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Abstract—The scalability of BGP routing is a major concern
for the Internet community. Scalability is an issue in two different
aspects: increasing routing table size, and increasing rate of BGP
updates. In this paper, we focus on the latter. Our objective
is to characterize the churn increase experienced by ASes in
different levels of the Internet hierarchy as the network grows.
We look at several “what-if” growth scenarios that are either
plausible directions in the evolution of the Internet or educational
corner cases, and investigate their scalability implications and
interaction with different failure types. Our findings expl ain
the dramatically different impact of multihoming and peeri ng
on BGP scalability, highlight negative and positive effects of
multihoming on churn and reachability, and identify which
topological growth scenarios will lead to faster churn increase
for different failure types.

Index Terms—Internetworking,Routing,Topology,BGP

I. I NTRODUCTION

Recently, there is a significant concern among both Internet
operators and researchers about the scalability of interdomain
routing with BGP. A workshop organized by the Internet
Architecture Board concluded that“routing scalability is the
most important problem facing the Internet today”[24]. The
concern is that we are soon approaching the point where the
global routing system, and the core routers in particular, will
no longer be able to keep up with routing dynamics. BGP
scalability is an issue in two different aspects:increasing
routing table size, and increasing rate of BGP updates (churn).
Note that, in general, an increase in the routing table size
(number of routable prefixes) also increases churn, since the
number of networks that can fail or trigger a route change
increases. In this paper,we focus on the issue of increasing
churn.

The goal of this study is to improve our understanding of the
underlying reasons for the experienced growth in churn. Churn
is a result of a complex interplay of 1) therouting protocol,
including policy annotations and various BGP mechanisms
like update rate limiting, route flap dampening etc. 2)events
like prefix announcements, link failures, session resets, traffic
engineering operations that generate routing updates, and3)
the characteristics of the Internettopology. The last factor,
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in particular, is the primary focus of this paper. We aim to
understand how topological characteristics of the AS-level
graph influence the scalability of BGP churn.

Describing the AS-level Internet topology and how it
evolves has been the subject of much research (and heated
debate) in the last decade. We refer the reader to the fol-
lowing representative references [7], [20], [22], [29], [33]. In
this paper, we do not use an existing topology generation
model because we want to explore a wide range of “what-
if” possibilities that none of the existing models capturesin a
parsimonious and intuitive manner. For the same reasons, we
do not base our investigations on inferred historical internet
topologies. Instead, we first identify four basic but fundamen-
tal characteristics of the Internet graph that have persisted over
the last decade. Then, we design a simple and controllable
topology generator that satisfies the previous properties,and
at the same time allows us to easily navigate the topological
space. The “knobs” of this generator are parameters with
operational relevance in practice, such as the multihoming
degree (MHD) of stubs versus transit providers, instead of
abstract measures such as betweenness or assortativity.

Using our topology generator, we establish the factors that
determine churn at different locations in the Internet hierarchy,
and investigate the importance of each factor in a growth
model that resembles the evolution of the Internet over the last
decade. We then examine several deviations from this growth
model, and investigate how the number of routing updates
generated by different routing events grows with the size of
the topology in each case. We ask questions such as: “What
if the MHD of stub ASes increases with the network size
instead of staying constant?” “What if the Internet becomes
denser mostly due to peering links?” “What if tier-1 providers
dominate the transit market, reducing the number of tier-
2 providers?” We examine thoroughly two different routing
event types that take place at the edge of the network.

The rest of the paper is organized as follows. In the next
section, we explain our overall approach and describe the
model that we base our investigation on. In Sec. III, we
describe our topology generator and present our Baseline
growth model. In Sec. IV, we present a model for the churn
experienced at different locations in the Internet, and discuss
the importance of different factors as the network grows. In
Sec. V and Sec. VI, we examine several topology growth
scenarios and investigate how they affect BGP churn generated
by different event types that take place at the edge of the
network. We review related work in Sec. VII, and draw our
conclusions in Sec. VIII.
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Fig. 1: Model for a node representing an AS.

II. A PPROACH AND MODEL

We can only study the problems described above using sim-
ulations. Since our goal is to look at scalability under different
hypothetical topology growth models, our investigation cannot
be performed by doing measurements in the current Internet.
Also, the complexity of BGP and large Internet-like topologies
make it difficult to create a tractable and useful mathematical
model. Such modeling has been attempted before, but only for
regular topologies, and without taking the effects of MRAI
into account [32]. Simulations of any system of the size and
complexity of interdomain routing require to make several
simplifying assumptions in our model. In this section we
describe the choices and assumptions we make, and argue why
the resulting model captures the effects we want to investigate
in our study.

We study different growth models of the AS-level topology
of the Internet, using our topology generator described in
Sec. III. In order to do this in a scalable way,we model each AS
as a single node, and connections between two neighboring
ASes as a single logical link. This implies that we do not
capture routing effects within an AS, introduced by iBGP
or interactions with IGP routing protocols (e.g., hot-potato
routing). However, while such effects do have an impact on
how routing updates are generated, they are orthogonal to the
effects we want to study.

We look at two different events that generate BGP updates.
First, we focus on events where individual destination prefixes
are withdrawn and then re-announced by the owner. This is
the most basic routing event that can take place in the Internet,
and at the same time the most radical; these changes must be
communicated all over the network. Second, we study events
where a single link connecting a stub AS to one of its providers
fails and is restored. For these two event types,we measure
the number of routing updates received by nodes at different
locations in the network.

