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Abstract—The scalability of BGP routing is a major concern in particular, is the primary focus of this paper. We aim to

for the Internet community. Scalability is an issue in two diferent  ynderstand how topological characteristics of the ASieve
aspects: increasing routing table size, and increasing ratof_ BG_P graph influence the scalability of BGP churn.
updates. In this paper, we focus on the latter. Our objective

is to characterize the churn increase experienced by ASes in Describing the AS-level Internet topology and how it
different levels of the Internet hierarchy as the network grows. evolves has been the subject of much research (and heated
We look at several “what-if” growth scenarios that are eithe debate) in the last decade. We refer the reader to the fol-

plausible directions in the evolution of the Internet or edwcational . .
corner cases, and investigate their scalability implicatins and lowing representative references [7], [20], [22], [29]3]3In

interaction with different failure types. Our findings explain this paper, we do not use an existing topology generation
the dramatically different impact of multihoming and peering model because we want to explore a wide range of “what-

on BGP scalability, highlight negative and positive effect of f” possibilities that none of the existing models captuires

multihoming on chumn and reachability, and identify which 3 5imonious and intuitive manner. For the same reasons, we

topological growth scenarios will lead to faster churn incease d tb . tigati inf d historical iméé

for different failure types. 0 not base our investigations on inferred historica r
topologies. Instead, we first identify four basic but fundsm

tal characteristics of the Internet graph that have pedisver

the last decade. Then, we design a simple and controllable

. INTRODUCTION topology generator that satisfies the previous propersiad,

Recently, there is a significant concern among both Interrfitthe same time allows us to easily navigate the topological
operators and researchers about the scalability of inteaito SPace. The “knobs™ of this generator are parameters with
routing with BGP. A workshop organized by the InterneppPerational relevance in practice, suph as _the m_ul'uhommg
Architecture Board concluded thébuting scalability is the degree (MHD) of stubs versus transit providers, instead of
most important problem facing the Internet toda24]. The abstract measures such as betweenness or assortativity.
concern is that we are soon approaching the point where théJsing our topology generator, we establish the factors that
global routing system, and the core routers in particuldt, wdetermine churn at different locations in the Internetdniehy,
no longer be able to keep up with routing dynamics. BGéhd investigate the importance of each factor in a growth
scalability is an issue in two different aspectacreasing model that resembles the evolution of the Internet overake |
routing table size, and increasing rate of BGP updates (ohur decade. We then examine several deviations from this growth
Note that, in general, an increase in the routing table simeodel, and investigate how the number of routing updates
(number of routable prefixes) also increases churn, sinee tfenerated by different routing events grows with the size of
number of networks that can fail or trigger a route changhe topology in each case. We ask questions such as: “What
increases. In this papewe focus on the issue of increasingf the MHD of stub ASes increases with the network size
churn. instead of staying constant?” “What if the Internet becomes

The goal of this study is to improve our understanding of thgenser mostly due to peering links?” “What if tier-1 prowisle
underlying reasons for the experienced growth in churnr€hudominate the transit market, reducing the number of tier-
is a result of a complex interplay of 1) thleuting protoco] 2 providers?” We examine thoroughly two different routing
including policy annotations and various BGP mechanisnesent types that take place at the edge of the network.

like update rate limiting, route flap dampening etC.e2entS  1q rest of the paper is organized as follows. In the next

like _prefi>_< announcgments, link failures, se_ssion resedffjd section, we explain our overall approach and describe the
engineering operations that generate routing updates3andy,,qe| that we base our investigation on. In Sec. Ill, we

the characteristics of the Intern&pology The last factor, yascribe our topology generator and present our Baseline
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AS Out-queues Export

o e In-queue AS output queue until the MRAI timer for that queue expires. If
T L [neignbor a queued update becomes invalid by a new update, the former
i is removed from the output queue.
2 |- T ~{] ss : i
neighbor neighbor For our study, we need a simulator that is capable of

Forwarding | | Neighbor capturing the exchange of routing updates described above,
s | ATTE =0T | ape || 1o AS and that scales to network sizes of thousands of nodes.
neighber neighbor Existing interdomain routing simulators fall into two brba
categories. Either they only calculate steady state rpated
do not capture routing dynamics [26], or they include a
II. APPROACH AND MODEL detailed model of each eBGP session, and hence do not scale
to network sizes in the order of today’'s AS-level Internet
ngology of about 27000 nodes [2], [10]. Because of this, we

ulations. Since our goal is to look at scalability underetiént , . )
hypothetical topology growth models, our investigationmat have. chosen to d_evelolp a new simulation model that.s.wts our
' requirements Using this simulator, we are able to efficiently

be performed by (_jomg measurements in the c_urrent I.memg'itmulate networks up to about 10000 nodes.

Also, the complexity of BGP and large Internet-like topdésy i ) _ )

make it difficult to create a tractable and useful matherahtic W€ consider policy-based routing, with the use of MRAI
model. Such modeling has been attempted before, but only f6Rers to limit the frequency with which a node sends updates
regular topologies, and without taking the effects of MRAJC & neighbor. By “policies”, we refer to a configuration weer
into account [32]. Simulations of any system of the size afglationships between neighboring ASes are either peer-to
complexity of interdomain routing require to make sever&€€r Or customer-provider. We use normal “no-valley” and
simplifying assumptions in our model. In this section webrefer-customer” policies. Routes learned from custanzse

describe the choices and assumptions we make, and argue @gounced to all neighbors, while routes learned from peers
the resulting model captures the effects we want to invasig ©" providers are only announced to customers. A node prefers
in our study. a route learned from a customer over a route learned from a

We study different growth models of the AS-level topolog€er over a route learned from a provider. Ties among routes

of the Internet, using our topology generator described With thg same local preference are broken by selecting the
Sec. IIl. In order to do this in a scalable waye model each AS route with the shortest AS path, then based on a hashed value

Fig. 1: Model for a node representing an AS.

