
Vanish Talwar
and Dejan Milojicic
Hewlett-Packard Laboratories

Qinyi Wu, Calton Pu,
Wenchang Yan,
and Gueyoung Jung
Georgia Tech

Approaches for
Service Deployment

Traditional IT service-deployment technologies are based on scripts and

configuration files, but their limited ability to express dependencies and verify

configurations results in hard-to-use and erroneous system configurations.

Emerging language- and model-based tools promise to address these deployment

challenges, but their benefits aren’t yet clearly established. The authors compare

manual, script-, language-, and model-based deployment solutions in terms of

scale, complexity, expressiveness, and barriers to first use.

Services — standalone software com-
ponents that encapsulate and present
useful functionalities — can be com-

posed into overall computing systems or
single applications. In a broad sense, they
can include business services as well as
modules such as transaction services or
databases; moreover, they can be realized
as Web or Grid services, or even as com-
ponent services in an operating system.1

This shift points to a general view of
service-oriented computing.

In SOC, changes to a service compo-
nent must be propagated or contained so
that the services using that component
continue to function correctly. Unplanned
changes, such as those caused by failures,
must also accommodate dependencies —
services that depend on a failed service, for
example, might need to be restarted. A
concrete and serious challenge in SOC is
the long-lived and evolving nature of
large-scale services. A system update at
even a moderately sized data center can

require changes to 1,000 machines, some
of which might have interdependencies
among their services. A typical Web-based
e-commerce application, for instance, con-
sists of a three-tier system — the database,
application, and Web server tiers — and
each tier has its own interdependencies.

The scale and complexity of today’s IT
systems make them increasingly difficult
and expensive to administer and deploy;
as SOC becomes more prevalent, the
question of which deployment approach
is best gains importance. New computing
models offer some answers,2–4 but recent
studies show that most IT service compa-
nies have the same requirements:
software-deployment management dom-
inates system administration costs,5 and
configuration is a major source of errors
in system deployment.6

Today’s deployment tools provide
varying levels of automation, typically
classified as manual, script-, language-,
or model-based approaches. Automation

70 MARCH • APRIL 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

Se
rv

ic
e-

O
ri

en
te

d
C

om
pu

ti
ng

 T
ra

ck Editors: Michael Huhns • huhns@sc .edu
Munindar P. Singh • s ingh@ncsu .edu

of service deployment is beneficial for improved
correctness, speed, and documentation, but as Fig-
ure 1 shows, automation comes at an increased
cost in development time and administrators’
learning curves. This initial overhead might be
acceptable if overall gains are significant and
worthwhile, but IT managers face a more general
question: which of these approaches should they
adopt (and when)?

Use-Case Scenario
Let’s look at a real-life scenario that emphasizes
the problems with dependencies, failures, and the
need to document changes.

Sarah has installed Java PetStore on a three-
node Windows-based cluster. She manages it with
a remote tool, so she’s configured it to be part of a
remote domain. It took her a few days to install all
the required packages, applications, and tools;
because she had specific requirements, she had to
make certain changes in several steps of the
configuration and deployment. Each part of the
installation had its own instructions, so she docu-
mented everything in a notebook. Because the
application had so many dependencies, she had to
manually configure packages with the configura-
tion parameter values from other packages — for
example, for node names and IP addresses. She
repeatedly had to enter these values in different
places, so she occasionally entered them incor-
rectly. After Sarah used PetStore for several days,
an application on the remote system rebooted all
her systems because several Windows updates
needed to be applied. Unfortunately, this action
erroneously reimaged some of her systems, and
Sarah had to reinstall everything from scratch.

In this scenario, a more sophisticated deploy-
ment tool would have benefited Sarah in many
ways. First, she wouldn’t have had to do the instal-
lation manually each time. A carefully drafted
template describing the steps and tools would have
helped during the first deployment and even more
so during subsequent deployments. Next, the
dependencies between certain components could
have been instantiated in one spot with variable
names used at other areas, reducing the need to
make changes and the likelihood of making errors.
Moreover, the deployment tool could have evalu-
ated many values at the time the components were
started, eliminating the need for manual initiation
altogether. The remote configuration tool that
caused the incident could also have been part of
the configuration, which would have automated

changes in interdependent systems. Finally, the
system’s documentation would have been very
coherent and consistent, reduced to a single con-
figuration file, documenting an absolute minimum
number of parameters and making subsequent
changes easy. (See the sidebars on “Related Work
in Service-Oriented Computing” on p. 74 and “Ser-
vice Deployment Standards” on p. 79 for more
information.)

