorously proved that the

proposed SRS guarantees both stability under arbitrary admissible traffic and packet ordering. We

showed experimentally that SRS has competitive delay performance compared to other solutions.

Finally, we believe that this work will serve as a catalyst to a rich family of solutions based on the

simple principles of flow randomization.

A SERVICE RATE LIMIT OF INPUT PORT BINS UNDER RSP MODE
In this section, we justify the following statement that we made earlier, which serves as the rationale

for limiting the rate, at which each bin Bi jm can receive switching service under the RSP mode, to

λi j
N .

For any 1 ≤ i, j,m ≤ N ,
λi j
N is the highest RSP traffic rate the input port i can grant,

under any “nondiscriminatory policy" (i.e., with a policy statement that does not

“discriminate against" any particular values of i, j,m), to the bin Bi jm without risking

compromising the (rate) stability of the set of bins that buffer packets destined for the

output port j, at the intermediate portm.

Since it has been proven in Theorem 1 that the rate limit
λi j
N is safe (i.e., it will not compromise

the rate stability of the switch), we need only to show here that this rate limit cannot be exceeded,

which we “prove by contradiction" as follows. We come up with a set of traffic arrival rates (to the

bins) that are admissible, and show that a certain set of queues at the intermediate portm have a

larger total packet arrival rate than their total departure rate, and hence are not rate-stable. Now

fix the values of j andm and let θi jm be the (upper) rate limit under which traffic in bin Bi jm can be

served under the RSP mode, for i = 1, 2, . . . ,N . Let the arrival rates (to VOQi j) λi j , j = 1, 2, . . . ,N

satisfy

∑N
i=1

λi j = 1; this set of rates is clearly admissible (for rate-stability).

Suppose, for any 1 ≤ i ≤ N , the RSP rate limit imposed on each bin Bi jm , satisfies θi jm >
λi j
N , for

i = 1, 2, . . . ,N . We set each λi jm to min{θi jm , λi j }, for i = 1, 2, . . . ,N . In other words, we assume

each input port i TCP-hashes its incoming traffic in the amount of exactly θi jm to bin Bi jm . This
assumption is valid for this “proof by contradiction", because this situation could in theory happen

(e.g., when, at each input port i , VOQi j contained a long-lived elephant flow that is TCP-hashed to

bin Bi jm). In this situation, the total amount of RSP traffic that arrives at the intermediate portm and

is destined for intermediate port j is equal to
∑N

i=1
λi jm >

∑N
i=1

λi j
N =

1

N . In other words, the total

arrive rate to the set of bins that buffer packets destined for the output port j at the intermediate

portm is larger than
1

N . However, these bins are serviced at rate
1

N , as the second switching fabric

connects intermediate portm with output port j once every N time slots, and hence are not (rate)

stable.

Readers may wonder that to avoid this overload situation, some input port bins can be allowed

to exceed this rate limit while others are not. However, the resulting rate-limit policy is no longer

“nondiscriminatory" since it “discriminates" against the latter set of bins.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:26 Sen Yang, Bill Lin, and Jun Xu

B UFS ORDERLY EVACUATION SCHEDULING SCHEME

Algorithm 4 Scheduling UFS packets at input port i

1: Initialize: Set all UFS pressure counters to CU
i jm = 0, j,m = 1, 2, . . . ,N ;

Upon the arrival of a packet to Bi jm :
2: if Bi jm is in UFS evacuation phase then
3: CU

i jm ← CU
i jm + 1;

Upon the departure of a packet from Bi jm :
4: if Bi jm is in UFS evacuation phase then
5: CU

i jm ← max

(
0,CU

i jm − 1

)
;

If there are multiple USF-ready bin waiting to be served:
6: Pick the UFS-ready bin Bi jm with the largest UFS pressure counter value to serve in the next N

time slots;

To achieve the goal of orderly evacuation among UFS-ready bins, we piece together a scheduler

that is low in both computational and implementation complexities, using “off-the-shelf" rate

control mechanisms. Its pseudocode is shown in Algorithm 4.

As shown in Algorithm 4, each bin Bi jm is associated with a UFS “pressure” counter CU
i jm which

is set to 0 (Line 1 in Algorithm 4) when Bi jm becomes UFS-ready. This counter CU
i jm tracks, since

the last time it was set or decreased to 0, whether the queue length of Bi jm has increased – due

to the number of new packet arrivals (“pressure build-up") exceeding the number of Bi jm packets

that has been served (“pressure relief") – and if so, by how much, as follows. This pressure counter

remains 0 when Bi jm is in the UFS waiting phase. After Bi jm enters the UFS evacuation phase, we

increment CU
i jm by 1 with each new packet arrival to Bi jm (Line 3). When a frame of N packets

depart from a UFS-ready bin Bi jm , we decrement CU
i jm by N . If the value of CU

i jm becomes negative

after this decrement, we reset it to 0. This is equivalent to executing Lines 4 - 5 in Algorithm 4

N times. We purposefully write the pseudo code this way to make it consistent with the proof of

Lemma 7.

As is clear from our orderly evacuation goal, the larger the value of CU
i jm is, the more urgently

Bi jm should be served. Hence our scheduler adopts the following simple service discipline: Among

all UFS-ready bins, the one with the largest UFS pressure counter value (with ties broken arbitrarily)

is served next (Line 6). To implement this selection policy, we need only to maintain a heap of UFS-

ready bins indexed by pressure counter values. Although the complexity of this implementation

is O(logN), this complexity is not a major concern because, as we will show in Appendix C, our

scheduler only incur this complexity once per frame (of N packets), and hence the amortized

complexity (per packet per port) is just O(1).