Figure 1 shows the structure of a node in our simulation
model. A node exchanges routing messages with its neighbors.
Incoming messages are placed in a FIFO queue and processed
sequentially by a single processor. The time it takes to process
an update message is uniformly distributed between 0 and 100
ms. Each node maintains a table with the routes learned from
each neighbor. Upon receiving an update from a neighbor, a
node will update this table, and re-run its decision processto
select a new best route. The new preferred route is then in-
stalled in the forwarding table and announced to its neighbors.
For each neighbor, we maintain an export filter that blocks
the propagation of some updates according to the policies
installed in the network. Outgoing messages are stored in an

output queue until the MRAI timer for that queue expires. If
a queued update becomes invalid by a new update, the former
is removed from the output queue.

For our study, we need a simulator that is capable of
capturing the exchange of routing updates described above,
and that scales to network sizes of thousands of nodes.
Existing interdomain routing simulators fall into two broad
categories. Either they only calculate steady state routes, and
do not capture routing dynamics [26], or they include a
detailed model of each eBGP session, and hence do not scale
to network sizes in the order of today’s AS-level Internet
topology of about 27000 nodes [2], [10]. Because of this, we
have chosen to develop a new simulation model that suits our
requirements1. Using this simulator, we are able to efficiently
simulate networks up to about 10000 nodes.

We consider policy-based routing, with the use of MRAI
timers to limit the frequency with which a node sends updates
to a neighbor. By “policies”, we refer to a configuration where
relationships between neighboring ASes are either peer-to-
peer or customer-provider. We use normal “no-valley” and
“prefer-customer” policies. Routes learned from customers are
announced to all neighbors, while routes learned from peers
or providers are only announced to customers. A node prefers
a route learned from a customer over a route learned from a
peer, over a route learned from a provider. Ties among routes
with the same local preference are broken by selecting the
route with the shortest AS path, then based on a hashed value
of the node IDs.

By “MRAI” or “rate-limiting”, we refer to a configuration
where two route announcements from an AS to the same
neighbor must be separated in time by at least one MRAI timer
interval. We use a default MRAI timer value of 30 seconds.
To avoid synchronization, we jitter the timer as specified
in the BGP-4 standard. According to the BGP-4 standard
[27], the MRAI timer should be implemented on a per-
prefix basis. However, for efficiency reasons, router vendors
typically implement it on a per-interface basis. We adopt this
approach in our model. We follow the MRAI implementation
recommended in the most recent RFC (RFC4271) [27], which
specifies that both announcements and explicit withdrawals
should be rate-limited.

III. C ONTROLLABLE TOPOLOGIES

In this section, we first describe some key properties that
characterize the AS-level Internet topology. We believe that
these properties will remain valid in the future. We then
describe a model that allows us to construct topologies with
different configurable properties while still capturing these key
properties.

Most existing topology generators are not capable of pro-
ducing topologies annotated with business relations, which are
essential in our study. Those who are [9], [15], do not have the
flexibility we need for controlling different topological char-
acteristics. It is possible to infer historical Internet topologies
from routing update traces [12], but it is well known that such

1The simulator code and the scripts used to generate the results in this paper
is available athttp://simula.no/research/networks/software
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inference tends to underestimate the number of peering links,
and it is difficult to infer topologies of a tractable size that are
representative of todays Internet. We therefore implementour
own topology generator.

The input parameters to our generator have “operational”
semantics. Instead of specifying abstract graph properties like
the clustering coefficient, the betweenness or the assortativity
of the topology, we define our topology in a more hands-on,
real-world related manner by specifying parameters like how
many providers an AS has, how likely it is to peer with other
types of ASes etc.

A. Stable topological properties

The AS-level Internet topology is far from a random graph.
Over the past decade it has experienced tremendous growth,
but the following key characteristics have remained constant:

Hierarchical structure.On a large scale, the nodes in the
Internet graph form a hierarchical structure. By hierarchical we
mean that customer-provider relationships are formed so that
there are normally no provider loops, where A is the provider
of B who is the provider of C who again is the provider of A.

Power-law degree distribution.The degree distribution in
the Internet topology has been shown to follow a truncated
power-law, with few very well-connected nodes, while the
majority of nodes have only few connections [11]. The well
connected nodes typically reside at the top of the hierarchy.

Strong clustering.The nodes in the Internet are grouped
together in clusters, with nodes in the same cluster more likely
to be connected to each other. One reason for this clustering
is that networks operate in different geographical areas.

Constant average path length.Recent measurements show
that in spite of a tremendous growth in the number of nodes,
the AS-level path length has stayed virtually constant at about
4 hops for the last 10 years [8].

B. Topology generator

Next, we describe a flexible model for generating topologies
that captures the above properties about the AS-level graph.
Several design choices and parameters in our topology gener-
ator were guided by a recent measurement study [8].

We use four types of nodes in our model. At the top of
the hierarchy are the tier-1 (T) nodes. T nodes do not have
providers, and all T nodes are connected in a clique using
peering links. Below the T nodes, we have the mid-level (M)
nodes. All M nodes have one or more providers, which can
be either T nodes or other M nodes. In addition, M nodes
can have peering links with other M nodes. At the bottom
of the hierarchy, we have two different types of stub nodes.
We distinguish between customer networks (C) and content
providers (CP). In this context, CP nodes would include con-
tent provider networks, but also networks providing Internet
access or hosting services to non-BGP speaking customers. In
our model, the difference between C and CP nodes is that only
CP nodes can enter peering agreements with M nodes or CP
nodes, while C nodes do not have peering links.