Examples of
Deployment Approaches
To better illustrate how to automate Sarah’s sce-
nario, let’s look at individual technologies. We use
Nixes, SmartFrog, and Radia as examples for the
script-, language-, and model-based deployment
approaches, respectively; each part of Figure 2
(next page) illustrates deployment steps for them.
Table 1 (p. 73) presents a breakdown of SOC
approaches according to their levels of automation.
We will quantitatively compare these steps later in
the article. From Table 1, we can see that the
increased level of abstraction enables higher levels
of automation.

Nixes (www.aqualab.cs.northwestern.edu/
nixes.html) is a tool used to install, maintain,
control, and monitor applications on PlanetLab
(www.planet-lab.org), a globally distributed test
bed for experimentation with planetary-scale net-
work services. It consists of a set of bash (Bourne
again shell) scripts, a configuration file, and a
Web repository, and it can automatically resolve
the dependencies among Red Hat Package Man-
ager (RPM) packages. For small-scale systems,
Nixes is easy to use: users simply create the con-

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 71

Approaches for Service Deployment

Figure 1. Trade-offs between initial cost (development and learning)
and repeated use cost. The level of a tool’s automation pushes costs
up earlier in the development cycle, but developing tools, learning
from them, and creating templates with them pays off as complexity
increases.

Human investment (time) over the
life time of package deployment

Manual
Script-based

Model-based

Language-based

Scale and complexity

72 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 2. Illustration of deployment steps. (a) For the manual approach, we install Apache manually; (b) for script-based, we
run a bash script to install it; (c) for language-based, we use the SmartFrog language to install it; and (d) for model-based,
we use a visual form of the system model.

Propagate packages to Web repository

Log in to Web server host

Unpackage Apache

Build and install Apache

Edit httpd.conf
Start Apache

Inspect Apache process list

Log out of Web server host

(a)

WEB_SERVER=poseidon.cc.gatech.edu #Web repository
WEB_PORT=8080
WEB_DIR=”/binaries”
APACHE_ARCHIVE=httpd-2.0.49.tar.gz#Binary Archives
DIR=/usr/local #Installation Directory
APACHE_INSTALL_HOME=$DIR/httpd-2.0.49
cd $DIR
if [[! -d $APACHE_HOME]]; then
wget
$WEB_SERVER:$WEB_PORT/$WEB_DIR/$APACHE_ARCHIVE
tar -xzf $APACHE_ARCHIVE
cd $APACHE_INSTALL_HOME
./configure > /dev/null
make > /dev/null
make install > /dev/null
cd $DIRECTORY
rm -r -f $APACHE_INSTALL_HOME
rm $APACHE_ARCHIVE
fi
(b)

ApacheInstaller extends GenericTarInstaller {
webServerHost “poseidon.cc.gatech.edu”;
tarLocation “/binaries”;
file “httpd-2.0.49.tar.gz”;
installScript extends vector

— ATTRIB downloadApache;
— ATTRIB cdApacheHome;
— ATTRIB unTarApache
— ATTRIB configureScript;
— ATTRIB makeScript;

cdApacheHome extends concat
— “cd “;
— ATTRIB installLocation;

untarApache extends concat
— “tar -xzf “;
— ATTRIB file;

configureScript “./configure”;
makeScript “make install”;
actions:downloadApache extends Downloader {

url extends concat {
— “http://”;
— ATTRIB webServerHost;
— “:”;
— ATTRIB webServerPort;
— ATTRIB tarLocation;}

toLocalFile — ATTRIB installLocation; }}
sfConfig extends ApacheInstaller;
(c)

Server

Properties:
Height = 42

Id = 3-tier_Rack

Compute node

Properties:
NumberOfProcessors = 4

Processor Speed + 875
Model = RP8400

Id = Htx894

Virtual node
Properties:

Id = AppServer_Vn1

Virtual node
Properties:

Id = WebServer_Vn1

Virtual node
Properties:

Id = DatabaseServer_Vn1

Tomcat

Properties:
Versions = 1.0

Properties:
Versions = 1.2

Java

Compute node

Properties:
NumberOfProcessors = 8

Processor Speed + 875
Model = RP8400

Id = Htx693

Apache

Properties:
Versions = 3.0

MySQL

Properties:
Versions = 2.0

JDBC Driver

Properties:
Versions = 1.0

Java

Properties:
Versions = 1.3(d)

figuration file for each application and modify
scripts to deploy on target nodes. Unfortunately,
Nixes isn’t effective for large and complicated
systems because it doesn’t provide an automated
workflow mechanism.