C IMPLEMENTATION AND COMPLEXITY
In this section, we discuss in details how to efficiently implement the SRS operations described in

Section 3 and Appendix B so that their total computational complexity is O(1) per packet per port.
The first issue, mentioned in Section 3.1.2, is that RSP-ready bins among bins Bi1m , Bi2m , . . .,

BiNm at input port i (those in the “mth
row" highlighted in Figure 2) should receive RSP service (i.e.,

to have an HOL packet switched to intermediate portm) in the round-robin order. Suppose, among

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:27

these RSP-ready bins, Bi jm (where the “mth
row" intersects “jth column" in Figure 2) was the last

to receive RSP service. Clearly, our computation task here is to locate the next (per the round-robin

order) RSP-ready bin in this “mth
row" when needed. A naive implementation of this computation

task is to “linearly scan", starting from Bi[j+1]m , the “m
th

row" for the next RSP-ready bin. This

naive implementation, however, could incur a high computational complexity of O(N) per packet
per port in the worst-case, e.g., when Bi jm is the only RSP-ready bin in this “mth

row". A better

approach, which has a computational complexity of only O(1) per packet per port, is to maintain

a linked list of non-empty RSP-ready bins. A bin is inserted to the linked list when it becomes

both RSP-ready (say after receiving a unit of credit due to the above-mentioned round-robin credit

distribution) and non-empty, and is deleted from the linked list when it is no longer both RSP-ready

and non-empty. In addition, a pointer is associated with this linked list to remember (i.e., to point to)

the RSP-ready bin to be served next. To the best of our knowledge, such a linked list implementation

of efficient round-robin rotation among a dynamic set of entities can be traced as far back as to the

Deficit Round Robin (DRR) packet scheduler [24].

The second implementation issue, mentioned in Section 3.1.4, is how to avoid the high computa-

tional complexity of O(N) per packet per port involved in distributing credits (Line 3 of Algorithm

3), in the amount of
1

N each, to all N credit counters CR
i j1,C

R
i j2, . . . ,C

R
i jn (those in the “jth column"

highlighted in Figure 2). Our solution is to increment, instead of all these N counters by
1

N each, a

single counter by 1 in the round-robin manner, thereby reducing the computational complexity to

O(1) per packet per port. In other words, if we last incremented credit counterCR
i jm , then we should

increment counter CR
i j[m+1] this time. To implement this round-robin rotation, we simply need to

remember, for each such a set of counters CR
i j1,C

R
i j2, . . . ,C

R
i jN , the index of the counter that was

last incremented, using a pointer pi j . This round-robin rotation distributes credits almost as evenly

as the original scheme of incrementing all N counters: It can be shown that Lemma 1 continues

to hold with a slightly larger constant bound (NC + 1 instead of NC). Our stability proof, which

assumes the bound NC , only needs to be slightly modified to accommodate the slightly larger

bound NC + 1.

The third issue, mentioned in Section 3.1.5 and Appendix B, is how to efficiently implement

Algorithm 4 so that its computational complexity is only O(1) per packet per port. With the

standard data structure of organizing the pressure counters as a heap keyed by their values, the

time complexity of Algorithm 4 isO(logN) per packet per port. Our solution is to associate another

counter, called lazy pressure counter, with each bin. We increment the value of a lazy pressure

counter only once by N after every N increments to the corresponding normal pressure counter.

Hence, on average only one lazy pressure counter is incremented (by N) every N time slots. In

our solution, the heap data structure is keyed instead by the values of lazy pressure counters. This

way, on average only one heapify operation, which has a time complexity of O(logN), is triggered
every frame (i.e., N time slots).

3
It can be shown that, by making scheduling decisions based on

the slightly outdated “pressure readings" from lazy pressure counters, our streamlined scheduler

increases the aforementioned fluctuation bound N 3
only slightly. Our stability proof, based on

the guarantees of the original scheduler, only needs to be slightly modified to accommodate this

increase.

The fourth issue, mentioned in Section 3.2 in a footnote, is how to efficiently schedule those

intermediate bins among H1jm , H2jm , . . ., HN jm that are non-empty (i.e., have at least one packet

in the bin), in the round-robing manner. This issue is almost identical to the first issue, except that

3
Although in the worst case there can be a burst of N 2

consecutive increments to the lazy counters, using a (counter)

“seed value" randomization technique introduced in [29], we can ensure that, with overwhelming probability, at most O (1)
increments to lazy pressure counters can be triggered during every N consecutive time slots.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:28 Sen Yang, Bill Lin, and Jun Xu

there is no RSP credit payment and redistribution to worry about (so it is even easier to solve).

Hence the solution to the second issue, which has a computational complexity of O(1) per packet
per port, applies to this one.

The last issue is about the extra space complexity needed for SRS to maintain N 2
logical bins,

instead of N VOQs, at each input port. This extra space complexity is relatively modest for the

following reason. Like a VOQ in a standard input-queued crossbar switch, each bin here is typically

implemented as a linked list of nodes, each of which contains a pointer to the memory address in the

packet buffer space where the actual packet is stored. With such an implementation, at each input

port, the only difference in memory requirement between an SRS and a standard input-queued

crossbar switch, is that the former requires N 2
head pointers, one for each bin that points to (the

first node of) the corresponding linked list, whereas the latter requires only N of them, one for each

VOQ. Since each pointer requires only 4 bytes to store whereas each packet can be hundreds or

thousands of bytes long, the extra memory space needed to store N 2 −N more pointers is typically

relatively modest compared to that needed to store the actual packets.