To capture clustering in our model, we introduce the notion
of regions. The purpose of regions is to model geographical

Meaning Baseline value
n Total number of nodes 1000− 10000

nT Number of T nodes 4− 6

nM Number of M nodes 0.15n
nCP Number of CP nodes 0.05n
nC Number of C nodes 0.80n
dM Avg M node MHD 2 + 2.5n/10000
dCP Avg CP node MHD 2 + 1.5n/10000
dC Avg C node MHD 1 + 5n/100000
pM Avg M-M peering degree 1 + 2n/10000

pCP−M Avg CP-M peering degree 0.2 + 2n/10000
pCP−CP Avg CP-CP peering degree 0.05 + 5n/100000

tM Prob. that M’s provider is T 0.375
tCP Prob. that CP’s provider is T 0.375
tC Prob. that C’s provider is T 0.125

TABLE I: Topology parameters

constraints; networks that are only present in one region are
not allowed to connect with networks that are not present in the
same region. In our model T nodes are present in all regions.
20% of M nodes and 5% of CP nodes are present in two
regions, the rest are present in only one region. C nodes are
only present in one region.

We generate topologies top-down in two steps. First we
add nodes and transit links, then we add peering links. The
input parametersnT , nM , nCP andnC decide how many of
the n nodes belong to each node type, respectively. First, we
create the clique of T nodes. Next, we add M nodes one at a
time. Each M node connects to an average ofdM providers,
uniformly distributed between one and twice the specified
average. M nodes can have providers among both T and M
nodes, and we use a parametertM to decide the fraction of
providers that are T node. M nodes can only select providers
that are present in the same region.

M nodes select their providers using preferential attachment,
which gives a power-law degree distribution [4].

We then add the CP and C nodes, which have an average
number of providersdCP or dC , respectively. CP and C nodes
can select T nodes as providers with a probabilitytCP andtC ,
respectively. Just like the M nodes, C and CP nodes select their
providers using preferential attachment.

When all nodes have been added to the topology, we add
peering links. We start by addingpM peering links to each M
node. As for the provider links,pM is uniformly distributed
between zero and twice the specified average. M nodes select
their peers using preferential attachment, considering only the
peering degree of each potential peer. Each CP node adds
pCP−M peering links terminating at M nodes, andpCP−CP

peering links terminating at other CP nodes. CP nodes select
their peers among nodes in the same region with uniform
probability. Importantly, we enforce the invariant that a node
not peer with another node in its customer tree. Such peering
would prey on the revenue the node gets from its customer
traffic, and hence such peering agreements are not likely in
practice.

C. Baseline growth scenario

Next, we define a Baseline growth model that will later
be used as a reference scenario for looking at how different
topological factors influence BGP churn. Our aim is to look



4

at the scalability of different hypothetical growth models,
and it is not our goal that the Baseline model should be an
exact copy of the historical Internet. Still, the parameters used
are inspired by recent measurements of the evolution of the
Internet topology over the last decade [8]. The Baseline growth
model is characterized by a slow increase in the MHD of stub
nodes, and a faster growth in the MHD of middle nodes and
the number of peering links. In the Baseline topology we use
5 regions, containing one fifth of all nodes each. Table I gives
the parameter values for the Baseline growth model.

Before looking at the churn characteristics of the Baseline
model, we validate that the generated topologies capture the
four stable properties of the Internet topology discussed above.
We compare some properties of the Baseline model to inferred
Internet topologies. We look at two Baseline topologies of
sizes 5000 and 10000 nodes respectively, and compare against
two inferred AS-level topologies of sizes 3247 and 17446
nodes. The smaller topology is provided by Dhamdhere and
Dovrolis [8] and it is based on RouteViews [1] and RIPE [28]
BGP routing tables from January to March 1998. The second
inferred topology is provided by Mahadevan et al. [23] and
based on RouteViews BGP routing tables from March 2004.
Note that the inferred topologies miss a large fraction of peer-
ing links, which distorts their characteristics quantitatively [8].
Therefore, our aim is that the Baseline model matches the
major topological properties of the Internet qualitatively rather
than quantitatively.

Hierarchical structure.This is trivially fulfilled through the
way we construct the topologies.

Power-law degree distribution.The top plot in Fig. 2 shows
the CCDF of the node degree on a log-log scale. We observe
that our Baseline growth model captures the power-law scaling
of the node degrees reasonably well, and is comparable to
that of the inferred Internet topologies. The use of preferential
attachment when selecting which nodes to connect to gives
the observed power-law degree distribution [3].

Strong clustering.We measure the local clustering (or
clustering coefficient) of each node in a topology. The local
clustering of a node is defined as the ratio of the number
of links between that node’s neighbors to the maximum
possible number of such links (i.e. a full clique). Hence,
the local clustering measures how well connected a nodes
neighborhood is. The middle plot in Fig. 2 reports the average
local clustering, across all nodes of the same degree, as a
function of node degree. To keep the figure readable, we plot
results for only two topologies (the other pair of topologies
show similar results). Our Baseline growth model matches
qualitatively the trends seen in the inferred topologies: first,
local clustering decreases with the node’s degree, and second,
the clustering versus degree relation follows a power-law.It
should be noted however that the Baseline model produces
lower clustering than the inferred Internet topologies.

Constant average path length.The average path length in
our Baseline topologies is constant at around four hops as
the network grows from 1000 nodes to 10000 nodes. This
matches closely the average path length in the inferred Internet
topology at least since 1998 [8].