SmartFrog (SF; www.smartfrog.org) is a
framework for service configuration, description,
deployment, and lifecycle management.7,8 It con-
sists of a declarative language, engines that run
on remote nodes and execute templates written
in that language, and a component model. The
SF language supports encapsulation (similar to
classes in Python), inheritance, and composition
to allow configurations to be customized and
combined. It also enables static and dynamic
bindings between components to support differ-
ent ways of connecting components at deploy-
ment time. The SF component model enforces
lifecycle management by transitioning compo-
nents through five states: installed, initiated,
started, terminated, and failed. This allows the SF
engine to automatically redeploy components in
case of failure.

Radia (www.novadigm.com), a change-and-

configuration management tool, uses a model-
based approach. For each managed device, the
administrator defines a desired state, which is
maintained as a model in a central repository.
Clients on the managed device synchronize to this
desired state, which triggers deployment actions.

In our experiments and comparison, we also
consider a hypothetical model-based deployment
solution, based on our experience with Radia,
that uses the following models: package (config-
uration, installation, registry entries, binaries, and
such), best practices (matching the needs of
specific customers), software dependency
(deployment relationship with other software
components, operating systems, and hardware),
infrastructure (servers, storage, and network ele-
ments), a software inventory (currently installed
software), and interoperability among manage-
ment services models.

Evaluation Metrics
Quality of manageability is a measure of the abil-
ity to manage a system component. Quantitative
QoM measures include:

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 73

Approaches for Service Deployment

Table 1. Comparison of deployment approaches.*

Deployment phases Deployment approaches
Manual Script-based Language-based Model-based

Development None Develop tools and installation Develop configuration Develop schemas for models
and startup script templates language, parser, tools, and tools for lifecycle

and specification templates management, create
instances of models, update
software dependency model,
and create resource models

Design None Populate application templates Populate application Select package models
with customer-specific attributes templates with customer- from best-practice model
and construct workflow specific attributes and and perform dependency

construct workflow analysis
Operational Distribute packages to Invoke distribution module, Invoke distribution Update unified

repository; log in to each installation and ignition module, installation interoperability model,
target node; download, workflow, and and ignition workflow, invoke distribution
configure, and install; verification scripts and verify module and installation
activate; and verify notification events and ignition workflow,

and verify notification
events

Change Manually detect and Discover and react to changes Discover and react to Automatically react to
adapt to changes change, and load change, reflect on model,

predetermined and activate adaptation
component and execution

*(darker fonts indicate more automation)

• number of lines of configuration code (LOC) for
deployment,

• number of steps involved in deployment,
• LOC to express configuration changes, and
• time to develop, deploy, and make a change.

LOC is a relevant metric because of the main-
tainability of configuration (making changes
over the configuration’s life time), which is
inversely proportional to LOC: the smaller and
more expressive a configuration, the easier it is
for a system administrator to install, configure,
and maintain. Similarly, number of steps is pro-
portional to the time and cost of engaging a
human operator.

Qualitative QoM measures include:

• the ability to automate the management
process, including its adaptability to changes
(such as failures or load);

• robustness, expressed in terms of misconfigu-
rations;

• the ability to express constraints, dependencies,
and models; and

• barriers to first use of the deployment tool.

Automation is the most important qualitative met-
ric, because it improves time to deploy and
decreases the likelihood of human error.

The Experiments
We conducted two sets of experiments for ser-
vice deployment to empirically compare a script-
based approach, SF, and a model-based deploy-
ment approach. The first set studied the
deployment of n-tier test beds — specifically, a
three-tier test bed that exemplifies a typical Web
system administrator’s work. The test bed con-
sisted of a Web server, an application server, and
a database and was complex enough to have
numerous dependencies among various compo-
nents across the tiers. For this test, we compared
a bash script-based approach with the SF lan-
guage-based approach.

