IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

A Simple Re-Sequencing Load-Balanced Switch
Based on Analytical Packet Reordering Bounds

Sen Yang Bill Lin
Georgia Institute of University of California,
Technology San Diego

Email: sen.yang@gatech.edu Email: billlin@eng.ucsd.edu

Abstract—Chang et al. proposed the load-balanced switch in
their seminal work [1], which has received wide attention due to
its inherent scalability properties in both size and speed. These
scalability properties continue to be of significant interest due to
the relentless exponential growth in Internet traffic. The main
drawback of the load-balanced switch is that packets can depart
out-of-order from the switch, which can significantly degrade net-
work performance by negatively interacting with TCP congestion
control. Hence, a large body of subsequent work has proposed a
variety of modifications for ensuring packet ordering, but all the
proposed approaches tend to increase packet delay significantly
in comparison to the basic load-balanced switch. In this paper,
we show that the amount of packet reordering that can occur
with the load-balanced switch is actually quite limited, which
means that packet reordering can simply be rectified by employ-
ing reordering buffers at the switch outputs. In particular, we
formally bound the worst-case amount of time that a packet has
to wait in these output reordering buffers before it is guaranteed
to be ready for in-order departure with high probability, and we
prove that this bound is linear with respect to the switch size.
This linear bound is significant because previous approaches can
add quadratic or cubic delays to the load-balanced switch. In
addition, we use a hash-grouping method that further reduces
resequencing delays significantly. Although simple and intuitive,
our experimental results show that our output packet reordering
approach substantially outperforms existing load-balanced switch
architectures.

I. INTRODUCTION

Network traffic across the Internet as well as inside data
centers continues to grow exponentially. This relentless traffic
growth is fueled by an increasing adoption of video streaming
and cloud computing, and a proliferation of network-connected
devices with increasing networking capabilities. To keep up
with the ever increasing traffic demands with reliable service,
network operators need high-performance switch architectures
that can scale well in both switch size (in terms of the number
of switch ports) and link speed, provide throughput guarantees,
achieve low latency, and maintain packet ordering. Unfortu-
nately, conventional switch architectures have not been able to
keep up with these challenges.

A promising class of highly scalable switch architectures,
first introduced by Chang et al. [1], [2], and later further de-
veloped by others (e.g. [3], [4], [5], [6]), is the load-balanced
switch (LBS). As shown in Fig. 1, a generic LBS relies on two
switching stages for forwarding packets. The first switching
stage connects the input ports to the center stage of intermedi-

978-1-5090-5336-0/17/$31.00 ©2017 |EEE

Jun (Jim) Xu
Georgia Institute of
Technology
Email: jx@cc.gatech.edu

Paul Tune
University of Adelaide
Email: paul.tune@adelaide.edu.au

Input
Ports

1st Stage Intermediate 2nd Stage
Switch Ports Switch

Output
Ports

2. ‘ .
A
,
,
,
~o
;
z -.I\J -
.
N
\
.
\\
. H .

Fig. 1. Generic load-balanced switch.

ate ports, and the second switching stage connects the center
stage of intermediate ports to the final stage of output port-
s. Both switching stages execute a deterministic connection
pattern such that each input is connected to each output of a
switching stage 1/N-th of the time.

This architecture can be implemented using two identical
N x N crossbar switching stages where each switching stage
goes through a predetermined periodic sequence of cyclic-
shift connection patterns such that each input is connected to
each output of a switching stage exactly once every N cycles.
Alternatively, as shown in [5], the deterministic connection
pattern can also be efficiently implemented using optics where
all inputs are connected to all outputs of a switching stage
in parallel at a rate 1/N-th of the line rate. LBSes are much
more scalable, in terms of both switch size and link speed,
than conventional switch architectures. This is because, in LBS
architectures, the connection pattern during every switching
cycle at each switching stage is fixed and requires zero compu-
tation, and each port can forward packets in a fully distributed
manner based only on local information.

A. The Packet Reordering Problem

Although the basic LBS originally proposed in [1] is highly
scalable, it has the critical problem that packets can depart
out-of-order from the switch. In the basic LBS, consecutive
packets at an input port are spread to all [V intermediate ports
upon arrival. These packets, going through different intermedi-
ate ports, may encounter different queuing delays. Thus, some
of these packets may arrive at their output ports out-of-order.
This is detrimental to Internet traffic since the widely used
TCP transport protocol falsely regards out-of-order packets
as indications of congestion and packet loss. The outcome

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

10°

~gooox 10
H— kq”f*f.;*“‘f
>10° //'
]
kel
c
©
Q.2
=10 PR
~800X .—F —= Basic
e UFS
10! — o~ FOFF
—— PF
Sprinklers
109

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load

Fig. 2. Poor average delays under moderate loads. A uniform traffic pattern
was used here. The switch size N = 64. Loads are normalized to 1. At a
load of 0.1, the average delay of the proposed schemes are about 800 times
higher than the basic LBS (labeled “Basic”).

is the retransmission of packets, often multiple times, further
exacerbating the problem. Therefore, a number of researchers
have subsequently explored this packet ordering problem.

Most existing approaches to the packet ordering problem
are based on some form of complete or partial aggregation
of packets into frames or stripes. Uniform Frame Spreading
(UES) [5], Full-Order Frames First (FOFF) [5], Padded Frames
(PF) [4], and Sprinklers [3] are representative examples of
such approaches. However, these methods pay a significant
price for ensuring packet ordering in that they perform signif-
icantly worse than the basic LBS [1].