D SRS-UFS VARIATION
In this section we provide a more detailed description of the SRS-UFS variation.

(i) When a packet arrives, besides being hashed into a bin Bi jm as in SRS, it is also inserted into

a “shadow" VOQ Zi j . When a packet is removed from Bi jm , it is also removed from its shadow

VOQ Zi j (and vice versa when Zi j is served by UFS as described next).

(ii) Each input port tracks its traffic arrival rate, using a lightweight measurement mechanism

such as “sample and count". When the arrival rate to an input port i exceeds some threshold

ρ̄, say 0.75, the input port i stops “TCP-hashing" its traffic into the N 2 Bi jm bins, and instead

demultiplexes all future packet arrivals to their respective shadow VOQs (there are N of

them). These shadow VOQs will soon be served via UFS. However, before this “SRS to UFS"

transition happens, the input port i has to wait until all N 2
corresponding Hi jm queues at the

N intermediate ports are cleared, to prevent packet reordering.

(iii) Once an input port starts to serve all its VOQs via UFS, it continues to do so until the traffic

arrival rate to the input port drops below a smaller threshold ρ (than ρ̄), say 0.65, at which

point the switch transitions back to serving the traffic via the baseline SRS. Keeping a “safe

distance" between these two thresholds prevents the switch from transitioning back and

forth frequently between the baseline SRS and the UFS scheme, when the traffic arrival rate

to an input port fluctuates around the higher threshold ρ̄. It also improves the tolerance of

the switch to the inaccuracies in tracking the traffic arrival rates to the input ports using a

lightweight measurement mechanism.

E EXTREMELY BURSTY PROCESS CAN STILL HAVE LONG-RUN AVERAGE RATE
In this section, we show that an arrival process could be extremely bursty yet still has a long-run

average rate. To do so, we introduce the notion of on-off process: In such a process, during each

time slot, we say that the process is “on" if there is a packet arrival, and is “off" otherwise. Now

consider the following on-off process. It is on for 1 time slot, off for 1 time slot, on for 2 time slots,

off for 2 time slots, on for 3 time slots, off for 3 time slots, and so on forever. In other words, the

process is on and then off each for an interval that is increasing linearly over time. Clearly, this

process is very bursty because, given any (arbitrarily large) time duration τ , we can find an interval

of length τ (time slots) in which the average arrival rate of the process is strictly 0 (i.e, no arrival at

all during the interval) and another interval of length τ in which the average arrival rate of the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:29

process is strictly 1 (i.e., τ arrivals during the interval). It is not hard to verify, however, that the

long-run average arrival rate of this arrival process converges to λ = 0.5.

F DISCUSSIONS ON STABILITY AND STARVATION
In this section, we state a few important facts concerning the stability and starvation issues of SRS.

We distinguish between two types of such issues. One type, which we believe is of more interest to

queueing theory researchers, is whether the length of each bin is growing at most sub-linearly over

time (i.e., rate-stable) – and if not, the rate of this linear growth – under various load conditions

(admissible or not). The other type, which we believe is of more interest to networking researchers,

is whether the length of each bin is small stochastically, under various admissible load conditions

(e.g., under an offered load of 0.9). In the following, we elaborate on these two types of stability

and starvation issues in Sections F.1 and F.2 respectively.

F.1 The First Type
We say that a queue Q is rate-starved at (maximum) rate γ̄ if its queue length Q(t) satisfies
lim supt→∞Q(t)/t = γ̄ > 0. Since SRS is proven to be rate-stable (i.e., no bin will have its length

grow with a positive rate over time) under mild admissible conditions (see Theorem 1 and the

paragraph around Equation (2) in Section 4), it guarantees no rate-starvation of any bin unless the

offered load (the maximum traffic arrival rate to any input or output port) exceeds 1. However,

since the traffic arrival rate to any input port cannot exceed 1 (see the paragraph under Inequality

(3) in Section 4), SRS guarantees no rate-starvation unless λj , the long-run average traffic arrival

rate to an output port j, exceeds 1.

When λj > 1 (for some j), some of the bins whose packets are destined for the output port j will
necessarily be rate-starved, no matter what switch scheduling policy is used. However, it can be

desirable for the switch to display “grace under fire" in this overload situation in the sense that the

switch rate-starves every bin in a fair fashion (e.g., at a rate proportional to the traffic arrival rate to

the bin). As it is, an SRS switch cannot guarantee such “grace under fire", as shown in the following

example. Suppose an intermediate bin Hi′j′m′ has some RSP packets in it when the corresponding

input bin Bi′j′m′ just enters the UFS waiting phase, and from this point onwards, the other N 2 − 1

input bins whose packets all destined for the output port j ′ (namely

{
Hi j′m

}N
i,m=1

\
{
Hi′j′m′

}
) are all

in the UFS evacuation phase and their total traffic arrival rate is exactly 1. In this case, only Bi′j′m′

is rate-starved (at its traffic arrival rate λi′j′m′) and no other input bin in this group is, because the

RSP packets in Hi′j′m′ will never be serviced (as the UFS packets evacuated from the other N 2 − 1

input bins arrive at the aforementioned intermediate port queue group

{
Hi j′m

}N
i,m=1

\
{
Hi′j′m′

}
at rate 1, which is equal to the service rate of this queue group), getting Bi′j′m′ stuck in the UFS

waiting phase.

However, we need only to make the following slight modifications to SRS in order for it achieve

a certain degree of “grace under fire" when the switch is only slightly overloaded.