In addition to confirming that the Baseline topologies cap-
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Fig. 2: Node degree distribution (top),Local clustering
(middle), Normalized average neighbor connectivity (bottom)

ture the previous four stable properties, we also investigate the
average neighbor connectivity[23], which has been difficult
to capture by existing topology generators [14]. The average
neighbor connectivity of a node is simply the average degree
of its neighbors. This metric relates to the assortativity of a
graph. It measures whether a node of a certain degree prefers
to connect with higher or lower degree nodes. The bottom
plot in Fig. 2 shows the average neighbor connectivity as
a function of the node degree. We normalize the average
neighbor connectivity by the maximum possible value which
is (the total number of nodes in the graph - 1), in order to
compare topologies of different sizes. The Baseline growth
model gives an average neighbor connectivity that matches
well the inferred Internet topologies, with smaller degreenodes
having a higher average local connectivity than the higher
degree nodes (referred to as negative assortativity).

IV. EXPLAINING CHURN IN A GROWING NETWORK

In this section, we first present our analytical model de-
scribing the number of updates received at a node. Then we
use the Baseline growth model to show how this model can
be simplified for the different node types, and to determine
the most important factors driving the churn growth.
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M nodes
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Fig. 3: Illustration of network based on our topology model.

Our main metric in this section is the number of updates
received at a node after withdrawing a prefix from a C-type
node, letting the network converge, and then re-announcing
the prefix again. The experiment is repeated for 100 different
C nodes (increasing this number does not change the results),
and the number of received updates is measured at every node
in the network. We then average over all nodes of a given
type, and report this average. In the following, we refer to
this procedure as a “C-event”. Note that due to the heavy-tailed
node degree distribution, we expect a significant variationin
the churn experienced across nodes of the same type. We
return to the other event type in Sec. VI.

A. A framework for update analysis

We give a formulation for the number of updates received
at a node, and discuss how the different churn increase factors
depend on the use of policies, the topological properties of
the network, and the convergence properties of the routing
protocol used.

Figure 3 shows a generic network of the type described
in Sec. III. Transit links are represented as solid lines, while
peer-to-peer links are dotted. For each node, we have indicated
the preferred path to theevent originatorZ, which is the node
announcing the active prefix. The routing updates that establish
these paths flow in the opposite direction. We observe that due
to the use of policies, updates (and the resulting paths) will
follow a particular pattern: a nodeN will only announce a
route to its providers and peers after an event at nodeZ if N
hasZ in its customer tree. On the other hand,N will always
send an update to its customers, unless its preferred path toZ
goes through the customer itself.

Let U(X) denote the number of updates a node of type
X receives after a C-event.X can be either of the four node
types in our model; T, M, CP or C. We distinguish between
the number of updates received from customersUc(X), peers
Up(X) and providersUd(X) respectively. The total number of
updates will be the sum of these:U(X) = Uc(X)+Up(X)+
Ud(X). Each of these values will depend on three factors - the
numbermy,X of direct neighbors of a given business relation
y, the fractionqy,X of these neighbors that sends updates
during convergence, and the number of updatesey,X each of
these neighbors contribute. The expected number of updates
from a certain class of neighbors will be the product of these
three factors, and we can write

U(X) = mc,Xqc,Xec,X +mp,Xqp,Xep,X +md,Xqd,Xed,X

(1)
Note that for some node types, some of these terms will be
0, e.g., T nodes have no providers, and stub nodes have no
customers. In the sequel, we will discuss how each of these
factors depend on various topological characteristics andtheir
interactions with properties of the routing protocol.
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customers for M nodes (bottom).

B. Churn at different node types

We focus our discussion on the churn experienced by transit
providers (T and M nodes), and content providers (CP nodes).
These are the AS types that are most likely to be affected by
increasing churn rates, since they must maintain larger routing
tables with few or no default routes. Also, as seen in Fig. 4,
these are the nodes that experience the stronger growth in the
number of updates received after a C-event.

We have calculated 95% confidence intervals for the values
shown in Fig. 4, and they are too narrow to be shown in
the graph. This tells us that increasing the number of event
originators beyond the 100 used in this experiment will not
reduce the observed variance. This variance is a result of
the often significant differences between topology instances
of different size, caused by the heavy-tailed node degree
distribution.

T nodes have no providers, so we haveU(T ) = Up(T ) +
Uc(T ) = mp,Tqp,T ep,T + mc,Tqc,Tec,T . The top panel in
Fig. 5 showsUc(T ) andUp(T ), for topologies of increasing
size created with our Baseline topology model. We observe
that bothUc(T ) andUp(T ) increase with network size, and
that both these factors contribute significantly to the total
number of updates. As the network grows, the increased
multihoming increases the number of routes that a T node
learns from both its customers and peers.Up(T ) is the larger
factor for small network sizes, and it grows approximately



6

 0

 5

 10

 15

 20

 25

 30

 1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

R
el

at
iv

e 
In

cr
ea

se

Nodes

Uc(T)
Up(T)
Ud(M)
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linearly with network size, with a coefficient of determination
R2 = 0.93. The strongest growth is seen inUc(T ), which
dominates for larger network sizes. Regression analysis shows
that the growth ofUc(T ) is quadratic, with a coefficient of
determinationR2 = 0.95.

While routes are only exported to peers and providers if
they are received from a customer, routes are always exported
to customers. As we can see in the bottom panel of Fig. 5,
M nodes receive the large majority of their updates from
their providers. Hence, a good estimate for the number of
updates at M nodes isU(M) = Ud(M) = md,Mqd,Med,M .
The intuition behind this is that M nodes reach the “main
part of the Internet” through their providers, and hence also
receive the majority of routing updates from them. This is a
major simplification, that makes our analysis much simpler.
The same is true for CP nodes, so we limit our discussion to
M nodes in the following.

Figure 6 shows the increase ratio inUc(T ), Up(T ) and
Ud(M). Each term is normalized so that the number of updates
is 1 for n = 1000. To explain the observed trends for these
terms, we look at the different factors described in Eq. 1 to
find out how much of the growth is caused by each of them.