We can only study the problems described above using si

as a single nodeand connections between two neighboringf the“node ,!DS-“ o _ _
ASes as a single logical linkThis implies that we do not BY “MRAI" or “rate-limiting”, we refer to a configuration

capture routing effects within an AS, introduced by iBG#here two route announcements from an AS to the same
or interactions with IGP routing protocols (e.g., hot-fiota neighbor must be separated in time by at least one MRAI timer

routing). However, while such effects do have an impact dpterval. We use a default MRAI timer value of 30 seconds.
how routing updates are generated, they are orthogonagto §i @void synchronization, we jitter the timer as specified
effects we want to study. in the BGP-4 standard. According to the BGP-4 standard

We look at two different events that generate BGP updatdé/l: the MRAI timer should be implemented on a per-
First, we focus on events where individual destination pesfi Prefix basis. However, for efficiency reasons, router vesdor
are withdrawn and then re-announced by the owner. This'¥ically implement it on a per-interface basis. We adogs th
the most basic routing event that can take place in the laterr?PProach in our model. We follow the MRAI implementation
and at the same time the most radical; these changes must@g@mmended in the most recent RFC (RFCA271) [27], which
communicated all over the network. Second, we study eveﬁ&ec'f'es that both announcements and explicit withdrawals

where a single link connecting a stub AS to one of its proddefnould be rate-limited.
fails and is restored. For these two event types, measure
the number of routing updates received by nodes at different
locations in the network In this section, we first describe some key properties that
Figure 1 shows the structure of a node in our simulatigiharacterize the AS-level Internet topology. We believat th

model. A node exchanges routing messages with its neighbdf€S€_properties will remain valid in the future. We then
Incoming messages are placed in a FIFO queue and procedi&sfribe a model that allows us to construct topologies with
sequentially by a single processor. The time it takes togssc different configurable properties while still capturingse key

an update message is uniformly distributed between 0 and Rygperties.

ms. Each node maintains a table with the routes learned frorrMOSt existing topology generators are not capable of pro-

each neighbor. Upon receiving an update from a neighbor,dle{Cing topologies annotated with business relations, e

node will update this table, and re-run its decision progess €SSential in our study. Those who are [9], [15], do not haee th

select a new best route. The new preferred route is then {[&Xibility we need for controlling different topologicahar-
stalled in the forwarding table and announced to its neiginboaCter'St'C,S' It is possible to infer h|st_0f|cal Internepatogies
For each neighbor, we maintain an export filter that blocligom routing update traces [12], but it is well known thatisuc

.the propggation of some Upd"_ﬂ‘tes according to the pOI_iCiesThe simulator code and the scripts used to generate thes@stiis paper
installed in the network. Outgoing messages are stored in igBvailable aht t p: / / si nul a. no/ r esear ch/ net wor ks/ sof t war e

IIl. CONTROLLABLE TOPOLOGIES



Meaning Baseline value

inference tends to underestimate the number of peering,lin

and it is difﬁcult to infer topologies of a tractable_ size tthaae n?; chjtr?]lbrg#n;?ir r?(:f)dngsdes 10004__160000
representative of todays Internet. We therefore impleroent s Number of M nodes 0.15n
own topology generator. ncp Number of CP nodes 0.05n

The input parameters to our generator have “operational”_nc Number of C nodes 0.80n
semantics. Instead of specifying abstract graph prosdikie dn Avg M node MHD 2 +2.5n/10000

. _ S dcp Avg CP node MHD 2 4 1.5n,/10000
the clustering coefficient, the betweenness or the assdfyat do Avg C node MHD 1+ 5n,/100000

of the topology, we define our topology in a more hands-om—; - Avg M-M peering degree T+ 2r/10000
real-world related manner by specifying parameters like h@ pcp_5; | Avg CP-M peering degree 0.2 + 2n,/10000
many providers an AS has, how likely it is to peer with otherpcr—cr | Avg CP-CP peering degree | 0.05 + 5n,/100000

types of ASes etc. tu Prob. that M's provider is T 0.375
top Prob. that CP’s provider is T 0.375
to Prob. that C’s provider is T 0.125

A. Stable topological properties

The AS-level Internet topology is far from a random graph.
Over the past decade it has experienced tremendous growtnstraints; networks that are only present in one regien ar
but the following key characteristics have remained conista not allowed to connect with networks that are not preseritén t

Hierarchical structure.On a large scale, the nodes in th&ame region. In our model T nodes are present in all regions.
Internet graph form a hierarchical structure. By hierazahive 20% of M nodes and 5% of CP nodes are present in two
mean that customer-provider relationships are formed ab thegions, the rest are present in only one region. C nodes are
there are normally no provider loops, where A is the provideily present in one region.
of B who is the provider of C who again is the provider of A. We generate topologies top-down in two steps. First we

Power-law degree distributionThe degree distribution in add nodes and transit links, then we add peering links. The
the Internet topology has been shown to follow a truncategbut parameters.r, ny, ncp andne decide how many of
power-law, with few very well-connected nodes, while théhe n nodes belong to each node type, respectively. First, we
majority of nodes have only few connections [11]. The welreate the clique of T nodes. Next, we add M nodes one at a
connected nodes typically reside at the top of the hierarchyime. Each M node connects to an averagelgf providers,

Strong clustering.The nodes in the Internet are groupedniformly distributed between one and twice the specified
together in clusters, with nodes in the same cluster moedylik average. M nodes can have providers among both T and M
to be connected to each other. One reason for this clusteriigies, and we use a parametgr to decide the fraction of
is that networks operate in different geographical areas. providers that are T node. M nodes can only select providers

Constant average path lengtRecent measurements showhat are present in the same region.
that in spite of a tremendous growth in the number of nodes,M nodes select their providers using preferential attasttme
the AS-level path length has stayed virtually constant auib which gives a power-law degree distribution [4].

TABLE I: Topology parameters

4 hops for the last 10 years [8]. We then add the CP and C nodes, which have an average
number of providerdq p or dg, respectively. CP and C nodes
B. Topology generator can select T nodes as providers with a probability andtc,

Next, we describe a flexible model for generating topologié‘gSpeCt'vely' Just like the M nodes, C and CP nodes selact the

that captures the above properties about the AS-level graB pviders using preferential attachment.