(i) Upper-bound the length of each H queue.Whenever the queue length of any Hi jm exceeds a

certain threshold, Hi jm asks Bi jm to refrain from sending any more RSP packets over.

(ii) “Hawking radiation". All N intermediate ports dedicates 1 switching cycle (N time slots) every

T (typically a large constant) cycles, in a synchronized manner (otherwise packet reordering

could happen), to serving RSP packets, even when there are UFS packets backlogged at the

intermediate ports (i.e.,U bins are not empty) and/or all H queues are empty.

In other words, we upper-bound the lengths of these H queues (at intermediate ports) and in

addition guarantee them (analogous to black holes in the overload situation) a small but constant

minimum rate of “Hawking-radiating their mass away". With this modification, SRS can eventually

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:30 Sen Yang, Bill Lin, and Jun Xu

(i.e., in a finite amount of time) clear allH bins whose packets are destined for output port j , thereby
allowing all B bins whose packets are destined for output port j to enter the UFS evacuation phase.

Again, here and in the following paragraph, this j is chosen arbitrarily, but is fixed once chosen.

The following is true when the output j is only slightly overloaded (i.e., λj > 1 but barely). From

this point onwards (i.e., after all B bins whose packets are destined for output port j have entered
the UFS evacuation phase), at each input port, each such B bin is to be serviced at a rate roughly

proportional to its traffic arrival rate, since the “UFS orderly evacuation" policy (see Section 3.1.5),

which as we have shown guarantees approximate proportional fair rate allocation under admissible

traffic, also more roughly does so when the output port j is slightly overloaded. Therefore, each

such bin is to be rate-starved at a rate roughly proportional to its traffic arrival rate in the slight

overload situation.

The tradeoff however is that the throughput of the switch will be reduced to 1−1/T although this

reduction can be made arbitrarily small by increasing the value of the parameterT . We have proved

that the modified policy is strongly stable in the fluid sense, which implies not only rate-stability,

but also positive recurrence, when the traffic arrival rate matrix lies in the interior of the reduced

capacity region and each element in the traffic arrival matrix process (i.e., the arrival process to

each VOQ) is a renewal process. We do not include its proof here for two reasons. First, its relevance

to this paper, which does not use any fluid analysis, is rather tenuous. Second, a similar “Hawking

radiation" trick was used, and its stability within the reduced capacity region studied in [19] for a

very different application.

We prefer the unmodified SRS over the modified SRS because the former can provably attain

100% throughput and has good empirical delay performance under normalworkloads (i.e., when the

offered load stays away from 1). We believe the primary mission of a switch scheduling algorithm is

to deliver good delay performance under normal workloads; such “grace under fire" is a secondary

consideration and can be better achieved through other “knobs or levers" orthogonal to switching

such as congestion control, packet scheduling, or traffic policing/shaping.

F.2 The Second Type
The second type of stability and starvation issues manifest themselves mostly in the empirical delay

performance of SRS, which we have studied in Section 5 through simulations. Our simulation results,

presented in Section 5, show that SRS has excellent delay performance under low to moderate

traffic loads, which implies at least a good degree of fairness in serving different bins and lack

of starvation. These simulation studies, however, have not captured the fairness and starvation

behaviors of SRS in the heavy-traffic regime, i.e. under traffic loads close to 100%. We acknowledge

that, in this heavy-traffic regime, UFS may starve some unfortunate B bins that are waiting on their

corresponding H queues to clear at the intermediate ports. These H queues may take a very long

time to clear because the intermediate ports prioritize the servicing of UFS packets inU queues over

the RSP packets in H queues, and in the heavy traffic regime, theseU queues can take a very long

time to clear. We emphasize however that, when the switch operates in a persistent heavy-traffic

regime, this waiting pain is typically a one-off, because once these H queues are eventually cleared,

all bins in the switch will keep operating in the UFS mode for as long as the traffic load is very

high, and hence will not face starvation.

G PROOF OF LEMMA 1
Proof. Let CR

i jm(t) and CR
i jm′(t) denote the values of credit counters CR

i jm and CR
i jm′ at time slot

t respectively. Note that for any input port queue group Bi j , the total RSP credits stay unchanged

at anytime. So we always have CR
i jm(t) +CR

i jm′(t) ≤ NC .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:31

Let DR
i j (t) ≡

∑N
m=1

DR
i jm(t) be the cumulative number of packet departures from queue group Bi j

in RSP mode by time slot t . From Lines 2 - 3 in Algorithm 3, we know that

CR
i jm(t) = C − DR

i jm(t) +
1

N
DR
i j (t)

which is equivalent to DR
i jm(t) = C + 1

N DR
i j (t)−CR

i jm(t). Similarly, we have DR
i jm′(t) = C +

1

N DR
i j (t)−

CR
i jm′(t). Thus, we have

|DR
i jm(t) − DR

i jm′(t)| = |CR
i jm(t) −CR

i jm′(t)|
≤ |CR

i jm(t) +CR
i jm′(t)|

≤ NC

□

H PROOF OF LEMMA 4
Proof. As mentioned earlier, the set of Ijm(t) (defined in Section 4.1) packets that arrive at

the queue group G jm during the time interval [0, t] can be classified into two types: those RSP

packets sent to H1jm ,H2jm , . . . ,HN jm and those UFS packets sent to Ujm both from input ports.