First, we look at the increase in the number of neighbors of
different types. Figure 7 (top) shows the relative increasein
themc,T , mp,T andmd,M factors as the network grows.mc,T

grows much faster than the other factors. With our Baseline
topology growth model,mc,T grows approximately linearly
with n in the range of network sizes we consider. The number
of peersmp,T is given directly bynT − 1, which grows very
slowly with n. Similarly, md,M is determined by the MHD
of M nodesdM = 2+2.5n/10000, which also grows linearly
with n.

The middle panel in Fig. 7 shows the relative increase
in ec,T , ep,T and ed,M , representing the average number of
updates received from each neighbor of a given type that
exports a route.

The increase in thee factors we see here is caused by
path exploration. The increase is stronger forep,T anded,M ,
since they represent links that are further away from the event
originator, giving more chances for more paths to be explored
during convergence.

We also see how the increase in the number of received
updates is stronger from neighbors that have a larger number
of policy-compliant paths that can be explored. The number
of valid paths from a T node to an event originator increases
superlinearly, which also causes a superlinear growth inep,T ,
while the slower growth in the number of paths exported by
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customers gives a slower growth inec,T . This is compliant
with discussion of path exploration in [17].

The bottom panel in Fig. 7 shows the fraction of neighbors
of a given type that announces a route after a C-event,
represented by theqc,T , qp,T and qd,M factors. A provider
will always announce a route to its customer, unless it prefers
the path through the customer itself. Henceqd,M is almost
constant, and always larger than 0.99.qc,T andqp,T are both
generally increasing with network size. This illustrates how
increased multihoming makes it increasingly likely that the
event originator is in the customer tree of a given customer
or peer of a T node. This probability is much higher for peers
than for customers of T nodes, since the peers, which are T
nodes themselves, have a much larger number of nodes in their
customer tree.

To sum up our discussion, we have shown that the churn at
M nodes is dominated by the updates received from providers.
The number of updatesUd(M) grows with network size, since
both the number of providersmd,M and the average number
of updatesed,M received from each active provider grows,
while the probability that a provider will announce a path is
constant. The growth inUd(M) (a factor 6.7 in our range of
n = 1000 to n = 10000, as seen in Fig. 6) is dominated
by the growth ined,M (factor 3.1) and the (linear) growth in
the MHD (a factor 2.2), which makes the total growth seem
slightly superlinear.

For T nodes, both the updatesUc(T ) received from cus-
tomers and the updatesUp(T ) received from peers are impor-
tant, and both grow with network size. The strongest growth is
contributed byUc(T ), with a factor 27. Much of this growth



7

can be attributed to a strong linear growth in the number
of customers (a factor 9.5). Combined with the generally
increasing trend forqc,T (a factor 1.85) and an increase in
ec,T (a factor 1.5), this gives a clearly superlinear growth in
Uc(T ).

The number of updatesUp(T ) received from peers also
grows, but at a slower rate (a factor 8.2). This is mainly
because of the much slower growth in the number of peers
- while the number of customersmc,T increases with a factor
of 9.5 over our range of topology sizes, the number of peers
mp,T grows only by a factor 1.7. Furthermore, factorqp,T

also contributes to the growth inUp(T ) by a factor of 1.6.
However, most of the growth can be attributed to the increase
in ep,T (a factor of 3.1).

This section has shown how the T nodes experience the
highest growth in churn as the network grows with our
Baseline growth model. This increase is driven mainly by an
increased number of updates from customers. M and CP nodes
also see increased churn, driven mainly by their increased
MHD. In the next section, we will see how changes in the
topology growth model affect the various churn factors.

V. TOPOLOGY GROWTH SCENARIOS

In this section, we look at several single-dimensional devi-
ations from the Baseline model presented above. By looking
at how BGP churn increases at various hypothetical growth
models, we are able to answer different “what-if” questions
about Internet growth. For example, what if multihoming to
several providers becomes much more common than today for
stub networks? Or what if buying transit services from tier-1
nodes becomes so cheap that they drive regional providers out
of business? Our goal is not always to create realistic growth
scenarios, but also to highlight the effect of altering different
topological properties. Hence, we sometimes look at the effect
of large changes to a single property at a time.

As seen in Sec. IV, T nodes experience both the strongest
churn in absolute terms, and the strongest increase as the
network grows. Hence, we focus mainly on the number of
updates received at T nodes.

A. The effect of the AS population mix

First, we look at how the mix of different node types
affects churn, by considering four different deviations from
the Baseline model with respect to the mix of T, M, CP and C
nodes. These deviations illustrate how economic factors can
create a very different fauna of networks than what we see
today. To implement these scenarios in our model, we change
the parametersnT , nM , nCP andnC , while keeping all other
parameters fixed.

NO-MIDDLE In the first deviation, we look at a network
without M nodes, by settingnM = 0. This illustrates a
scenario where the price for transit services from the globally
present tier-1 nodes is so low that they have driven regional
transit providers out of business.

RICH-MIDDLE In the second deviation, we focus on the
opposite scenario, where the ISP market is booming and there
is room for a plethora of M nodes. We implement this by
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Fig. 8: The effect of the AS population mix on T nodes.

multiplying nM by 3 (nM = 0.45n), and reducingnCP and
nC accordingly (while keeping their ratio constant).

STATIC-MIDDLE In the third deviation, we look at a
situation where all network growth happens at the edges of
the network. The number of transit providers (T and M nodes)
is kept fixed, and the network grows only by adding CP and
C nodes. This could be a plausible scenario for the future, if
the ISP population becomes stable.