Fig. 2 compares these aggregation-based methods with the
basic LBS (labeled as “Basic”) that does not guarantee packet
ordering. The results are for a uniform traffic pattern, one in
which the output port destination for every arriving packet is
chosen uniformly at random. As can be seen, these approaches
all have packet delays can be significantly higher than the basic
LBS, especially under moderate loads.

B. Our Approach

In this work, we propose a natural solution, named the RS-
LBS (Re-Sequencing Load-Balanced Switch), that incurs sig-
nificantly lower packet delays compared to the aforementioned
packet-aggregation-based solutions. Our solution is based on
the following observation of the queuing dynamics in the basic
LBS: although two “back-to-back™ packet arrivals A (earlier)
and B (later) belonging to the same switch flow (i.e., they share
the same input and output) may reach the output port out of
order as explained above, the amount of reordering (i.e., how
much earlier B arrives at the output port before A) is upper-
bounded with high probability by a fairly small value. The
reason for this is that under the round-robin load dispatching
mechanism of the basic LBS, the two VOQs at two different
intermediate ports that A and B traverse through respectively,
have almost independent and stochastically identical queuing
processes. Hence the delays A and B experience at their re-
spective intermediate ports are almost i.i.d. (independent and
identically distributed) random variables, so with high proba-
bility the latter cannot be much larger than the former.

Our basic RS-LBS scheme is for an output port to hold each
out-of-order packet, for a period of time not exceeding this
(small) upper-bound, for re-sequencing. While packets that are
severely out-of-order, i.e., those causing this upper-bound to
be exceeded, may remain out-of-order after the re-sequencing,
they represent a tiny percentage of the network traffic and may
negatively impact the performance of an even tinier percentage
of TCP flows. We prove that this upper bound is linear with
respect to the switch size, i.e., O(N), under any traffic arrival
process for which the switch is stable. Hence with a worst-
case delay of at most O(N) due to this re-sequencing, we
can ensure that an overwhelming majority of packets exit the
switch in-order; in fact, since the output port holds a packet
for only as long as is necessary, the average delay of packets
is much smaller than this worst-case delay, as will be shown
in Section V. In contrast, all other present solutions to the
packet reordering problem incur O(N?) or O(N?) delays.

Our solution can be further refined to reduce the average
delay of packets by relaxing the packet ordering semantics
as follows. The semantics discussed above, which we refer
to as per-switch-flow ordering, aims to ensure that packets
arriving to the same input port departs from the corresponding
output port in the same order. The per-switch-flow ordering is
unnecessarily conservative because if two out-of-order packets
within the same switch flow belong to two different TCP flows,
then having them depart the switch in a different order would
not negatively impact either TCP flow. The most relaxed yet
still harmless semantics would be to only ensure the sequenc-
ing of packets within a TCP flow, which we refer to as per-
TCP-flow ordering. With per-TCP-flow ordering, the average
packet delay (due to re-sequencing) can be reduced significant-
ly, as an out-of-order packet no longer has to be held waiting
for packets from other TCP flows. This relaxed semantics,
however, is computationally expensive to implement, since to
do so would require each output port to perform per-TCP-flow
queuing and re-sequencing. We propose the use of a slightly
less relaxed semantics called per-hashed-group ordering. With
per-hashed-group ordering, incoming packets at an input port
with the same departure output port (i.e., the same switch
flow) are hashed to one of K counters and are numbered by
the corresponding hashed counter. Per-hashed-group ordering
simply requires two packets belonging to the same hashed
group to depart in order in accordance to their assigned se-
quence numbers'. This slightly less relaxed semantics results
in almost the same level of reduction to the average delay
as per-TCP-flow ordering, but yet it has an implementation
complexity comparable to that of per-switch-flow ordering.

C. Contributions of the Paper

This paper makes three major contributions:

o First, we show that the amount of packet reordering is,
with high probability, quite limited. More specifically, we
formally derive a linear bound on the amount of time that

'In contrast, with per-switch-flow ordering, incoming packets are numbered
in accordance to their arrivals to the same switch flow.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

a packet has to wait at the output port before it is, with
high probability, ready for in-order departure.

« Second, using flow statistics measured from real-world
Internet traces, we show by means of simulations that
our solution, with the standard per-switch-flow ordering
semantics, leads to very low packet delays, enabling sig-
nificantly better performance compared to existing LBS
solutions.

« Third, we apply a more relaxed yet still harmless pack-
et ordering semantics, called per-hashed-group ordering,
that can further reduce the average packet delay signifi-
cantly, yet has a low implementation complexity compa-
rable to that of the standard and more conservative per-
switch-flow ordering semantics.

The rest of the paper is organized as follows. In Section II,
we analyze the amount of packet reordering under in a basic
LBS. In Sections III and IV, we present the basic and enhanced
(with hash-grouping) RS-LBS schemes. In Section V, we
compare the average delay performance of our re-sequencing
schemes with existing LBS architectures. In Section VI, we
provide a brief review of related work, before concluding the
paper in Section VIIL.

II. ANALYSIS OF PACKET REORDERING PROBABILITY

As explained earlier, the efficacy of our natural solution
hinges upon the premise that only a tiny percentage of packet
pairs are severely reordered when they reach their output ports.
A packet pair A and B within the same switch flow, A arriv-
ing earlier at the input port than B, are considered severely
reordered, if B arrives earlier than A by at least a lateness
threshold 6. Clearly, the larger is this lateness threshold 6, the
smaller is the proportion of severely reordered packet pairs.