We denote the total counts of these two types of packets by IRjm(t) and IUjm(t), respectively. Let
IRi jm(t) be the number of (RSP) packets that arrive at Hi jm during the time interval [0, t]. We

have IRjm(t) =
∑N

i=1
IRi jm(t), j,m = 1, . . . ,N by definition. We also have IRi jm(t) = DR

i jm(t), i, j,m =
1, . . . ,N , because every RSP packet that departs from Bi jm by time t arrives at Hi jm by time t .
Therefore, we have

IRjm(t) − IRjm′(t) =
N∑
i=1

(
IRi jm(t) − IRi jm′(t)

)
=

N∑
i=1

(
DR
i jm(t) − DR

i jm′(t)
)

By Lemma 1, we have���IRjm(t) − IRjm′(t)��� ≤ N∑
i=1

���DR
i jm(t) − DR

i jm′(t)
��� ≤ N 2C

Furthermore, if an input port bin is in UFS mode, around the time it sends one packet to

intermediate portm, it must also send one packet from the same frame to intermediate portm′

within the same cycle (N time slots). Thus, we always have

���IUjm(t) − IUjm′(t)��� ≤ 1 for any t ≥ 0.

Therefore,

|Ijm(t) − Ijm′(t)| =
���(IRjm(t) + IUjm(t)) − (IRjm′(t) + IUjm′(t))���
≤
���IRjm(t) − IRjm′(t)��� + ���IUjm(t) − IUjm′(t)���
=N 2C + 1

□

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:32 Sen Yang, Bill Lin, and Jun Xu

I PROOF OF LEMMA 5
Proof. Let O jm(t) be the cumulative number of packets departure from queue group G jm by

time slot t . Since G jm is non-empty from time slot (t1 + 1) to t2, it must send out 1 packet per N
time slots. We have

Ijm(t2) − Ijm(t1)
= O jm(t2) −O jm(t1) +G jm(t2) −G jm(t1)

≥
⌊

1

N
(t2 − t1)

⌋
+G jm(t2)

≥ 1

N
(t2 − t1) − 1 +G jm(t2)

where ⌊x⌋ is the largest integer smaller than or equal to x . From Lemma 4, for any intermediate

portm′ = 1, . . . ,N , we always have Ijm′(t2) ≥ Ijm(t2) − (N 2C + 1) and Ijm′(t1) ≤ Ijm(t1) + N 2C + 1

(which will be used in the first inequality below). Note that D j (t) =
∑N
m′=1

Ijm′(t). We have

D j (t2) − D j (t1) =
N∑

m′=1

Ijm′(t2) −
N∑

m′=1

Ijm′(t1)

=

N∑
m′=1

(
Ijm′(t2) − Ijm′(t1)

)
≥

N∑
m′=1

(
Ijm(t2) − (N 2C + 1) −

(
Ijm(t1) + N 2C + 1

))
=

N∑
m′=1

(
Ijm(t2) − Ijm(t1) − 2(N 2C + 1)

)
≥

N∑
m′=1

(
1

N
(t2 − t1) − 1 +G jm(t2) − 2(N 2C + 1)

)
≥ (t2 − t1) + NG jm(t2) − 5N 3C

□

J PROOF OF LEMMA 2
For convenience of presentation, we simply assume that Bi jm experiences a (degenerated) UFS

waiting period of length 0 if Hi jm is already cleared (i.e., has length 0) when Bi jm enters the UFS

mode. Recall from Appendix B that CU
i jm is the UFS pressure counter associated with bin Bi jm . Let

CU
i jm(t) denote the value ofCU

i jm at time t . As mentioned earlier, when Bi jm is in the UFS evacuation

phase, CU
i jm tracks the change of its queue length except that it could be allowed to transmit a

UFS packet (as a part of a UFS frame) at time t , even if CU
i jm(t) is 0 (Line 5 in Algorithm 4), and

CU
i jm(t) remains 0 after such a transmission. We say Bi jm “steals service” at such moments (without

havingCU
i jm(t) decremented). Our scheduler purposefully allows such a behavior, since Algorithm 4

guarantees that Bi jm needs UFS evacuation most urgently whenever it is scheduled (Line 6). If Bi jm
steals service at time t , UFS pressure counters of all other UFS-ready bins at input port i should
also have values equal or close to 0 at that time, indicating none of them needs evacuation urgently

anyway. Hence Bi jm should not be punished for stealing service at time t . To prove Lemma 2, we

need the following technical lemma.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:33

Lemma 7. If none of the bins at input port i has ever stolen service throughout time slots t1 to t2, we
must have

N∑
j,m=1

CU
i jm(t2) ≤ max

(
N ,

N∑
j,m=1

CU
i jm(t1)

)
Proof. Let BUi (t) be the set of bins at input port i that are in the UFS evacuation phase at time t .

If BUi (t2) = ∅, we must have CU
i jm(t2) = 0 for j,m = 1, 2, . . . ,N and thus

∑N
j,m=1

CU
i jm(t2) = 0 ≤ N .

Otherwise, let t ′ ∈ [0, t2] be the (unique) time such that BUi (t ′) = ∅ and BUi (t) , ∅ for any time slot

t ∈ [t ′ + 1, t2]. Note that t ′ must exist since BUi (0) = ∅. Then we must have

∑N
j,m=1

CU
i jm(t ′) = 0.

Note that when input port i is connected to intermediate port 1 at a time slot t ′′ ∈ [t ′ + 1, t ′ + N],
one of the following statements must be true.