Several design choices and parameters in our topology gener hen _aII nodes have been_ added tq the_ topology, we add
ator were guided by a recent measurement study [8]. peering links. We start by adding,, peering links to each M

We use four types of nodes in our model. At the top ode. As for the proyider Iinkq;MI .is uniformly distributed
the hierarchy are the tier-1 (T) nodes. T nodes do not ha St.Wee” zero_and twice thg specified average. M nOdeS select
providers, and all T nodes are connected in a clique usi eir peers using preferential attachment, considering the

peering links. Below the T nodes, we have the mid-level (NB enng degr_ee Ic_)fkeatch potet_ntlal fiﬂer' I(Ejach CP node adds
nodes. All M nodes have one or more providers, which cafy?—M PEErNg links terminating at M nodes, apdp—cp
be either T nodes or other M nodes. In addition, M nodd$erng links terminating at other CP nodes. CP nodes select

can have peering links with other M nodes. At the bottorfﬁeIr peers among nodes in the same region with uniform

of the hierarchy, we have two different types of stub nod robablhty._lmportantly, we gnfprce the invariant that ade .
erhqt peer with another node in its customer tree. Such peering

providers (CP). In this context, CP nodes would include coW—OUId prey on the revenue the node gets from its customer

tent provider networks, but also networks providing In&rn traffic_, and hence such peering agreements are not likely in

access or hosting services to non-BGP speaking customersprlacnce'

our model, the difference between C and CP nodes is that only ) )

CP nodes can enter peering agreements with M nodes or €pBaseline growth scenario

nodes, while C nodes do not have peering links. Next, we define a Baseline growth model that will later
To capture clustering in our model, we introduce the notidve used as a reference scenario for looking at how different

of regions The purpose of regions is to model geographic#bpological factors influence BGP churn. Our aim is to look



at the scalability of different hypothetical growth models

and it is not our goal that the Baseline model should be an 1 gmg— e
exact copy of the historical Internet. Still, the parametgsed 01l pantemet:3247 |
are inspired by recent measurements of the evolution of the L ool Baseline-5000 -~ o |
Internet topology over the last decade [8]. The Baselinaitiro 3

model is characterized by a slow increase in the MHD of stub ©  ooory X 3
nodes, and a faster growth in the MHD of middle nodes and 0.0001 f * 1
the number of peering links. In the Baseline topology we use 1e-05 t t t t

5 regions, containing one fifth of all nodes each. Table | give ! 10 tooode degﬁgso 10000 100000

the parameter values for the Baseline growth model.

Before looking at the churn characteristics of the Baseline
model, we validate that the generated topologies captwre th 1 :
four stable properties of the Internet topology discusdrxve. 7
We compare some properties of the Baseline model to inferred
Internet topologies. We look at two Baseline topologies of
sizes 5000 and 10000 nodes respectively, and compare tigains
two inferred AS-level topologies of sizes 3247 and 17446 |
nodes. The smaller topology is provided by Dhamdhere and 0.0001 L : u ‘
Dovrolis [8] and it is based on RouteViews [1] and RIPE [28] ! P e o
BGP routing tables from January to March 1998. The second ¢
inferred topology is provided by Mahadevan et al. [23] and
based on RouteViews BGP routing tables from March 2004.
Note that the inferred topologies miss a large fraction @rpe
ing links, which distorts their characteristics quanistaly [8].
Therefore, our aim is that the Baseline model matches the
major topological properties of the Internet qualitatwedther
than quantitatively.

Hierarchical structure.This is trivially fulfilled through the
way we construct the topologies.

Power-law degree distributiorlhe top plot in Fig. 2 shows
the CCDF of the node degree on a log-log scale. We observe
that our Baseline growth model captures the power-lawmsgali  Fig. 2: Node degree distribution (top),Local clustering
of the node degrees reasonably well, and is comparable(taiddle), Normalized average neighbor connectivity (bt}
that of the inferred Internet topologies. The use of prefta¢

attachment when selecting which nodes to connect to givt%sre the previous four stable properties, we also invetitie
the observed power-law degree distribution [3]. P prop f

Strong clustering.We measure the local clustering (Oraverage neighbor connectivif23], which has been difficult

clustering coefficient) of each node in a topology. The Iocgl) _capture by eX|§t|_ng topology gen_erators [14]. The averag
neighbor connectivity of a node is simply the average degree

clustering of a node is defined as the ratio of the numbglr its neighbors. This metric relates to the assortativityao
of links between that node’s neighbors to the maximum g ) .

. ) . . raph. It measures whether a node of a certain degree prefers
possible number of such links (i.e. a full clique). Henc ; .

) b _connect with higher or lower degree nodes. The bottom
the local clustering measures how well connected a no

s
neighborhood is. The middle plot in Fig. 2 reports the avera§
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Normalized average neighbor degree

ot in Fig. 2 shows the average neighbor connectivity as
: function of the node degree. We normalize the average
local clustering, across all nodes of the same degree, as a - : . )
function of node degree. To keep the figure readable, we ppo%lghbor connectivity by the maximum possible vglue which

) ' "~ "is (the total number of nodes in the graph - 1), in order to

results _for_ only two topologies (the other pair of tOpOIGQ'ecompare topologies of different sizes. The Baseline growth
show similar results). Our Baseline growth model matches

qualitatively the trends seen in the inferred topologiest,fi model gives an average neighbor connectivity that matches

. . ) well the inferred Internet topologies, with smaller degnedes
local clustering decreases with the node’s degree, anddec : . o ;
i . aving a higher average local connectivity than the higher
the clustering versus degree relation follows a power-law.

should be noted however that the Baseline model produéjeegree nodes (referred to as negative assortativity).