In this section, we show, through a careful analysis, that
even with a fairly small lateness threshold of O(N), the pro-
portion of severely reordered packet pairs can go down to a
tiny number. Note this O(N) result holds for any traffic arrival
process for which the switch is stable. However, in analyzing
the constant factor (e.g., “23” in the following example) in this
O(N), we assume the arrival process is Poisson. For example,
we will show that when the switch is 90% loaded under
Poisson traffic and the lateness threshold is set to 23V, no
more than 1 out of 1,000 “back-to-back™ packet (arrival) pairs
in the same switch flow will be severely reordered (There is
a quotation mark around the word “back-to-back™ here, since
between this pair of packet arrivals there can be other packet
arrivals belonging to other switch flows to this input port). This
property allows our natural solution of re-sequencing packets
at the output ports to remove all but a tiny proportion of out-of-
order packets while introducing at most O(N) re-sequencing
delay to each packet.

A. Problem formulation

Consider two “back-to-back” packets A and B in the same
swich flow where A arrives before B. Let m; and mo be the
intermediate ports that A and B transit through respectively,
and j be their common destination output port. Then A and B

both transmit through the j-th VOQ (for buffering all packets
destined for output port j) at the corresponding intermediate
ports. If these two packets happen to transit through the same
intermediate port, i.e., m; = me, then they clearly will not
be reordered because they go through the same intermediate
VOQ. Hence we assume mj; # ms when we analyze the
reordering probability.

Let L; and Ly be random variables denoting the queuing
delays that A and B experience, at the j-th VOQs of the
intermediate ports m; and mes, respectively. Define a cycle
as N time slots. Even if A and B depart from the input port
simultaneously, B can arrive at the output port at most L1 — Lo
cycles before A. Based on this observation, given any lateness
threshold & > 0 (in the unit of cycles), we aim to derive
P(Ly — Ly > 0), the probability that this pair of “back-to-
back™ packets is severely reordered (with respect to).

Note this measure of packet reordering, namely “back-to-
back” packet reordering probability, is different than the con-
ventional measure readers may have in mind. In particular,
this measure does not account for all packet reordering cases
that may impact TCP performance, which would be account-
ed for in the conventional measure. For example, consider 5
“consecutive” packets A, B, C, D, and F in the same switch
flow. This measure accounts only for the reorderings between
4 pairs of “back-to-back” packets: (A, B), (B, C), (C, D) and
(D, E), but not for other pairs such as (A, D) and (C, E).

We emphasize, however, that our measure is only used for
the theoretical analysis, including the O(N) packet waiting
time proof, and for deciding on the right parameters used in
our packet buffering and re-sequencing schemes. We will use
the conventional measure of packet reordering when evaluating
the efficacy of our schemes. We further emphasize that our
O(N) proof (established below) remains valid according to
the conventional measure, because our measure turns out to
be more conservative than the conventional measure for the
following two reasons.

First, in estimating the reordering probability of a pair of
“back-to-back™ packets, we assume these two packets depart
from the input port, to their respective intermediate ports, si-
multaneously. However, in reality, two “back-to-back” packet
arrivals (say A and B) within the same switch flow can be
separated by 7 packet arrivals, where 7 can be tens, hundreds
or more packets from other switch flows. These 7 intervening
packets from other switch flows would cause a gap of at least
7 time slots (or 7/N cycles) between the departure times
of A and B from the input port. The reordering probability
P(Ly — Ly > 04 7/N) can be much smaller than P(L; —
Ly > 0), when 7 is tens, hundreds or more. Second, the gap
between the departure times of other pairs of packets within
the same switch flow, say A and C, is typically much wider
than this 7, the gap between the departure times of “back-
to-back” pairs, hence the reordering probability between any
such pair is generally negligible compared to that between a
“back-to-back”™ pair.

As mentioned earlier, each input port distributes incoming
packets, regardless of their destination output ports (i.e., the

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

switch flows they belong to), uniformly to all N intermediate
ports in a round-robin fashion. It has been shown in [1] that,
under very mild assumptions on the traffic arrival process to
the switch (i.e., to its input ports) such as weakly mixing,
for any j, my, and ms, the packet arrival process to the j-th
VOQ of the intermediate port m; and that to the j-th VOQ
of the intermediate port mo can be viewed as i.i.d. stochastic
random processes. Since these two intermediate VOQs also
have the same deterministic service process, more specifically
switching one packet to output port j every IV time slots, the
queuing processes of VOQs are i.i.d. Hence the queuing delays
L4 and Ly are i.i.d. random variables.

Let the packet arrival process to each of the N2 switch flows
be independent of each other and be stationary. Let A\;; > 0
be the average arrival rate of packets arrivin1§ at input port ¢
destined for output port j. Define \; = > ;" , \j; to be the
total average arrival rate for output port j. Let the service rate
of each input or intermediate port be 1. For this arrival process
(to the switch) to be admissible, we must have

N
daj<l, i=12...,N,
j=1

N
Y Nj<l, j=12..N.
i=1

B. The O(N) Proof

We again emphasize that Poisson assumption is not needed
for deriving this O(NN) proof. Define 7, = P(L; = n) for
n = 0,1,2,.... Recall L; is the queueing delay packet A
experiences at the j-th VOQ of the intermediate port m;.
Since the arrival process to this VOQ is stationary, as stated
before, and the service process is deterministic (and hence
stationary), the distribution of L; is precisely the stationary
queueing delay distribution of this VOQ. Since the term N
does not appear in either the arrival rate)\; or the service rate
1 (i.e.,, 1 packet every cycle or N time slots), it should not
appear in the distribution of L; (i.e., any of the 7, terms).
Hence each 7, term is a function of only A and n. Since L,
and L are i.i.d., by the convolution formula, we have,