TRANSIT-CLIQUE In the fourth and final deviation, we
let all transit nodes be part of the top-level clique. This
scenario may seem far-fetched, but it is important because
it shows what would happen if the transit provider hierarchy
collapses to a clique of “equals” connected by peering links.
We implement this by settingnT = 0.15n andnM = 0.

Figure 8 shows the average number of updates seen after a
C-event at a T node for each deviation as the network grows.

A first observation from the graphs is that the node mix has
a substantial influence on churn. In particular, the comparison
of RICH-MIDDLE, Baseline, and STATIC-MIDDLE shows
that the number of M nodes is crucial. There are two ways in
which M nodes increase churn at T nodes. First, an increasing
number of M nodes increases the customersmc,T of T nodes.
For instance, in the RICH-MIDDLE deviationmc,T increases
by a factor of 10.2 when n increases from 1000 to 10000. On
the other hand,mc,T increases only by a factor of 5.3 in the
STATIC-MIDDLE deviation. Second, an increasing number of
M nodes, when they are multihomed to other providers (M or
T nodes), tends to also increase the factorqc,T . The reason is
that M nodes create additional valid paths from the source of
a C-event (at stub networks) to T nodes, and so it becomes
more likely that a T node will receive updates from its peers
and customers after a C-event. Regression analysis shows that
the growth ofU(T ) in the RICH-MIDDLE, Baseline and
STATIC-MIDDLE deviations can be modeled asquadratic,
with different scaling factors.

We also observe that the number of T nodes in the network
does not have any impact on the number of updates by itself.
The only difference between deviations NO-MIDDLE and
TRANSIT-CLIQUE is in the number of T nodes, and we see
that the number of updates is the same in these two scenarios.
In the absence of M nodes, T nodes will receive one update for
each provider the event originator has - either directly from the
event originator, or from a peer. This number only increasesas
a function of the multihoming degree of the event originator,
and is not influenced by the network size per se.

An important conclusion from the above observations is that
the increased number of updates does not primarily come from
an increased number of transit nodes, but from the hierarchical
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Fig. 9: The effect of the multihoming degree at T nodes.

structure in which they are organized.An Internet with several
tiers of providers buying transit services from other providers
gives a much higher update rate than a more flat topology
where most stub networks connect directly to tier-1 providers.
Whether the Internet will move towards a more hierarchical
or flat topology in the future is hard to tell. We do know
however, that the average path length, measured in AS-level
hops, has remained roughly constant, at around 4 hops, during
the last ten years [8]. This implies that the Internet retains
some hierarchical structure, and that the depth of that structure
does not seem to vary with the size of the network.

B. The effect of the multihoming degree

Next, we look at the effect of varying the number of transit
links each node brings to the network. Both stub and mid-
tier nodes have an incentive to connect to several providers
to increase their reliability and load balancing capability. We
implement these scenarios by varying thedM , dCP and dC
parameters, while keeping all other parameters fixed.

DENSE-CORE We look at the effect of much stronger
multihoming in the core of the network (M nodes). We
implement this deviation by multiplyingdM by 3.

DENSE-EDGE We look at the effect of densification at the
edges of the network. In this deviation, stub nodes increase
their multihoming degree. We implement this by multiplying
dC anddCP by 3.

TREE We look at a tree-like graph, where all nodes have
only a single provider. Here,dM , dCP anddC are all set to
1. This is clearly not a realistic scenario, but helps us explore
the extreme version of a trend.

CONSTANT-MHD Finally, we look at a scenario where the
multihoming degree of all nodes stays constant. We implement
this by removing the component ofdM , dCP and dC that
depends onn.

Figure 9 shows the number of received updates (top) and the
number of customersmc (bottom) for T nodes in the different
scenarios. First, note that there is a clear connection between
the MHD and the number of updates seen at a T node - for
the same network size, a higher MHD causes larger churn.
Second, even though the number of customersmc,T is about
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the same in DENSE-CORE and DENSE-EDGE, the churn is
significantly higher in the former. This fact illustrates how
the meshed connectivity of multihomed M nodes increases
the likelihood that a T node will receive updates from a
peer or customer. In other words, increased multihoming at
the core of the network causes a larger growth in the factor
qc,T than increased multihoming at the edges of the network.
Specifically, we measured thatqc,T increased by a factor of
1.6 in DENSE-CORE, while it increased by a factor of 1.3 in
DENSE-EDGE.

When the MHD degree stays constant (in TREE and
CONSTANT-MHD), the churn at T nodes is much less. In the
extreme case of the TREE model, the churn at T nodes remains
constant at two updates per C-event, because the T node learns
about the event from exactly one peer or customer (once for the
DOWN event and once for the UP event). In the CONSTANT-
MHD model, the number of updates is also roughly constant
because the increase in the number of customersmc,T as the
network grows is offset by a corresponding decrease in the
probability qc,T that any given customer of the T node will
have the source of that C-event in its customer tree.

According to a recent measurement study [8], the average
MHD of both stub nodes and providers has been increasing
during the last decade (from 1.4 to 1.8 for stub nodes and
from 1.8 to 3.2 for providers). The fact that the MHD has been
increasing more rapidly in the core of the network implies that
the Internet is closer to the DENSE-CORE model than to the
DENSE-EDGE or the CONSTANT-MHD deviations. This can
be viewed as bad news, at least in terms of BGP churn.

C. The effect of peering relations

In this subsection, we look at the impact of varying the
peering degree between different types of nodes. The fraction
of peering links in the Internet has increased over the last
decade [8]. However, various difficulties in detecting such
links do not allow us to know which peering model is most
realistic.

NO-PEERING There are no peering interconnections, ex-
cept in the clique of T nodes. This is clearly not realistic, but
it serves as a reference point.