lower clustering than the inferred Internet topologies.
Constant average path lengtfihe average path length in V. EXPLAINING CHURN IN A GROWING NETWORK
our Baseline topologies is constant at around four hops adn this section, we first present our analytical model de-
the network grows from 1000 nodes to 10000 nodes. Thasribing the number of updates received at a node. Then we
matches closely the average path length in the inferredriate use the Baseline growth model to show how this model can
topology at least since 1998 [8]. be simplified for the different node types, and to determine
In addition to confirming that the Baseline topologies capghe most important factors driving the churn growth.
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Our main metric in this section is the number of updates
received at a node after withdrawing a prefix from a C-type
node, letting the network converge, and then re—announciﬁ%_ 4: Number of updates received at T, M, CP and C nodes.
the prefix again. The experiment is repeated for 100 differen
C nodes (increasing this number does not change the results)
and the number of received updates is measured at every node
in the network. We then average over all nodes of a given
type, and report this average. In the following, we refer to
this procedure as a “C-event”. Note that due to the heavgetai
node degree distribution, we expect a significant variation
the churn experienced across nodes of the same type. We
return to the other event type in Sec. VI. Nodes

70 : .
Uy(T) —a—
60 [U(T) -

50 |
a0
30
20 )
10 b

Average # of updates per C-event

A. A framework for update analysis

We give a formulation for the number of updates received
at a node, and discuss how the different churn increaserfacto
depend on the use of policies, the topological properties of
the network, and the convergence properties of the routing
protocol used.

Figure 3 shows a generic network of the type described
in Sec. lll. Transit links are represented as solid linesilavh
peer-to-peer links are dotted. For each node, we have itredica Fig. 5: Number of updates received from peers and
the preferred path to thevent originatorZ, which is the node customers for T nodes (top), and from providers, peers and
announcing the active prefix. The routing updates that bshab customers for M nodes (bottom).
these paths flow in the opposite direction. We observe that du
to the use of policies, updates (and the resulting paths) wA. Churn at different node types

follow a particular pattern: a nod& will only announce a e focus our discussion on the churn experienced by transit
route to its providers and peers after an event at lodeN ) o\igers (T and M nodes), and content providers (CP nodes).
hasZ in its customer tree. On the other hand,will always  Thege are the AS types that are most likely to be affected by
send an update o its customers, unless its preferred path tﬂ1creasing churn rates, since they must maintain larggmmgu

goes through the customer itself. tables with few or no default routes. Also, as seen in Fig. 4,

Let U(X) denote the number of updates a node of tYRfese are the nodes that experience the stronger growtk in th
X receives after a C-evenkX can be either of the four node 1o o updates received after a C-event

gpes n l;)ur rfnodsl;tT, M, C.P grfC. We dtlstmgwsh between We have calculated 95% confidence intervals for the values
e number of updates received from Custom&rsY ), peers shown in Fig. 4, and they are too narrow to be shown in

U,(X) and providerg/,(X) respectively. The total number of ; - ;
. ) 7 the graph. This tells us that increasing the number of event
updates will be the sum of thesE(X) = Uo(X) + Up(X) + originators beyond the 100 used in this experiment will not

Ug(X). Each of these values will depend on three factors-tpgduce the observed variance. This variance is a result of

numberm%?( of direct neighbors_of a given business relatioghe often significant differences between topology instanc
y, the fractionq, x of these neighbors that sends updates yigerent size, caused by the heavy-tailed node degree
during convergence, and the number of updates each of '

these neighbors contribute. The expected number of u da(%éstribution_
: ' g b ‘?‘ nodes have no providers, so we haVél') = U,(T) +

from a certain class of neighbors will be the product of the:?? (T) = m, 1y 16,7 + Mo 1Ge e The top panel in
c = p,TUp, TCp, T ¢, TUe, TCc,T-

three factors, and we can write Fig. 5 showsU.(T') and U,(T), for topologies of increasing
U(X) =m¢xqe x€c,x + My xdp x€p, x + My xqa x€q,x Size created with our Baseline topology model. We observe
(1) that bothU.(T") andU,(T") increase with network size, and
Note that for some node types, some of these terms will beat both these factors contribute significantly to the ltota
0, e.g., T nodes have no providers, and stub nodes havermnber of updates. As the network grows, the increased
customers. In the sequel, we will discuss how each of thesmiltihoming increases the number of routes that a T node
factors depend on various topological characteristicstaanl learns from both its customers and peérs(T) is the larger
interactions with properties of the routing protocol. factor for small network sizes, and it grows approximately

Average # of updates per C-event
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linearly with network size, with a coefficient of determiiat
R? = 0.93. The strongest growth is seen 1A.(T'), which
dominates for larger network sizes. Regression analysiwsh
that the growth ofU.(T) is quadratic with a coefficient of

Relative Increase
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determinationk? = 0.95. Nodes
While routes are only exported to peers and providers if
they are received from a customer, routes are always exporte L S Sp— e
to customers. As we can see in the bottom panel of Fig. 5,
M nodes receive the large majority of their updates from ig oL
their providers. Hence, a good estimate for the number of g oot b T SOy
updates at M nodes 8 (M) = Ug(M) = my pqa,r€d, - L o
The intuition behind this is that M nodes reach the “main o Ly Ggr e

001 . . . .
1000 2000 3000 4000 5000 6000 7000 8000 900010000
Nodes

part of the Internet” through their providers, and hence als
receive the majority of routing updates from them. This is a
major simplification, that makes our analysis much simpler.rig. 7: Relative increase in the factors that determine the
The same is true for CP nodes, so we limit our discussion to update growth rate.
M nodes in the following.

Figure 6 shows the increase ratio ih.(T), U,(T') and customers gives a slower growth & . This is compliant
U4(M). Each term is normalized so that the number of updategth discussion of path exploration in [17].
is 1 for n = 1000. To explain the observed trends for these The bottom panel in Fig. 7 shows the fraction of neighbors
terms, we look at the different factors described in Eq. 1 tof a given type that announces a route after a C-event,
find out how much of the growth is caused by each of themepresented by the. r, g, and qq s factors. A provider

First, we look at the increase in the number of neighbors wfll always announce a route to its customer, unless it psefe
different types. Figure 7 (top) shows the relative increiase the path through the customer itself. Hengg,, is almost
them, r, m, r andmg 5, factors as the network grows. ,  constant, and always larger than 0.9 andq, r are both
grows much faster than the other factors. With our Baseligenerally increasing with network size. This illustratesvh
topology growth modelm, s grows approximately linearly increased multihoming makes it increasingly likely thag th
with n in the range of network sizes we consider. The numbevent originator is in the customer tree of a given customer
of peersm,, r is given directly byns — 1, which grows very or peer of a T nodeThis probability is much higher for peers
slowly with n. Similarly, m, s is determined by the MHD than for customers of T nodes, since the peers, which are T
of M nodesd,; = 2+ 2.5n/10000, which also grows linearly nodes themselves, have a much larger number of nodes in their
with n. customer tree.