P(Ly—Ly>0) =Y P(Li—Ly=k)
k=6

= iiP(LQ :’i)P(L1 :iJrk)

k=0 i=0

= Z Z TG T+ k-
k=6 i=0
Note that the term N does not appear in the above formula.
This implies that P(L; — Ly > 0) is a function of only 6 and
A;. Hence given a load factor \; and a target P(L; — Lo > 0)
value (say 1073), the value that allows us to reach (i.e., go
under) this target P(L; — Lo > 6) value is a constant (with
respect to N). Note that under any admissible traffic arrival
process to the switch P(L; < oo) = 1, so any nonnegative

target P(Ly; — Ly > 6) value can be reached, no matter how
small it is. Hence the output needs to hold packet B for up to 6
cycles, or N time slots, to achieve this target P(L;— Lo > 6)
value. This proves that at most O(N') amount of buffering (and
waiting) is needed at each output port to re-sequence the vast
majority of packets.

C. Analysis of the Constant Factor 0

In analyzing the constant factor € in this O(N) result, we
assume that arrival processes to all N2 switch flows are Pois-
son. With this Poisson assumption, the queuing process of the
j-th intermediate VOQ at intermediate port m; can be viewed
as M/D/1 (i.e., Poisson arrival® and deterministic service time).
Then the distribution of L; is equal to the stationary queueing
delay distribution of this M/D/1 queue. The same can be said
about the queuing process of the j-th intermediate VOQ at
intermediate mo, and about Ls.

1) The distribution of L1 and its numerical computation:
Recall that the (normalized) arrival rate to this M/D/1 queue
(i.e., the j-th VOQ at intermediate port m;) is A; and its
service rate is 1 (i.e., 1 packet every cycle or IV time slots). For
the ease and clarity of the presentation, we drop the subscript
J from); and denote the total load to the output port j simply
as \. By the Pollaczek-Khinchin formula [7], we have

mo =1 — A (D

o =(1 = A~ 1) @
el ok [(EXNE (kA)n—h—1

+ (1 _ /\)en)\. (3)

Unfortunately, computing (3) leads to numerical instability,
since it is a summation of alternating sign large absolute
values. Our tests show that numerical computation via Matlab
can accurately compute only up to w9 when A = 0.1 (10%
loaded) and up to myp when A = 0.9 (90% loaded). We
overcome the problem by using following upper bound of ,
that is numerically stable [8]:

(7)) Ml(T)
= (7)7/+1 rn

, n=0,1,2,... @)

Tn,

where (p, o, r and M;(r) are parameters that arise in ana-
lyzing this distribution via complex analysis.

Fig. 3 presents the numerical results of this upper bound
for load factors A = 0.1,0.5,0.9, with the parameters listed
in Table I. We see from the figure that the upper bound given
by (4) is quite tight when n is large. Thus whenever n is
large enough so that 7,, cannot be computed accurately using
equation (3), it can be tightly bounded using equation (4).

2Due to the discretization of time into slots by the switch, this arrival
process (to an intermediate VOQ) is i.i.d. Bernoulli, not Poisson, even when
the arrival process to the input port is assumed to be Poisson. However, when
N is large, which is what LBS is designed for, the Bernoulli process is
stochastically very close to the Poisson process.

IEEE INFOCOM 2017 -

TABLE I
PARAMETERS FOR THE UPPER BOUND IN EQUATION (4) (TAKEN FROM [8]
WITH A CORRECTION).

A Co %) r M (r)
0.1 37.1 —444.8 84.0 384.0
0.5 3.5 —5.8 16.0 60.6
0.9 1.2 —0.26 8.0 0.95
A=0.1 A=0.5 ; A=09
10° 102 10
~o-ground truth “o-ground truth
-7upper bound -7 upper bound ~v-upper bound
10°
10° 10°
102
g 10° 101
10
10710 -2
10 10
v
107 108 -3
0 5 10 0 5 10 15 10 0 10 20
n n

Fig. 3. Comparing the true value of 7, (denoted ground truth) with its upper
bound under A = 0.1,0.5,0.9.

2) Piecing Everything Together: Combining equations (1),
(2), (3) and (4), we obtain the following upper bound of
P(Ly — Ly >), which is also a close approximation of it.
Here d is the aforementioned threshold such that, when n > d,
an accurate numerical computation of ,, using equation (3)
becomes impossible. Recall that, as explained before, when
n > d, the m, terms in equation (3) can each be tightly
bounded using equation (4), and their sums result in the right-
hand-side terms in inequalities (5) and (6). We omit its proof
due to lack of space.

Theorem 1: When 6 > d, we have

1
P(Ly — Ly > 0) < C° + o= 5 (5)
When 0 < 6 < d, we have
d d—¢)
d
P(Ll — L2 Z 9) S Zzﬂ-iﬂ-i‘i’z +Cé) Frm) +C(d)ﬁ
£=6 i=0 0
+ 559@) + COAD, (6)
where
(d) 4 o o?
Y =— 0L 0
Y N
aoMi(r)
<d+2’l“d+1(1 _C 1 _1)
Xd: M1 ag M (r)
P d+2Td+1(1 Calr_1>
M?
+ (1)

T2d+2(1 _ ’I"72)

d
~(6,d) _ (04(2) _ aoMi(r)) i
Ce At (a-¢ tr 1) ; ¢

QM a-¢,?)