STRONG-CORE-PEERING We look at densification
through more peering links in the core of the network. We
model this deviation by doublingpM .

STRONG-EDGE-PEERING Another possibility is densi-
fication through more peering links at the network edges. We
model this deviation by multiplyingpP−M andpP−C by 3.

Since the peering degree is only changed at M and CP
nodes, we show the number of updates received at M nodes
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rather than T nodes. Figure 10 shows the number of updates
received at M nodes as a function of network size for the
Baseline and each deviation. The main conclusion is that the
peering degree doesnot cause a significant change in the
generated churn. Adding or removing a significant number
of peering links at the edge or at the core of the network
does not give major differences in the number of updates.
This conclusion also holds for other node types. To explain
this observation recall that updates are propagated over peering
links only for customer routes. Hence, the fraction of peering
links that are active during a C-event is low. Moreover,
such updates have limited export-scope (only to customers),
compared to routes received from customers.

D. The effect of provider preference

Next, we look at the effect of provider preferences, i.e., the
probability that a node chooses to buy transit services from
a T or an M node. This choice has implications for how the
network will grow; a higher preference for T nodes gives a
more “flat” structure, while a higher preference for M nodes
diverts more paths through several layers of hierarchy. We
define two deviations of the Baseline model:

PREFER-MIDDLE In the first deviation, nodes prefer to
buy transit services from M nodes rather than T nodes. We
implement this by settingtP = tC = 0, and limiting the
number of T providers for M nodes to one at most.

PREFER-TOP In this deviation, nodes prefer to buy transit
services directly from T nodes. We implement this by limiting
the number of M providers for M, CP and C nodes to be at
most one.
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The top panel in figure 11 shows that a scenario where
most nodes buy transit from M nodes results in a higher
churn at T nodes, while more direct connections to T nodes
decreases churn.If we are moving towards an Internet in
which customers and content providers at the edges prefer
to connect to mid-tier ISPs, the number of BGP updates at
T nodes will be much higher than if they prefer to connect
to tier-1 ISPs. Looking at the different factors that determine
U(T ), we observe that the PREFER-TOP deviation gives a
much highermc,T than PREFER-MIDDLE, but that this is
more than offset by a strong decrease inqc,T , as shown in the
middle, and bottom panels in figure 11. An M node is more
likely to notify its provider about a C-event than a stub node,
because an M node has several potential event sources in its
customer tree.

A recent study [8] observed that content providers and
regional transit providers tend to buy transit service fromeither
tier-1 or tier-2 providers with almost equal probability. The
equivalent of C nodes (“Enterprise Customers”) however, show
a preference for tier-2 providers during the last 3-4 years,
justifying the selection of the corresponding probabilities in
the Baseline model.

VI. EDGE LINK FAILURE

In this section, we focus on a different type of event than the
C-event considered so far, namely the failure and subsequent
restoration of a link connecting a stub node to one of its
providers. We will refer to this event as an “L-event”. We
argue that this is a relevant event type to study, even if a
single link in our topology model can sometimes represent
several physical connections between two ASes. At the edge
of the network, these links will often not be replicated, and
hence such events are not unlikely to occur in practice.

Unlike a C-event, an L-event does not have to be communi-
cated to all nodes in the network. Stub nodes may have more
than one provider, and some nodes will in this case prefer
a path that is not affected by the failure. Hence, we expect
that an L-event will result in a lower number of updates being
propagated in the network compared to a C-event.

We employ the framework introduced in Sec.IV to examine
the impact of an L-event in our Baseline growth model. The
experiment is repeated for 100 different links (increasingthis
number does not change the results), and the average number
of updates received by each type of node over all experiments
is reported. Figure 12 shows the number of updates received
at different node types after an L-event. The general trends
remain similar to those presented for C-events in Fig. 4.
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T nodes experience the highest number of updates, and the
strongest increase as the network grows. However, the number
of received updatesU(T ) is significantly lower than after a
C-event, and the increase rate is lower, with a growth factor
of 4.4 in our range ofn = 1000 to n = 10000 compared to a
factor of 14.4 after a C-event.

We break these numbers down according to Eq. 1. Since the
m factors depend on the topology and hence are the same for
C-events and L-events, the lower number of updates is caused
by the reduced growth and absolute numbers for thee andq
factors. We find that both the number of updates received from
peersUp(T ) and the number received from customersUc(T )
increases with topology size.Uc(T ) shows the stronger growth
with a factor of 6.6 for our range of topology sizes, compared
to a factor 27 for C-events. This is caused by a strong linear
growth inmc,T with a factor 9.5, a slow increase inec,T by a
factor 1.3, combined with an overall decrease inqc,T . As seen
in Fig. 13,qc,T shows significant variations across different
topology instances.Up(T ) increases with a factor 2.0 for L-
events, compared to a growth of 8.2 for C-events. This can be
attributed to a growth factor of 1.6 inmp,T , a growth of 1.2
in qp,T , and a constantep,T .

Theq factors reflect how the number of neighbors that send
updates to a T node is reduced for an L-event compared to
a C-event. In other words, many nodes prefer other paths to
the stub node, and are not affected by the link failure. The
e factors reflect how the affected nodes explore much fewer
paths before the network converges after an L-event.

Next, we investigate the interaction between a set of topol-
ogy growth scenario and L-events.

A. Topology growth scenarios

The upper panel in Fig. 14 shows how the number of
updates received at a T node increases as the network grows,
for different scenarios with respect to the multihoming degree.