The middle panel in Fig. 7 shows the relative increase To sum up our discussion, we have shown that the churn at
in e.,r, e, andey a, representing the average number aff nodes is dominated by the updates received from providers.
updates received from each neighbor of a given type thBEte number of updates, (M) grows with network size, since
exports a route. both the number of providensy; 5, and the average number

The increase in thes factors we see here is caused byf updatesey s received from each active provider grows,
path exploration. The increase is strongerégrr andeg rs,  while the probability that a provider will announce a path is
since they represent links that are further away from th@teveonstant. The growth i/;(M) (a factor 6.7 in our range of
originator, giving more chances for more paths to be explore = 1000 to n» = 10000, as seen in Fig. 6) is dominated
during convergence. by the growth ineq »s (factor 3.1) and the (linear) growth in

We also see how the increase in the number of receivitt MHD (a factor 2.2), which makes the total growth seem
updates is stronger from neighbors that have a larger numbkghtly superlinear.
of policy-compliant paths that can be explored. The numberFor T nodes, both the updatés.(T') received from cus-
of valid paths from a T node to an event originator increasésmers and the updatés,(T") received from peers are impor-
superlinearly, which also causes a superlinear growt,in, tant, and both grow with network size. The strongest growth i
while the slower growth in the number of paths exported lgontributed byU.(T'), with a factor 27. Much of this growth
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e.,r (a factor 1.5), this gives a clearly superlinear growth in 5 e 1
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grows, but at a slower rate (a factor 8.2). This is mainly
because of the much slower growth in the number of peers
- while the number of customers. 7 increases with a factor  Fig. 8: The effect of the AS population mix on T nodes.
of 9.5 over our range of topology sizes, the number of peers
m, v grows only by a factor 1.7. Furthermore, facigyr multiplying ny; by 3 (ny; = 0.45n), and reducingicp and
also contributes to the growth itf,(T") by a factor of 1.6. nc accordingly (while keeping their ratio constant).
However, most of the growth can be attributed to the increaseSTATIC-MIDDLE In the third deviation, we look at a
in e, 7 (a factor of 3.1). situation where all network growth happens at the edges of
This section has shown how the T nodes experience tthe network. The number of transit providers (T and M nodes)
highest growth in churn as the network grows with ous kept fixed, and the network grows only by adding CP and
Baseline growth model. This increase is driven mainly by & nodes. This could be a plausible scenario for the future, if
increased number of updates from customers. M and CP notles ISP population becomes stable.
also see increased churn, driven mainly by their increasedTRANSIT-CLIQUE In the fourth and final deviation, we
MHD. In the next section, we will see how changes in thiet all transit nodes be part of the top-level clique. This
topology growth model affect the various churn factors.  scenario may seem far-fetched, but it is important because
it shows what would happen if the transit provider hierarchy
V. TOPOLOGY GROWTH SCENARIOS collapses to a clique of “equals” connected by peering links

In this section, we look at several single-dimensional deyVe .|mplegne2t this f?y settingr = 0'3)5" i{nd%M = 0. ¢
ations from the Baseline model presented above. By lookin Figure 8 shows the average number of updates seen after a

at how BGP churn increases at various hypothetical grom&ﬁevgm ataT nqde for each dewan_n as the network grows.
A first observation from the graphs is that the node mix has

models, we are able to answer different “what-if” questions A X .
substantial influence on churn. In particular, the conspari

about Internet growth. For example, what if multihoming t& RICH-MIDDLE. Baseli 4 STATIC-MIDDLE sh
several providers becomes much more common than today%r ) , BASEINg, an . Shows

stub networks? Or what if buying transit services from gier-that the number of M nodes is crucial. There are two ways in

nodes becomes so cheap that they drive regional providérs WH'CE M r}ol\(jes |(;1cre_ase churn Et T nodes. F|rst% $n m(;:reasmg
of business? Our goal is not always to create realistic groin“m er ot M nodes increases the customsgg of T nodes.

. C . . For instance, in the RICH-MIDDLE deviatiom. r increases
scenarios, but also to highlight the effect of altering etiént ' , c,T
topological properties. Hence, we sometimes look at theceff by a factor of 10.2 when n increases from 1000 to 10000. On

of large changes to a single property at a time. the other handyn. r increases only by a factor of 5.3 in the

As seen in Sec. IV, T nodes experience both the stronggéqAT(le'MI%DLEhdev'at'on' Sl_erfond,dan mchreasmg _rcljumbel\; of
churn in absolute terms, and the strongest increase as % odes, when they are multihomed to other providers (M or

network grows. Hence, we focus mainly on the number dgnodes), tends to also Increase the fagtop. The reason is
updates received at T nodes that M nodes create additional valid paths from the source of

a C-event (at stub networks) to T nodes, and so it becomes
) ) more likely that a T node will receive updates from its peers
A. The effect of the AS population mix and customers after a C-event. Regression analysis shatvs th
First, we look at how the mix of different node typeghe growth of U(T) in the RICH-MIDDLE, Baseline and
affects churn, by considering four different deviationenfr STATIC-MIDDLE deviations can be modeled amiadratic
the Baseline model with respect to the mix of T, M, CP and @ith different scaling factors.
nodes. These deviations illustrate how economic factons ca We also observe that the number of T nodes in the network
create a very different fauna of networks than what we seees not have any impact on the number of updates by itself.
today. To implement these scenarios in our model, we chanffee only difference between deviations NO-MIDDLE and
the parametersar, nys, ncp andne, while keeping all other TRANSIT-CLIQUE is in the number of T nodes, and we see
parameters fixed. that the number of updates is the same in these two scenarios.
NO-MIDDLE In the first deviation, we look at a networklIn the absence of M nodes, T nodes will receive one update for
without M nodes, by settingiy; = 0. This illustrates a each provider the event originator has - either directlypfitbe
scenario where the price for transit services from the dlpbaevent originator, or from a peer. This number only increases
present tier-1 nodes is so low that they have driven regiorafunction of the multihoming degree of the event originator
transit providers out of business. and is not influenced by the network size per se.
RICH-MIDDLE In the second deviation, we focus on the An important conclusion from the above observations is that
opposite scenario, where the ISP market is booming and th#re increased number of updates does not primarily come from
is room for a plethora of M nodes. We implement this bgn increased number of transit nodes, but from the hieraahi
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g 800 g t significantly higher in the former. This fact illustratesvho
ot I . s the meshed connectivity of multihomed M nodes increases
200 g g g e R ] the likelihood that a T node will receive updates from a
0 000 2000 3000 2000 5000 6000 7000 3000 9000 10000 peer or customer. In other words, increased mu_Itlhomlng at
Nodes the core of the network causes a larger growth in the factor