• If t2 ≤ t ′′, we have t2 − t ′ ≤ N . Note that, as assumed in Section 4, at most one packet can arrive

at each input port in a single time slot and the value of

∑N
j,m=1

CU
i jm is incremented by at most 1

per packet arrival (Line 3 in Algorithm 4), we can obtain

N∑
j,m=1

CU
i jm(t2) ≤

N∑
j,m=1

CU
i jm(t ′) + (t2 − t ′) ≤ N

• If t2 > t ′′ and t1 ≤ t ′′, input port i must send out exactly one packet in UFS mode every time slot

throughout [t ′′, t2].
∑N

j,m=1
CU
i jm should then be decremented by 1 upon every departure of such

packets since none of the UFS evacuation phase bins at input port i has stolen service from t ′′ to
t2. On the other hand,

∑N
j,m=1

CU
i jm can be incremented by at most 1 every time slot. Therefore∑N

j,m=1
CU
i jm is strictly not increased throughout [t ′′, t2]. Hence,

N∑
j,m=1

CU
i jm(t2) ≤

N∑
j,m=1

CU
i jm(t ′′)

≤
N∑

j,m=1

CU
i jm(t ′) + (t ′′ − t ′)

≤ N

• If t2 > t ′′ and t1 > t ′′, similarly we can prove that

∑N
j,m=1

CU
i jm is strictly non-increasing

throughout [t1, t2] and thus

N∑
j,m=1

CU
i jm(t2) ≤

N∑
j,m=1

CU
i jm(t1)

In summary, we always have

N∑
j,m=1

CU
i jm(t2) ≤ max

(
N ,

N∑
j,m=1

CU
i jm(t1)

)
□

Now we are ready to prove Lemma 2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:34 Sen Yang, Bill Lin, and Jun Xu

Proof of Lemma 2.

Proof. Whenever Bi jm is in UFS evacuation phase, CU
i jm will be incremented by 1 upon the

arrival of every packet and be decremented by at most 1 upon the departure of every packet. Thus

we have

Bi jm(t2) − Bi jm(t1) ≤ CU
i jm(t2) −CU

i jm(t1) ≤ CU
i jm(t2)

Therefore it’s sufficient to prove that CU
i jm(t2) ≤ N 3

.

If none of the bins at input port i has ever stolen service throughout [0, t2], by Lemma 7, we have

N∑
j,m=1

CU
i jm(t2) ≤ max

(
N ,

N∑
j,m=1

CU
i jm(0)

)
= N ≤ N 3

Otherwise, let t ′ ≥ 1 be the time such that none of the UFS-ready bins at input port i has ever
stolen service throughout time slots t ′ to t2, but some bin, say Bi j′m′ , steals service in time slot

(t ′ − 1) to send out a packet pkt . If so, Bi j′m′ should have been scheduled to send the first packet of

the frame, to which pkt belongs, at some time slot t ′′ ∈ [t ′ − N , t ′ − 1]. At that time, we must have

CU
i j′m′(t ′′) ≤ N − 1 and CU

i j′m′(t ′′) = max
N
j,m=1

CU
i jm(t ′′). Thus we have

N∑
j,m=1

CU
i jm(t ′) ≤

N∑
j,m=1

CU
i jm(t ′′) + (t ′ − t ′′)

≤ N 2(N − 1) + N
≤ N 3

Since no bin has stolen services throughout [t ′, t2], by Lemma 7, we have

CU
i jm(t2) ≤

N∑
j,m=1

CU
i jm(t2) ≤ max

(
N ,

N∑
j,m=1

CU
i jm(t ′)

)
≤ N 3

□

K RELABEL {Bi jm}Ni,m=1
TO {B(k)}N

2

k=1

We relabel the N 2
input port bins {Bi jm}Ni,m=1

according to the end time of their last UFS waiting

phase before T2 as follows. Let [t [i jm]
1
, t [i jm]

2
], i,m = 1, 2, . . . ,N , be the last UFS waiting phase of

Bi jm before T2. Now we temporarily rewrite the term t [i jm]
2

as t (i, j,m)
2

, and Bi jm as B(i, j,m), in order

to introduce the following “(reversed) order statistics" of t [i jm]
2

and the relabeling accordingly of

Bi jm , for i,m = 1, 2, . . . ,N . DefineVj as

Vj = {(i, j,m) | i,m = 1, 2, . . . ,N }

Let σ : Vj →
{
1, 2, . . . ,N 2

}
be a bijection such that tσ

−1(1)
2

≥ tσ
−1(2)

2
≥ · · · ≥ tσ

−1(N 2)
2

. To make our

presentation more succinct, we use B(k), t
(k)
1

and t (k)
2

as shorthands for Bσ −1(k), t
σ −1(k)
1

and tσ
−1(k)

2
,

respectively. Thus, for any integer k ∈ [1,N 2], we always have4 t (k)
2
≤ t (k−1)

2
≤ T2, and B(k) should

never be in UFS waiting phase throughout [t (k)
2
,T2], as shown in Figure 4 (a).

4
For rigorousness, one can define t (0)

2
= T2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:35

L PROOF OF THEOREM 1(B) AND 1(C)
In the following we will prove Theorem 3, which implies Theorems 1(b) and 1(c).