First, note that the number of updates received is signifi-
cantly lower after an L-event than after a C-event in all growth
scenarios, as expected. Further, we observe that the DENSE-
CORE scenario gives a significantly higher churn growth rate
than the other scenarios, while CONSTANT-MHD gives the
lowest churn rate. The strong growth in the DENSE-CORE
case is caused by the same effect as in the C-event discussed
in Sec. V-B; the provider connected to the failed link has 3x
more providers, and will hence send an update to many more
nodes. Correspondingly, the low number of providers in the
CONSTANT-MHD scenario gives a very limited churn.
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Fig. 14: The effect of multihoming degree on churn after an
L-event

The DENSE-EDGE scenario, interestingly, has a lower
growth rate than the Baseline scenario. This is different from
the situation in a C-event, as shown in the middle panel of
Fig. 14. This reduction in churn can be explained by observing
that the provider connected to the failed link will send updates
to the same number of (transit) neighbors in the DENSE-
EDGE and Baseline scenarios, since the multihoming degree
in the core is the same in the two scenarios. However, the
probability that nodes receiving these updates will changetheir
preferred path is lower in the DENSE-EDGE case, since the
stub node can also be reached through several other providers.

The differences between the different growth scenarios is
also visible in the bottom panel in Fig. 14, which shows the
fraction of transit nodes in the network that select a new
preferred path after the L-event. While this fraction is constant
or slightly increasing with network size in the CONSTANT-
MHD, Baseline and DENSE-CORE scenarios, it decreases
from an already lower level in the DENSE-EDGE scenario.

These results show that the effect of densification through
increased multihoming degree on the experienced churn level
is different depending on the type of event that triggers there-
convergence.While densification at the edge increases churn
after a prefix failure, it gives reduced churn after a link failure.

We have also investigated churn after an L-event in the other
topology growth scenarios discussed in Sec. V. Generally,
we find that the number of updates received by a T node is
lower for L-events than C-events. However, the general trends
observed in churn after an L-event remain similar to what is
observed after a C-event.
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A recent study [25] showed that the number of routing
events that ends with completely withdrawing a prefix, is lower
than the number of events that ends with a new preferred path.
Further, the extent of path exploration for the later type of
events is lower than the former one. These observations fit
well with our results.

VII. R ELATED WORK

Interdomain routing dynamics and scalability has been a
topic in the literature for the last decade or so, after it first
was shown that BGP suffers from excessive churn caused by
pathological protocol behavior [19]. The phenomenon ofpath
explorationwas discussed in [17], and upper and lower bounds
for the number of updates exchanged during convergence were
given. In a follow-up work, it was shown that the duration of
path exploration depends on the length of the longest possible
backup path to the affected destination [18]. The impact of
MRAI timers to limit path exploration was discussed in [13].
In a more recent measurement study, it was shown that path
exploration is less severe in the core of the network than
on the edges [25]. Another study [5] showed that a small
fraction of ASes is responsible for most of the churn seen in
the Internet. A recent measurement study concluded that the
state of BGP routing is now “healthier” than it was a decade
ago, with less update traffic caused by configuration mistakes
or protocol pathologies [21]. While all previous papers deal
with measuring and explaining BGP routing dynamics, our
work differs in that it focuses on the relation of topology
growth and BGP dynamics. Zhao et al. [32] investigated the
impact of link failures location on BGP dynamics, but only for
regular topologies. The work in [31] studied the Internet AS-
level topology resilience to certain types of failure. However,
it considered mainly reachability issues and had no focus on
routing dynamics and topology growth. Increased churn is also
a main motivation for completely new routing architectures,
like [30]. Other work has focused on BGP scalability in the
context of increasing routing table size. One study finds that
address fragmentation is the largest contributor to routing table
growth [6]. As a response to the increased routing table sizes,
a radically different routing strategy called compact routing
has been proposed [16]. This approach can give routing table
sizes that scale logarithmically with the number of routable
addresses, but performs poorly under dynamic conditions.

VIII. C ONCLUSIONS

We have examined the role of topology growth on the
scalability of BGP. We started by looking at the number of
updates received at nodes at different locations in the AS
hierarchy after a C-event. For different node types, we have
identified the most significant sources of churn, and described
how different factors contribute to increased churn as the
network grows. We have shown that nodes at the top of the AS
hierarchy experience both the highest churn in absolute terms,
and the strongest increase as the network grows. We further
looked into the impact of L-events on routing scalability,
and demonstrated that certain topology growth scenarios scale
differently depending on failure types.

Using our flexible topology model, we have explored scala-
bility in several plausible and educational “what-if” scenarios
for the growth of the AS-level topology. We have shown that
the most important topological factor deciding the number of
updates generated is connectivity in the core of the network.
In particular, the number mid-tier transit providers and the
multihoming degree of these nodes plays a crucial role, since
transit nodes in the mid-level of the Internet hierarchy have a
special role in multiplying update messages.

Another important finding from this study is that peering
links play a very different role than transit links with respect
to scalability. The peering degree in the Internet does not
influence churn. We have also shown that the depth of the
hierarchical structure in the Internet plays a significant role.
If we are moving towards an Internet in which customers and
content providers at the edges prefer to connect to mid-tier
ISPs, the number of BGP updates at T nodes will be much
higher than if they prefer to connect to tier-1 ISPs. Finally,
we have demonstrated that densification through increased
multihoming degree will have a different impact on routing
scalability depending on its location and the failure type.While
densification at the edge increases churn after a prefix failure,
it gives reduced churn after a link failure. On the other hand,
a denser core increases churn because after both edge prefix
and edge link failures.

In our future work we plan to look at more complex mix
of events, more elaborate topologies that include intradomain
protocols and iBGP configurations, and other BGP mecha-
nisms and configurations, such as Route Flap Dampening and
BGP multipath extensions.
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