IEEE Conference on Computer Communications

d d
T;
*Z Z Fitl
=0 i=d—f+1
d
o.d) — _ o My (1) _ Mi(r Z 1
T - CngQ’r‘dJrl(l—C(;lT’l) r2d+2(1 r— 7t
=0
by oy T
7~€+z

£=0 i=d—(+1

3) Numerical Results of P(Ly — Ly > 0): Let P(0) denote
the tight upper bound of P(L; — Ly > 0) given in the right
hand sides of (5) and (6). P() for A = 0.1,0.5,0.9 is plotted
in Figure 4. From their definitions given in [8], we can infer
that 7 > (o > 1, ap < 0 and M;(r) > 0, and thus P(f) is a
decreasing function of #. This monotonicity can also be seen
from Figure 4.

Given the monotonicity of P(f), we can define L. as fol-
lows. For any € > 0, let L, be the smallest nonnegative number
such that P(0) < ¢ if and only if & > L. Since the service
rate of an intermediate port VOQ is 1/N, as explained earlier,
with probability no more than e, packet B arrives at output
j at least LN time slots earlier than A. So if B waits up
to L. N time slots at the output port, the probability that B
departs from the output port earlier than A should be no more
than e. In other words, if we maintain a re-sequencing buffer
of size [L.|N at each output port, we can expect the packet
reordering probability to be no more than e. For example, for
e =10"3 and A = 0.9, we have [L.] = 23. In other words,
if each output port maintains a re-sequencing buffer of size
23N, the switch can keep the packet reordering probability
below 10~3 when the traffic load is no more than 90%.

10% e \ \ \ ‘

1 0—30 L

e
A
o

upper bound of P(L; —

1 0-50 L L L L
0 5 10 15 20 25 30

Fig. 4. P(0), the upper bound of P(L1 — Lo > 0).

III. THE BASIC RS-LBS SCHEME

In the previous section, we proved that a “back-to-back”
packet pair A and B in the same switch flow is, with high
probability, re-ordered by at most O(N) time slots. Hence, the
core idea of our basic RS-LBS scheme is, for each output port
J, to hold out-of-order packets for at most O(NN) time slots
and re-sequence them to the extent possible under this O(N)
maximum holding time constraint. With this idea, in theory
at most P(L; — Ly > 0) fraction of packets will remain re-
ordered after this buffering and re-sequencing.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

A. Re-sequencing Policies

The key idea of the basic RS-LBS scheme is, however,
insufficiently detailed to define our scheme. The following
packet re-sequencing policy at each output port fills the gap:

« Whenever a packet has waited for 6N (equal to buffer
size) time slots at an output port buffer, we mark this
packet (and all packets before it) as expired.

o« We mark a packet as in-order, if and when all packets
have departed from the output port that are in the same
switch flow as, and arrived earlier at the input port than,
the packet.

o A packet can depart from the output port whenever it is
in-order or expired. If there are multiple expired pack-
ets in the buffer, they will be served in the right order
(according to the order they arrive at the input port as
indicated by an internal sequence number field assigned
by the input port).

Since the policy guarantees that no packet waits more than
ON time slots in the buffer, the re-sequencing delay is no
larger than O N. A drawback of this policy, however, is that it
does not fully utilize the buffer space, because it may force
an expired packet to depart from the output port unnecessarily
(i.e., even when the buffer is not full). An alternative policy
that fully utilizes the buffer is as follows:

o Each out-of-order packet shall keep waiting in the buffer

until it becomes in-order or the buffer is full.

o When the buffer is full and there are no in-order packets

in the buffer, we mark the packet that arrived at the switch
(to any input port) the earliest as “expired”.

« A packet can depart from the output port whenever it is

in-order or expired.

The second policy essentially keeps a packet in the buffer
for as long as possible in hopes of getting it back in-order. It is
more aggressive than the first policy in reducing the proportion
of reordered packets, so it should result in a smaller number of
packet reorderings than the first policy. However, conceivably
there is a tradeoff here: the second policy may result in a
larger average re-sequencing delay than the first policy. To
make an informed decision as to which policy to adopt, we
compared the reordering proportions and re-sequencing delays
of these two policies via simulations. Here is a summary of
the observations:

o The re-sequencing delay of first policy is slightly smaller

than that of the second when the buffer size is small
(W = 2N or so0), but are almost the same when the buffer
size is large (W > 5N).

o The re-ordering probability of the second policy is much

smaller than that of the first one.

We conclude from these observations that the second policy
achieves a much better tradeoff between packet reordering
probability and re-sequencing delay. In addition, as will be
shown in Section V-B, the re-sequencing delay will be even
less an issue in the enhanced (by hash-grouping) RS-LBS
scheme. Hence, we adopt the second policy in both the basic
and the enhanced RS-LBS schemes.

B. Implementation Issues

In this section, we explain some implementation issues re-
garding the aforementioned second packet re-sequencing pol-
icy that we adopt for our RS-LBS schemes. At any input port,
an internal (switch-wide) header is added to each incoming
packet that contains a timestamp, corresponding to the arrival
time (slot) of the packet, and the identifier of the input port.
Information contained in this header is used by the output ports
for implementing the packet re-sequencing policy. At an output
port, the packet re-sequencing operation dictated by this policy
can be implemented using a heap of O(NN) nodes, and hence
has a computational complexity of O(log N) per packet. This
complexity can be further decreased to O(1) using pipelined
implementations of heaps or similar sorting data structures [9],
[10], [11].