Fig. 9: The effect of the multihoming degree at T nodes. ;.. than increased multihoming at the edges of the network.

tructure in which th efln Int t with | Specifically, we measured that r increased by a factor of
structure in which [hey are organizegn Intemet with several 4 g i, DENSE-CORE, while it increased by a factor of 1.3 in
tiers of providers buying transit services from other pdevs DENSE-EDGE

gives a much higher update rate than a more flat topologyWhen the MHD degree stays constant (in TREE and

where most stub networks connect directly to tier-1 prorsde ONSTANT-MHD), the churn at T nodes is much less. In the
Whether the Inte_rnet wil move towards a more hierarchicg treme case of thé TREE model, the churn at T nodes remains
or flat topology in the future is hard to tell. We (.jo knOWCOPStaI’It at two updates per C-event, because the T nods learn
however, that the average path length, measured in AS'le\c’\Bout the event from exactly one peer or customer (once éor th
haps, has remained roughly constant, at around 4 hops,gjuerWN event and once for the UP event). In the CONSTANT-
the last ten years [8]. This implies that the Internet reiairMHD model, the number of updates is also roughly constant
some hierarchical S”“Ctufe' and that the depth of thatsire because the' increase in the number of customers as the
does not seem to vary with the size of the network. network grows is offset by a corresponding decrease in the
probability ¢. r that any given customer of the T node will
B. The effect of the multihoming degree have the source of that C-event in its customer tree.
According to a recent measurement study [8], the average
HD of both stub nodes and providers has been increasing
ring the last decade (from 1.4 to 1.8 for stub nodes and
rom 1.8 to 3.2 for providers). The fact that the MHD has been
increasing more rapidly in the core of the network impliestth
the Internet is closer to the DENSE-CORE model than to the

parameters, while keeping all other parameters fixed. . .
DENSE-CORE We look at the effect of much StrongerDEN_SE—EDGE or the CONSTANT—MHD deviations. This can
be viewed as bad news, at least in terms of BGP churn.

multihoming in the core of the network (M nodes). We

implement this deviation by multiplying, by 3.
DENSE-EDGE We look at the effect of densification at theC. The effect of peering relations

edges of the network. In this deviation, stub nodes increasen this subsection, we look at the impact of varying the

their multihoming degree. We implement this by multiplyingpeering degree between different types of nodes. The dracti

de anddep by 3. of peering links in the Internet has increased over the last
TREE We look at a tree-like graph, where all nodes hawgecade [8]. However, various difficulties in detecting such

only a single provider. Here{ys, dcp anddc are all set to links do not allow us to know which peering model is most

1. This is clearly not a realistic scenario, but helps us @l realistic.

the extreme version of a trend. NO-PEERING There are no peering interconnections, ex-
CONSTANT-MHD Finally, we look at a scenario where thecept in the clique of T nodes. This is clearly not realistiat b

multihoming degree of all nodes stays constant. We implémeénserves as a reference point.

this by removing the component efy;, docp and d¢o that STRONG-CORE-PEERING We look at densification

depends om. through more peering links in the core of the network. We
Figure 9 shows the number of received updates (top) and thedel this deviation by doubling,,.

number of customers. (bottom) for T nodes in the different STRONG-EDGE-PEERING Another possibility is densi-

scenarios. First, note that there is a clear connectiond®iw fication through more peering links at the network edges. We

the MHD and the number of updates seen at a T node - foiodel this deviation by multiplyingp_s andpp_c by 3.

the same network size, a higher MHD causes larger churnSince the peering degree is only changed at M and CP

Second, even though the number of customers- is about nodes, we show the number of updates received at M nodes

Next, we look at the effect of varying the number of transit
links each node brings to the network. Both stub and miQ-
tier nodes have an incentive to connect to several provid
to increase their reliability and load balancing capapilitie
implement these scenarios by varying thg, dop andde
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500 | E,a 1 decreases churrdf we are moving towards an Internet in
s s i i S which customers and content providers at the edges prefer
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 . .
Nodes to connect to mid-tier ISPs, the number of BGP updates at
T nodes will be much higher than if they prefer to connect
0l T to tier-1 ISPs Looking at the different factors that determine
U(T), we observe that the PREFER-TOP deviation gives a
MR oREFERMIDDLE o much higherm, r than PREFER-MIDDLE, but that this is
& PREFER-TOP - more than offset by a strong decreaseyin-, as shown in the
0.001 | e E . . . ’ .
[ middle, and bottom panels in figure 11. An M node is more
likely to notify its provider about a C-event than a stub node
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Nodes

because an M node has several potential event sources in its
customer tree.