Theorem 3.

lim sup

t→∞

G jm(t)
t
= 0 j,m = 1, 2, . . . ,N

Proof. We prove the theorem by contradiction. Suppose there exists a pair of integers j > 0 and

m > 0 such that

lim sup

t→∞

G jm(t)
t
= γ > 0 (22)

Thus, for ϵ =
γ
4
, there exists an integer T ′ > 0, such that

t > T ′⇒
G jm(t)

t
< (γ + ϵ)

By Lemma 3, for p =
γ−ϵ
N , there exists an integer TA > 0, such that

T > TA
0 ≤ t1 < t2 ≤ T
t2 − t1 ≥ pT

 ⇒ Aj (t2) −Aj (t1) ≤ (1 + ϵ)(t2 − t1) (23)

From (22), for the same ϵ , there exists an increasing sequence {T k
2
}∞k=1

such that limk→∞T
k
2
= ∞,

and for k = 1, 2, . . . we have T k
2
> TA and

G jm (T k
2
)

T k
2

> (γ − ϵ).
As G jm(0) = 0 and G jm(T k

2
) > 0, for each T k

2
, there must exist a T k

1
< T k

2
such that G jm(T k

1
) = 0

and G jm(t) > 0 for any t ∈ [T k
1
+ 1,T k

2
].

Note that in the following proof, k (as well as k ′) is not an exponent in the terms T k
1
and T k

2
, but

3 in the term 5N 3C is. By Lemma 5, we have

D j (T k
2
) − D j (T k

1
)

≥ (T k
2
−T k

1
) + NG jm(T k

2
) − 5N 3C

≥ (T k
2
−T k

1
) + N (γ − ϵ)T k

2
− 5N 3C (24)

Furthermore, since G jm(T k
1
) = 0, we have

N · (T k
2
−T k

1
) ≥ Ijm(T k

2
) − Ijm(T k

1
) ≥ G jm(T k

2
) ≥ (γ − ϵ)T k

2

Therefore T k
2
−T k

1
≥ (γ−ϵ)N T k

2
= pT k

2
. Since T k

2
> TA, by (23), we have

Aj (T k
2
) −Aj (T k

1
) ≤ (1 + ϵ)(T k

2
−T k

1
) (25)

Combining (24) and (25), we have

Bj (T k
1
) = Bj (T k

2
) +

(
D j (T k

2
) − D j (T k

1
)
)
−
(
Aj (T k

2
) −Aj (T k

1
)
)

≥
(
D j (T k

2
) − D j (T k

1
)
)
−
(
Aj (T k

2
) −Aj (T k

1
)
)

≥ (T k
2
−T k

1
) + N (γ − ϵ)T k

2
− 5N 3C − (1 + ϵ)(T k

2
−T k

1
)

≥ N (γ − ϵ)T k
2
− 5N 3C − ϵT k

2

≥ N (γ − 2ϵ)T k
2
− 5N 3C

We consider two cases:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

29:36 Sen Yang, Bill Lin, and Jun Xu

(i) If max
∞
k=1
{T k

1
} < ∞, there must exist an integer k ′ > 0 such that T k ′

2
>

N max
∞
k=1
{T k

1
}+5N 3C

N (γ−2ϵ) ,

since limk→∞T
k
2
= ∞. This however impliesBj (T k ′

1
) ≥ N (γ−2ϵ)T k ′

2
−5N 3C > N max

∞
k=1
{T k

1
} ≥

NT k ′
1
, which contradicts the fact that Bj (T k ′

1
) ≤ Aj (T k ′

1
) ≤ NT k ′

1
(due to (3)).

(ii) Otherwise, we must have T k
1
→∞ as k →∞, thus

lim sup

k→∞

Bj (T k
1
)

T k
1

≥ lim sup

k→∞

N (γ − 2ϵ)T k
2
− 5N 3C

T k
1

≥ lim sup

k→∞

N (γ − 2ϵ)T k
1
− 5N 3C

T k
1

= N (γ − 2ϵ)
> 0

This contradicts Theorem 2.

□

ACKNOWLEDGMENTS
This project is supported in part by NSF grants CNS-1423182 and CNS-1248117.

REFERENCES
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. 2010. Hedera:

Dynamic Flow Scheduling for Data Center Networks.. In NSDI, Vol. 10. 19–19.
[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut,

Francis Matus, Rong Pan, Navindra Yadav, George Varghese, et al. 2014. CONGA: Distributed congestion-aware load

balancing for datacenters. In ACM SIGCOMM Computer Communication Review, Vol. 44. ACM, 503–514.

[3] Brahim Bensaou, KT Chan, and Danny HK Tsang. 1997. Credit-based fair queueing (CBFQ): A simple and feasible

scheduling algorithm for packet networks. In IEEE ATM Workshop 1997. Proceedings. IEEE, 589–594.
[4] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. MicroTE: Fine grained traffic engineering for

data centers. In Proceedings of the Seventh COnference on emerging Networking EXperiments and Technologies. ACM, 8.

[5] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu, Lihua Yuan, Yixin Zheng, Haitao Wu, Yongqiang

Xiong, and Dave Maltz. 2013. Per-packet load-balanced, low-latency routing for clos-based data center networks. In

Proceedings of the ninth ACM conference on Emerging networking experiments and technologies. ACM, 49–60.

[6] Cheng-Shang Chang, Duan-Shin Lee, and Yi-Shean Jou. 2002. Load balanced Birkhoff–von Neumann switches, part I:

one-stage buffering. Computer Communications 25, 6 (2002), 611–622.
[7] Cheng-Shang Chang, Duan-Shin Lee, and Ching-Ming Lien. 2002. Load balanced Birkhoff–von Neumann switches,

part II: multi-stage buffering. Computer Communications 25, 6 (2002), 623–634.
[8] J. G. Dai. 1998. Stability of fluid and stochastic processing networks. University of Aarhus. Centre for Mathematical

Physics and Stochastics (MaPhySto)[MPS].