C. Stability of the Basic RS-LBS Scheme

Since our scheme holds at most O(N) additional (waiting)
packets in each output port buffer, compared to the basic LBS,
our scheme is stable for any traffic arrival process for which
the basic LBS is stable. Note that, for all practical purpos-
es, we may consider the basic LBS to be stable under all
aforementioned admissible traffic arrival processes, although
in theory, some very mild conditions, such as weakly mixing,
need to be imposed on the arrival processes to preclude the
pathological cases in which the destination output ports of
packets arriving at an input port are perfectly synchronized
with their “sequence numbers modulo N that create a severe
load-imbalance across the intermediate ports. We refer read-
ers to [1] for further details on the mild conditions and the
pathological cases they aim to preclude.

IV. IMPROVING THE PERFORMANCE BY HASH-GROUPING

As explained in the introduction, the only type of packet
reordering that negatively impacts TCP performance is the
reordering between two packets that belong to the same TCP
flow. However, our basic RS-LBS scheme is oblivious to the
flow identifier of a packet, so a packet already in-order within
its own TCP flow may well be out-of-order within its switch
flow, and be kept waiting in the output port buffer. Clearly, this
wait time unnecessarily increases the average re-sequencing
delay of a packet. A natural solution to this problem is to make
each output port aware of the (TCP) flow identifier information
in the packets. This solution, however, requires the output
port to perform per-TCP-flow buffering and queuing, which is
prohibitively expensive computationally.

We use a hash-grouping technique that was first introduced
in [12], which significantly enhances the performance of the
basic RS-LBS scheme, but yet has almost the same com-
putational complexity and implementation cost as the basic
scheme. The key idea is that, at each input port, the pack-
ets inside each switch flow are demultiplexed into K virtual
groups via hashing. In other words, the (TCP) flow identifier
of each packet is hashed to produce the index of the group
to which the packet belongs. Note that since all packets of a

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

TCP flow have the same flow identifier, they will be assigned
to the same virtual group via hashing.

The packet re-sequencing policy needs only to be slightly
revised to take advantage of hash-grouping. A packet in a
hashed group is considered in-order if it is in-order within its
own group, even though it is not in-order within its switch
flow. With a sufficiently large number of groups, each group
contains only a small number of active TCP flows at any given
time. In this case, a large fraction of unnecessary wait time
is avoided, and the resulting re-sequencing delay becomes so
small that it is almost the same as if the output ports were to
enforce correct packet ordering only within each TCP flow. We
will demonstrate the efficacy of this technique in Section V-B.

V. EVALUATION

In this section, we compare the performance of our pro-
posed approach with other existing load-balanced switching
algorithms, including the basic LBS [1], Uniform Frame
Spreading (UFS) [5], Full-Ordered Frame First (FOFF) [5],
Padded Frames (PF) [4], and the recently proposed Sprinkler-
s scheme [3]. Although the basic LBS (labeled “Basic” in
subsequent figures) does not guarantee packet ordering, it is
included in our comparisons because it provides a lower bound
on the average delay that any LBS-based scheme can achieve.
UFS, FOFF, PF, and Sprinklers are all known to provide fairly
good performance while guaranteeing packet ordering.

Throughout this section, we assume N = 64. The nor-
malized traffic load A injected into the switch ranges from
0.1 to 0.95, while the output buffer size W varies from 0 to
oo (i.e., no restriction on the buffer size). We also vary the
traffic patterns in our evaluation. Our simulation covers 4 types
of traffic matrices: uniform, quasi-diagonal, log-diagonal and
diagonal. The load matrices are listed in the order of how
skewed the traffic is to an output port: from uniform being the
least skewed, to diagonal being the most skewed.

In order to simulate the effects of distributing TCP/UDP
application flows into hashed groups, we generate application
flows over the simulation period using flow statistics mea-
sured from a real-world Internet traffic trace. Specifically, we
assume that the arrival of new application flows to an input
port follows a Poisson process, and the rate and duration of
each new application flow, viewed as a random vector, follows
the corresponding joint empirical distribution measured from
the traffic trace under consideration. The rate of this Poisson
process is set according to the intended traffic rate A of the
input port in a simulation run, and the measured empirical
average size (number of packets) of an applications flow.

The trace used was donated privately to the authors and
was collected by University of North Carolina (UNC) on a
1 Gbps access link connecting the campus to the rest of the
Internet on April 24, 2003. It contains 198,944,706 packet
headers and around 13.5 million flows. In our simulation study,
incoming traffic to each input port is generated according to
the empirical flow statistics measured from this trace.

In the remainder of this section, we will first look at the per-
formance of the basic RS-LBS scheme, followed by the perfor-
mance of the enhanced RS-LBS scheme (with hash-grouping).

A. Performance of Basic RS-LBS

The simulation results of the packet reordering probability
and mean delay of our approach are shown in Fig. 5 and
Fig. 6 respectively. As explained earlier, for evaluating empir-
ical performance we use the conventional measure of packet
reordering: a packet A is considered re-ordered if and only if
it departs from the output port earlier than another packet in
the same TCP flow that arrives at the input port earlier than
A. The infinite output buffer size case (“RS-LBS (W = 00)”)
is when all out-of-order packets wait at the output port until
they are in-order. This guarantees a zero packet reordering
probability, and its delay can be taken as an upper bound for
the re-sequencing delay introduced by our scheme.