A recent study [8] observed that content providers and
regional transit providers tend to buy transit service fther
rather than T nodes. Figure 10 shows the number of updaties-1 or tier-2 providers with almost equal probabilityhd
received at M nodes as a function of network size for treguivalent of C nodes (“Enterprise Customers”) howeveswsh
Baseline and each deviation. The main conclusion is that taepreference for tier-2 providers during the last 3-4 years,
peering degree doesot cause a significant change in thgustifying the selection of the corresponding probatlsstiin
generated churn. Adding or removing a significant numb#re Baseline model.
of peering links at the edge or at the core of the network
does not give major differences in the number of updates. VI. EDGE LINK FAILURE
This conclusion also holds for other node types. To explain
this observation recall that updates are propagated oeginge

Fig. 11: The effect of provider preference

In this section, we focus on a different type of event than the
links only for customer routes. Hence, the fraction of pegri C-event considered so far, namely the failure and subséquen

links that are active during a C-event is low. MoreoveFeStorat'on of a link connecting a stub node to one of its

such updates have limited export-scope (only to customergpov'dif'tvt\ﬁ W'Il refelr to tth's evt;:rlt as tan tL;jevent ' V\_/fe
compared to routes received from customers. argue that this 1S a relevant event type to study, even 1t a

single link in our topology model can sometimes represent
several physical connections between two ASes. At the edge
D. The effect of provider preference of the network, these links will often not be replicated, and
Next, we look at the effect of provider preferences, i.eg, tthence such events are not unlikely to occur in practice.
probability that a node chooses to buy transit services fromUnlike a C-event, an L-event does not have to be communi-
a T or an M node. This choice has implications for how theated to all nodes in the network. Stub nodes may have more
network will grow; a higher preference for T nodes gives than one provider, and some nodes will in this case prefer
more “flat” structure, while a higher preference for M nodea path that is not affected by the failure. Hence, we expect
diverts more paths through several layers of hierarchy. Weat an L-event will result in a lower number of updates being
define two deviations of the Baseline model: propagated in the network compared to a C-event.
PREFER-MIDDLE In the first deviation, nodes prefer to We employ the framework introduced in Sec.IV to examine
buy transit services from M nodes rather than T nodes. Waee impact of an L-event in our Baseline growth model. The
implement this by settingp = t¢ = 0, and limiting the experiment is repeated for 100 different links (increagimg
number of T providers for M nodes to one at most. number does not change the results), and the average number
PREFER-TOP In this deviation, nodes prefer to buy transibf updates received by each type of node over all experiments
services directly from T nodes. We implement this by limgtin is reported. Figure 12 shows the number of updates received
the number of M providers for M, CP and C nodes to be at different node types after an L-event. The general trends
most one. remain similar to those presented for C-events in Fig. 4.
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We break these numbers down according to Eg. 1. Since the 0

m factors depend on the topology and hence are the same for . M

C-events and L-events, the lower number of updates is caused ol 1
by the reduced growth and absolute numbers forettaand q s | COEE:B}EST%EE i il
factors. We find that both the number of updates received from 30 Ao DENSE-EDGE x|
peersU,(T') and the number received from custom&igT) 25 | R
increases with topology siz&..(7") shows the stronger growth
with a factor of 6.6 for our range of topology sizes, compared
to a factor 27 for C-events. This is caused by a strong linear
growth inm.,r with a factor 9.5, a slow increase é,r by @ gig 14: The effect of multihoming degree on churn after an
factor 1.3, combined with an overall decreaseyin-. As seen L-event
in Fig. 13, q.,r shows significant variations across different
topology instancesl,(T') increases with a factor 2.0 for L- The DENSE-EDGE scenario, interestingly, has a lower
events, compared to a growth of 8.2 for C-events. This can gewth rate than the Baseline scenario. This is differeoinfr
attributed to a growth factor of 1.6 im, 7, a growth of 1.2 the situation in a C-event, as shown in the middle panel of
in gp, 7, and a constant, . Fig. 14. This reduction in churn can be explained by obsegrvin
Theq factors reflect how the number of neighbors that sertbat the provider connected to the failed link will send upda
updates to a T node is reduced for an L-event comparedttothe same number of (transit) neighbors in the DENSE-
a C-event. In other words, many nodes prefer other pathsB®GE and Baseline scenarios, since the multihoming degree
the stub node, and are not affected by the link failure. The the core is the same in the two scenarios. However, the
e factors reflect how the affected nodes explore much fewgrobability that nodes receiving these updates will chahge

% of transit nodes

Nodes

paths before the network converges after an L-event. preferred path is lower in the DENSE-EDGE case, since the
Next, we investigate the interaction between a set of top@itub node can also be reached through several other previder
ogy growth scenario and L-events. The differences between the different growth scenarios is

also visible in the bottom panel in Fig. 14, which shows the
fraction of transit nodes in the network that select a new
A. Topology growth scenarios preferred path after the L-event. While this fraction is stamt
slightly increasing with network size in the CONSTANT-
Wl§|D, Baseline and DENSE-CORE scenarios, it decreases

for different scenarios with respect to the multihoming rdeg from an already lower level in the DENSE'ED.GE scenario.
. . .. .. These results show that the effect of densification through
First, note that the number of updates received is signifi-

cantly lower after an L-event than after a C-event in all gtDWmcreased multihoming degree on the experienced churh leve

scenarios, as expected. Further, we observe that the DEN.§I':qiﬁerent depending on the type of event that triggersréhe
' ' ' ?onvergenceWhiIe densification at the edge increases churn

t(r:gr?Itzhzcgphaer;osggr?;%ss,lgvcmlz aggﬁg;_&e&?h'\; ng;?\\;\gg :ﬁaéﬁter a prefix failure, it gives reduced churn after a linkitee.
lowest churn rate. The strong growth in the DENSE-CORE We have also investigated churn after an L-eventin the other
case is caused by the same effect as in the C-event discugspdlogy growth scenarios discussed in Sec. V. Generally,
in Sec. V-B; the provider connected to the failed link has 3we find that the number of updates received by a T node is
more providers, and will hence send an update to many mdogver for L-events than C-events. However, the generalisen

nodes. Correspondingly, the low number of providers in thebserved in churn after an L-event remain similar to what is

CONSTANT-MHD scenario gives a very limited churn. observed after a C-event.