The second set of experiments involved con-
figuration parameters for MySQL (http://dev.
mysql.org), a well-known open-source database
management system (DBMS) that has a set of tun-
able configuration parameters for setting up a
database. We chose an application with an inter-
esting set of parameters that must be tuned for dif-

74 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Related Work in Service-Oriented Computing

We take inspiration for comparing
service deployment approaches

from software engineering — specifically,
the methodologies used for comparing pro-
gramming languages, domain-specific
languages, and software products.Program-
ming languages are typically compared in
terms of execution time, ease of use, lines
of code, length, amount of commenting, and
so on.1

Our work relates to domain-specific
languages such as the application of com-
piler extensions to identify errors in sys-
tems programming.2,3 In the same way that
these languages enable easier error detec-
tion, automated approaches to service
deployment and configuration prevent
human errors and make the process easi-
er. A comparison between the manageabil-
ity of Oracle 9i and Oracle 10g motivated
us to use number of steps as a metric.4

Itzfeldt further classifies maintainability as
modularity and complexity, testability,
understandability, and modifiability, and

derives the following quality metrics for
software management: size, control struc-
tures, data structure, and flow.5

Carzaniga et al. characterize product,
site, and policy models among software
deployment technologies.6 In our classifi-
cation, the script-based approach supports
the deployed services site (data center)
model; the language-based approach sup-
ports the product and site models; and
the model-based approach supports all
three models.

Our work differs from this related
research in three ways. First, the previous
work hasn’t characterized the full spectrum
of deployment automation options from
manual to model-based approaches.
Second, there is no previous quantitative
comparison of deployment solutions. And
finally, we formulate a set of metrics for
comparing deployment approaches.

References
1. L. Prechelt, “An Empirical Comparison of Seven

Programming Languages,” Computer, vol. 33, no. 10,

2000, pp. 23–29.

2. D. Engler et al., “Checking System Rules Using

System-Specific Programmer-Written Compiler

Extensions,” Proc 4th Usenix Symp. Operating Sys-

tems Design and Implementation (OSDI), Usenix

Assoc., 2000, pp. 1–16.

3. F.Mèrillon et al.,“Devil: An IDL for Hardware Pro-

gramming,” Proc. 4th Usenix Symp.Operating Systems

Design and Implementation (OSDI), Usenix Assoc.,

2000, pp. 17–30.

4. Oracle Database 10g and Oracle 9i Database Man-

ageability Comparison, tech. report, Oracle, Feb.

2004; www.oracle.com/technology/products/

manageability/database/pdf/twp03/oracle10g

-oracle9i_manageability_comparison.pdf.

5. W.D. Itzfeldt,“Quality Metrics for Software Man-

agement and Engineering,” Managing Complexity in

Software Eng., IEE Computing Series 17, R.J.

Mitchell, ed., Short Run Press, 1990, pp. 127–151.

6. A. Carzaniga et al., A Characterization Framework

for Software Deployment Technologies, tech. report

CU-CS-857-98,Dept.of Computer Science, Univ.

of Colo., Boulder, Apr. 1998.

ferent system setups, and compared native MySQL
configuration files with SF.

N-Tier Test Bed Deployment
We conducted our experiments with SF 3.0, a Web
server (Apache 2.0.49), an application server (Tomcat
5.0.19), a DBMS (MySQL 4.0.18), and the PetStore
(iBATIS JPetStore 4) and Guest Book applications, all
running on Linux. We deployed the n-tier test bed’s
components on separate nodes, but each component
had native configuration files: httpd.conf for
Apache, server.xml for Tomcat, web.xml for Web
applications using Tomcat, and my-*.cnf for
MySQL. We wrote bash scripts and SF components
for the components’ installation and ignition phases.

Our first experiment measured the number of
steps and LOC against the n-tier test bed’s scale
(number of nodes) and complexity (a function of
the number of software components and the num-
ber of installation, configuration, and ignition
dependencies). The system’s scale is varied through
horizontal scaling of the tiers. For horizontal scal-
ing, the ratios of the Apache Web servers to the
Tomcat application servers are 1:2, 2:4, and 4:8.
Figure 3 describes the levels of complexity.

We identified a test workload consisting of the

set of tasks an administrator would have to per-
form to deploy the test bed. The workload covers
the test bed’s installation and ignition, including:

• creating the specifications for the software’s
configuration, installation, and ignition;

• creating workflow descriptions;
• distributing binaries, specifications, and work-

flow descriptions;
• executing the installation workflow descrip-

tions to install the test bed;
• executing the ignition workflow descriptions to

activate the test bed; and
• verifying that the installation and ignition

completed successfully.