Fig. 5 presents the packet reordering probability of our RS-
LBS scheme. The packet reordering probabilities are in line
with our analysis in Section II. For instance, when the traffic
load is A = 0.9, for all 4 traffic patterns, the packet reordering
probability is around 10~3 when the buffer size W = 10N
and is around 10~* when W = 23N. Interestingly, even with
W = 2, the packet reordering probability is drastically reduced
for light loads compared to the basic LBS.

Fig. 6 presents the average delay. Compared to the other
LBS-based schemes, the delay of our RS-LBS scheme looks
fairly good for uniform and quasi-diagonal traffic, but this is
not the case for log-diagonal and diagonal traffic. We explain
this observation as follows:

o The frame-based load-balancing algorithms, such as UFS,
FOFF and PF, have very good delay performance for
diagonal or log-diagonal traffic since aggregating a full
frame when the traffic pattern is “concentrated” is rela-
tively effortless.

« In contrast, the load-balanced stage spreads traffic from
the input ports uniformly across the intermediate ports, so
a “concentrated” traffic pattern provides no benefit to the
basic LBS and our scheme. The queue length distribution
at the intermediate ports stay roughly the same no matter
what the traffic pattern is (recall that no explicit assump-
tion was made on the traffic matrix for the derivation of
the bound on the packet reordering probability in Section
II-C2), as does the re-sequencing delay.

In summary, the queuing delay of UFS, FOFF and PF is small
for diagonal or log-diagonal traffic while the re-sequencing
delay of RS-LBS remains unchanged, as concentrated traf-
fic benefits the frame-based schemes. However, as we shall
see below, the introduction of the “hash-grouping” technique
(from Section IV) overcomes this weakness.

B. Performance of Enhanced (with Hash-Grouping) RS-LBS

As mentioned earlier, our natural solution can be enhanced
by relaxing the packet reordering semantics and implementing
the hash-grouping technique. In our simulations, the number
of virtual groups for each switch flow is set to K = 1, 000.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

—&8— Basic 4~ RS-LBS (W = 2) —o— RS-LBS (W = 5) —6— RS-LBS (W = 10) —»%— RS-LBS (W = 23)

Uniform Quasi-diagonal 101 Log-diagonal 107 Diagonal

] 107 /1 107

10 £ 10

10° 10°

10

Packet re-ordering probability

6 | 5 | 6 -6 |
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 100.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 100.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 100.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
Load Load Load Load

Fig. 5. Packet reordering probability of the RS-LBS scheme, with various buffer sizes W.

—&— Basic 4~ RS-LBS(W=12) —e— RS-LBS(W=23) —%— RS-LBS(W=0o0) —*- UFS —%— FOFF PF —=— Sprinklers

Uniform Quasi-diagonal 104 Log-diagonal 10° Diagonal

10°

10*
103

102 102}

10?

Mean delay

10! 10t

10?

10° 102 10° 102
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9

Load Load Load Load

Fig. 6. Average delay of the RS-LBS scheme, with various buffer sizes W, compared to UFS, FOFF, PF, and Sprinklers.

—&— Basic #— RS-LBS (W = 2) —o— RS-LBS (W = 5) —6— RS-LBS (W = 10) —*— RS-LBS (W = 23)
Uniform B uasi-diagonal . Log-diagonal B Diagonal
210 101 Q g 101 g] 101 g
Z
8]]
o 107 107 107
o
2
S 107 107 107
kel
2
Q
e 10 10 107
$ 10° 4
< £
S10°€ = 102 102 107
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Load Load Load Load

Fig. 7. Packet reordering probability of the RS-LBS scheme with hash-grouping (K = 1000 groups).

—&— Basic 4~ RS-LBS(W=2) - RS-LBS(W=23) —%4— RS-LBS(W=x) —< UFS —%— FOFF ~— PF —e— Sprinklers
Uniform Quasi-diagonal Log-diagonal Diagonal

104 10°

10°

103F =

>
©
S 2}
2 10
©
[
= 1
10
10* 10*
10° 10° 10° 10°
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load Load Load Load

Fig. 8. Average delay of the RS-LBS scheme with hash-grouping (K = 1000 groups), compared to UFS, FOFF, PF, and Sprinklers.

Fig. 7 presents the packet reordering probability. We see A = 0.9 that we did not observe any packet reordering in our
from the figure that the packet reordering probability is de- simulations.
creased by a factor of approximately 10 times compared to Fig. 8 presents the average delay, demonstrating a signifi-
the original scheme. For instance, when the traffic load is cant improvement over the original approach. It can be seen
A = 0.9, the packet reordering probability is around 10~ for from Fig. 8 that the average delay is now almost the same
a buffer size W = 10N (in contrast to 10~ in Fig. 6). When to the average delay of the basic LBS, no matter how large
W = 23N, the packet reorder probability is so miniscule for buffer size we use. In other words, by using the hash-grouping

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

technique, our scheme achieves an amazing tradeoff: it is
expected to bound the packet reordering probability to an
arbitrarily small value with a linear, i.e., O(V), buffer size and
a negligible average re-sequencing delay. We also see that the
average delay of the scheme with hash-grouping on the log-
diagonal and diagonal traffic matrices is much lower compared
to the basic RS-LBS scheme. Overall, it is clear that hash-
grouping significantly improves our original scheme with a
minor incremental memory cost.