[9] J. G. Dai and Balaji Prabhakar. 2000. The throughput of data switches with and without speedup. In INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, Vol. 2. IEEE,
556–564.

[10] Weijun Ding, Jun Xu, J. G. Dai, Yang Song, and Bill Lin. 2014. Sprinklers: A randomized variable-size striping approach

to reordering-free load-balanced switching. In ACM CoNext, the 10th International Conference on Emerging Networking
EXperiments and Technologies. ACM.

[11] Paolo Giaccone, Balaji Prabhakar, and Devavrat Shah. 2003. Randomized scheduling algorithms for high-aggregate

bandwidth switches. IEEE Journal on Selected Areas in Communications 21, 4 (2003), 546–559.
[12] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap Lahiri, David A

Maltz, Parveen Patel, and Sudipta Sengupta. 2009. VL2: a scalable and flexible data center network. In ACM SIGCOMM
computer communication review, Vol. 39. ACM, 51–62.

[13] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya Akella. 2015. Presto: Edge-based load

balancing for fast datacenter networks. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 465–478.

[14] Juan José Jaramillo, Fabio Milan, and R Srikant. 2008. Padded frames: a novel algorithm for stable scheduling in

load-balanced switches. Networking, IEEE/ACM Transactions on Networking 16, 5 (2008), 1212–1225.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Safe Randomized Load-Balanced Switching By Diffusing Extra Loads 29:37

[15] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dynamic load balancing without packet

reordering. ACM SIGCOMM Computer Communication Review 37, 2 (2007), 51–62.

[16] Isaac Keslassy. 2004. The load-balanced router. Ph.D. Dissertation. Stanford University.

[17] HT Kung, Trevor Blackwell, and Alan Chapman. 1994. Credit-based flow control for ATM networks: credit update

protocol, adaptive credit allocation and statistical multiplexing. In ACM SIGCOMM Computer Communication Review,
Vol. 24. ACM, 101–114.

[18] Bill Lin and Isaac Keslassy. 2010. The concurrent matching switch architecture. Networking, IEEE/ACM Transactions on
18, 4 (2010), 1330–1343.

[19] Siva Theja Maguluri, R Srikant, and Lei Ying. 2012. Stochastic models of load balancing and scheduling in cloud

computing clusters. In INFOCOM, 2012 Proceedings IEEE. IEEE, 702–710.
[20] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakr-

ishnan, Vikram Subramanya, and Amin Vahdat. 2009. Portland: a scalable fault-tolerant layer 2 data center network

fabric. In ACM SIGCOMM Computer Communication Review, Vol. 39. ACM, 39–50.

[21] Cüneyt Özveren, Robert Simcoe, and George Varghese. 1994. Reliable and efficient hop-by-hop flow control. In ACM
SIGCOMM Computer Communication Review, Vol. 24. ACM, 89–100.

[22] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wischik, and Mark Handley. 2011.

Improving datacenter performance and robustness with multipath TCP. In ACM SIGCOMM Computer Communication
Review, Vol. 41. ACM, 266–277.

[23] Mehrnoosh Shafiee and Javad Ghaderi. 2017. A simple congestion-aware algorithm for load balancing in datacenter

networks. IEEE/ACM Transactions on Networking (2017).

[24] Madhavapeddi Shreedhar and George Varghese. 1995. Efficient fair queueing using deficit round robin. In ACM
SIGCOMM Computer Communication Review, Vol. 25. ACM, 231–242.

[25] Jonathan Turner. 1986. New directions in communications(or which way to the information age?). IEEE communications
Magazine 24, 10 (1986), 8–15.

[26] Leslie G. Valiant. 1982. A scheme for fast parallel communication. SIAM journal on computing 11, 2 (1982), 350–361.

[27] Sen Yang, Bill Lin, Paul Tune, and Jun Jim Xu. 2017. A simple re-sequencing load-balanced switch based on analytical

packet reordering bounds. In INFOCOM 2017-IEEE Conference on Computer Communications, IEEE. IEEE, 1–9.
[28] Sen Yang, Bill Lin, and Jun Xu. 2016. Safe Randomized Load-Balanced Switching by Diffusing Extra Loads. In

Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science.
ACM, 397–398.

[29] Qi Zhao, Jun Xu, and Zhen Liu. 2006. Design of a novel statistics counter architecture with optimal space and time

efficiency. ACM SIGMETRICS Performance Evaluation Review 34, 1 (2006), 323–334.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 29. Publication date: December 2017.

Received August 2017; revised October 2017; accepted December 2017.

	Abstract
	1 Introduction
	1.1 Our Approach
	1.2 Contributions of the Paper

	2 Background on basic LBS and UFS
	3 Design of SRS
	3.1 Operations at an Input Port
	3.2 Operations at an intermediate port
	3.3 Variation based on input port load

	4 Stability Analysis
	4.1 System dynamics and notations
	4.2 Proof of Theorem 1

	5 Evaluation
	6 Related Work
	7 Conclusions
	A Service rate limit of input port bins under RSP mode
	B UFS orderly evacuation scheduling scheme
	C Implementation and Complexity
	D SRS-UFS Variation
	E Extremely bursty process can still have long-run average rate
	F Discussions on Stability and Starvation
	F.1 The First Type
	F.2 The Second Type

	G Proof of Lemma 1
	H Proof of Lemma 4
	I Proof of Lemma 5
	J Proof of Lemma 2
	K Relabel {Bijm}i,m=1N to {B(k)}k=1N2
	L Proof of Theorem 1(b) and 1(c)
	Acknowledgments
	References