The upper panel in Fig. 14 shows how the number
updates received at a T node increases as the network gr
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A recent study [25] showed that the number of routing Using our flexible topology model, we have explored scala-
events that ends with completely withdrawing a prefix, isdow bility in several plausible and educational “what-if” segios
than the number of events that ends with a new preferred pdthr. the growth of the AS-level topology. We have shown that
Further, the extent of path exploration for the later type dhe most important topological factor deciding the numbgr o
events is lower than the former one. These observationsujidates generated is connectivity in the core of the network

well with our results. In particular, the number mid-tier transit providers ane th
multihoming degree of these nodes plays a crucial rolegsinc
VIl. RELATED WORK transit nodes in the mid-level of the Internet hierarchy éav

. . . o special role in multiplying update messages
Interdomain routing dynamics and scalability has been gAnother important finding from this study is that peering

topic in the literature for the last decade or so, after ittfir : o .
. nks play a very different role than transit links with resp
was shown that BGP suffers from excessive churn caused by o . .
scalability. The peering degree in the Internet does not

. . to
pathological protocol behavior [19]. The phenomenopath fluence churnWe have also shown that the depth of the

; ) . i
explorationwas discussed in [17], and upper and lower bOumt%erarchical structure in the Internet plays a significasie.r
for the number of updates exchanged during convergence wgrée

given. In a follow-up work, it was shown that the duration o we are moving towards an Internet in which customers and

. .content providers at the edges prefer to connect to mid-tier
path exploration depends on the length of the longest ples&% .
backup path to the affected destination [18]. The impact P Ps, the number of BGP updates at T nodes will be much

MRAI timers to limit path exploration was discussed in [13]. igher than if they prefer to connect to tier 1 ISHéanIy,
. we have demonstrated that densification through increased

In a more recent measurement study, it was shown that path, .. . . . . .

multihoming degree will have a different impact on routing

exploration is less severe in the core of the network thanalabilit depending on its location and the failure t e
on the edges [25]. Another study [5] showed that a smagf DIty dep 9 ) )p_éh i
ensification at the edge increases churn after a prefix failu

fraction of ASes is responsible for most of the churn seen Jﬁ%ives reduced churn after a link failure. On the other hand

the Internet. A recent measurement study concluded that ! ) )
Co B S . enser core increases churn because after both edge prefix
state of BGP routing is now “healthier” than it was a decade ; .
. . : . .~ _and edge link failures.
ago, with less update traffic caused by configuration mistake .

In our future work we plan to look at more complex mix

or protocol pathologies [21]. While all previous paperslde%f events, more elaborate topologies that include intradom
with measuring and explaining BGP routing dynamics, Ourrotocols’and iBGP configurations, and other BGP mecha-
work differs in that it focuses on the relation of tOIOOIOg)gisms and configurations, such as éoute Flap Dampening and
growth and BGP dynamics. Zhao et al. [32] investigated ti‘g ’

impact of link failures location on BGP dynamics, but only fo GP multipath extensions.
regular topologies. The work in [31] studied the Internet AS
level topology resilience to certain types of failure. Hewe

it considered mainly reachability issues and had no focus dl Routeviews project page. http://www.routeviews.org.
ing d . d | ho i d ch s al ] SSFNet website. http://www.ssfnet.org/.
routing dynamics and topology growth. Increased churnse a [3] R.Albert and A. L. Barabasi. Statistical mechanics aihgex networks.

a main motivation for completely new routing architectyres  Reviews of Modern Physicg4:47, 2002.

like [30]_ Other work has focused on BGP scalability in thel4l A L Barabasi and R. Albert. Emergence of scaling in i@mchetworks.
. . . . . Science 286:509-512, October 1999.

context of increasing routing table size. One study finds thqs] A. Broido, E. Nemeth, and ke. claffy. Internet expansicefinement, and

address fragmentation is the largest contributor to rguttible churn. European Transactions on Telecommunicatjalenuary 2002.

growth [6]. As a response to the increased routing tablessizel6] T- Bu. L. Gao, and D. Towsley. On characterizing BGP nogttable
growth. Computer Networks45(1), May 2004.

a radica"y different rOUting .strategy called Co_mpaCt mt [|7] H. Chang, S. Jamin, and W. Willinger. Internet Connattiat the AS-
has been proposed [16]. This approach can give routing table level: An Optimization-Driven Modeling Approach. lCM SIGCOMM
sizes that scale logarithmically with the number of routabl _ Workshop on MoMeToql2003.

dd b f | der d . diti [8] A.Dhamdhere and C. Dovrolis. Ten years in the evolutibthe Internet
addresses, but performs poorly under dynamic conditions. ecosystem. IHIMC 2008 2008.

[9] X. Dimitropoulos, D. Krioukov, A. Vahdat, and G. Riley. r&ph
annotations in modeling complex network topologiasXiv:0708.3879
VIIl. CONCLUSIONS 2008.

We have examined the role of topology growth on thig0] X. Dimitropoulos and G. Riley. Efficient large-scale BGimulations.
scalability of BGP. We started by looking at the number of Elsevier Computer Networks, Special Issue on Network Nigieind
ity . y Ing u Simulation 50(12):2013-2027, 2006.

updates received at nodes at different locations in the AS] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On ptaverelationships
hierarchy after a C-event. For different node types, we haye ©f the Internet topology. IMCM SIGCOMM pages 251262, 1999.

. o L .. [12] Lixin Gao. On inferring autonomous system relatiopshin the Internet.
identified the most significant sources of churn, and desdrib™ " |egg/acm Transactions on Networking (TQNY6), December 2001.

how different factors contribute to increased churn as tHEs] T. Griffin and B. Premore. An experimental analysis of B@onver-
network grows. We have shown that nodes at the top of the AS_ 9ence time. [NCNP, 2001.

. . . . [14] H. Haddadi, D. Fay, A. Jamakovic, O. Maennel, A. W. Mqore
hierarchy experience both the highest churn in absoluteser R. Mortier, and S. Uhlig. On the importance of local connsttifor

and the strongest increase as the network grows. We further Internet topology models. Ithe 21st International Teletraffic Congress
looked into the impact of L-events on routing scalability,  Pages 1-8, September 2009. _
dd trated that tain t | wth i 15] Y. He, S. V. Krishnamurthy, M. Faloutsos, and M. ChrobaRolicy-
a_n emonstrate i at cer gln opology gro scenargle S aware topologies for efficient inter-domain routing evéituas. InlEEE
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