VI. RELATED WORK

Here, we briefly review existing solutions to the packet
reordering problem in the LBS. As already discussed, UFS [5]
prevents reordering by requiring that each input port VOQ
first accumulates a full-frame of N packets before they are
uniformly spread across the N intermediate ports. The main
drawback of UFS is that it suffers from O(N?3) delay in the
worst-case. FOFF [5] also uniformly spreads full-frames when
available. When no full-frame is available, FOFF will serve
incomplete frames in a round-robin manner, but it suffers
from O(N?) delay in the worst-case for packet reordering at
the output. PF [4] is another method that avoids the need to
accumulate full-frames. When no full-frame is available, PF
will pad the longest incomplete frame with fake packets to
create a full-frame, which is then uniformly spread across the
N intermediate ports, just like UFS. However, its worst-case
delay is still O(N?). Recently, an approach called Sprinkler-
s [3] was proposed based on the idea of variable-size striping.
Sprinklers uses the arrival rate of packets to a input port
VOQ to determine a variable stripe size L rather than always
requiring a full-frame. It then only requires the accumulation
of L packets in a VOQ before uniformly spreading them across
a randomly chosen contiguous block of L intermediate ports,
where VOQs with slower arrival rates are given smaller stripe
sizes. Finally, packet ordering can be guaranteed via another
approach called a Concurrent Matching Switch (CMS) [6],
which enforces packet ordering throughout the switch by using
a fully distributed LBS approach. While all of these existing
approaches can ensure packet ordering, they all add significant
complexity to the implementation of the LBS, as well as
significant increases in packet delays.

Besides existing works on LBS architectures, recently Dixit
et al. [13] studied empirically the effects of random load-
balancing on packet ordering in symmetric data center net-
works such as multi-rooted tree topologies. Their empirical
results confirm our observations that the amount of packet
reordering that can occur is quite limited. We believe that
our analysis framework can be applied to formally bound the
amount of packet reordering in that data center setting as well,
and we plan to provide analytical bounds for symmetric data
center networks in future work.

VII. CONCLUSION

In this paper, we showed that the amount of packet re-
ordering that can occur in the LBS is actually quite limited.
This means that packet ordering can be ensured simply by

employing reordering buffers at the switch outputs. In partic-
ular, we formally bound the worst-case amount of time that
a packet has to wait in these output reordering buffers before
it is guaranteed to be ready for in-order departure with high
probability, and we prove that this bound is linear with respect
to the switch size. This linear bound is significant because
previous approaches can add quadratic or cubic delays to
the load-balanced switch. Further, we presented hash-grouping
strategies at the switch outputs that can further reduce the
average packet waiting times at the output reordering buffers.
We showed experimentally that our packet reordering approach
significantly outperforms existing load-balanced switch archi-
tectures. Finally, we believe that our analytical framework and
main theoretical results are applicable to other load-balancing
applications such as routing over symmetric data center fab-
rics.

Acknowledgement: This project is supported in part by an
NSF INSPIRE grant (1248117), a collaborative NSF grant that
includes awards CNS-1423182 and CNS-1422286, and NSF
grant CNS-1302197.

REFERENCES

[1] C.-S. Chang, D.-S. Lee, and Y.-S. Jou, “Load balanced birkhoff—von
neumann switches, part i: one-stage buffering,” Computer Communica-
tions, vol. 25, no. 6, pp. 611-622, 2002.

[2] C.-S. Chang, D.-S. Lee, and C.-M. Lien, “Load balanced birkhoff—von
neumann switches, part ii: multi-stage buffering,” Computer Communi-
cations, vol. 25, no. 6, pp. 623-634, 2002.

[3] W. Ding, J. Xu, J. G. Dai, Y. Song, and B. Lin, “Sprinklers: A ran-
domized variable-size striping approach to reordering-free load-balanced
switching,” in ACM CoNext, the 10th International Conference on E-
merging Networking EXperiments and Technologies. ACM, 2014.

[4] J. J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: a novel
algorithm for stable scheduling in load-balanced switches,” Networking,
IEEE/ACM Transactions on Networking, vol. 16, no. 5, pp. 1212-1225,
2008.

[5] 1. Keslassy, “The load-balanced router,” Ph.D. dissertation, Stanford
University, 2004.

[6] B. Lin and I. Keslassy, “The concurrent matching switch architecture,”
Networking, IEEE/ACM Transactions on, vol. 18, no. 4, pp. 1330-1343,
2010.

[71 1. F. Hayes and T. V. G. Babu, Modeling and analysis of telecommuni-
cations networks. John Wiley & Sons, 2004.

[8] K. Nakagawa, “On the series expansion for the stationary probabilities of
an m/d/1 queue,” Journal of the Operations Research Society of Japan,
vol. 48, no. 2, pp. 111-122, 2005.

[9] R. Bhagwan and B. Lin, “Fast and scalable priority queue architecture
for high-speed network switches,” in IEEE INFOCOM. IEEE, 2000.

[10] A. Ioannou and M. G. Katevenis, “Pipelined heap (priority queue) man-
agement for advanced scheduling in high-speed networks,” IEEE/ACM
Transactions on Networking, vol. 15, no. 2, pp. 450-461, 2007.

[11] H. Wang and B. Lin, “Per-flow queue management with succinct priority
indexing structures for high speed packet scheduling,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1380-1389,
2013.

[12] O. Rottenstreich, P. Li, I. Horev, 1. Keslassy, and S. Kalyanaraman, “The
switch reordering contagion: Preventing a few late packets from ruining
the whole party,” IEEE Transactions on Computers, vol. 63, no. 5, pp.
1262-1276, 2014.

[13] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact of
packet spraying in data center networks,” in INFOCOM, 2013 Proceed-
ings IEEE, April 2013, pp. 2130-2138.