Our results represent the deployment effort for an
end administrator and reflect the cost of deploy-
ment incurred beyond initial development. They
don’t include development of the script interpreter,
language parser and engines, models stores, and
so on, but they do include using these tools for
developing configurations, deploying them, and
configuring and starting services.

Figure 4 (next page) shows that as a system’s
complexity increases, the difference in the number

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 75

Approaches for Service Deployment

Figure 3. Complexity definitions. The service configuration has four levels of complexity: (a) a simple, one-
tier test bed, (b) a medium, two-tier test bed with a simple application, (c) a complex, three-tier test bed
with Guest Book application, and (d) a very complex, three-tier application with Java PetStore application.

Installation dependencies

Configuration dependencies

Ignition dependencies

Apache Static
Web pages

Tomcat

Apache

Page counter
APP

(precompiled)

JVM

JVM
Application

guest
book

JVM

(a)

(b)

(c) (d)

Tomcat

Apache

MySQL

JDBC
driver

Struts

SQl
map

DAO

MySQL

Tomcat JPetStore

Apache

of steps to be performed widens between manual
and script- or SF-based approaches. For a manual
approach, the number of steps is linear in the
number of nodes because the administrator must
repeat the steps for each node. However, the num-
ber of steps for the script and SF cases remains
constant because the configuration developer can
reuse existing code. In comparison to the manual,
script-based, and SF-based approaches, the (hypo-
thetical) model-based approach provides the

advantage of a constant number of steps for the
administrator to perform with varying scale and
complexity.

SF benefits include a reduction in the number
of steps and LOC through automation, workflows,
and the ability to handle added dependencies via a
link-reference feature, which is the ability to link
to other configuration descriptions by their name
and thereby make changes only at the place of def-
inition. (Anderson and colleagues present more
details about the automation of language- and
script-based deployment solutions elsewhere.9) The
SF language also allows specification of the
sequencing relationships among different software
components through workflows and subworkflows.

MySQL Deployment
We conducted the MySQL experiment with the
configuration file for version 4.0.18. We repre-
sented the configuration information with the SF
language to take advantage of its inheritance and
link reference.

This experiment measures the lines of config-
uration code to maintain and the number of
configuration values to be edited in response to
system changes. We specifically focused on
MySQL’s performance-tuning parameters, which
include port number parameters, key and sort
buffer sizes, and read and write buffer sizes. The
experiment varies the setup complexity from small
(10 to 100 infrequently used clients that consume
few resources) to medium (100 to 1,000 clients
used with Web servers) to large (1,000 to 5,000
clients on a dedicated server) to huge (more than

76 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 4. Number of steps as a function of scale and complexity. The graph shown for bash and SmartFrog are from real
service configurations described in Figure 3; the results for the model-based approach are estimated and represented as a
flat plane in the graph.

Figure 5. Cumulative lines of configuration code. As the deployed
service’s complexity increases, the configuration description size
grows slower for the language-based approach than for the script-
based deployment approach.

Very largeLargeMediumSmall

120

100

80

60

40

20

0

C
um

ul
at

iv
e

lin
es

 o
f c

od
e

Script
SF

Description size

5,000 clients on a dedicated server). We tested the
SF and MySQL default configuration files as the
deployment approaches of choice.

Figure 5 compares the cumulative number of
LOC that a MySQL administrator must maintain as
the system’s complexity increases from simple to
huge. An administrator maintaining configura-
tions for only small setups maintains the same
LOC with language- and non-language-based
approaches, but for a medium setup, the cumula-
tive number of LOC to maintain doubles with non-
language-based approaches. For a medium setup,
however, a language-based approach such as SF
introduces fewer specific LOC for that size of setup
or LOC required for tuning the parameters whose
values differ from those for a small setup. The
medium setup can inherit the rest of the configu-
ration from the small setup. Similar reasoning
holds true when we introduce large or very large
systems. The difference in the cumulative LOC for
maintaining a huge system using a language-
versus a non-language-based approach is quite
significant. (Experiments with the configuration
values to be edited in response to system changes,
as well as with the deployment and installation
time, appear elsewhere.10)

MySQL is simple compared to software systems
such as those that manage supply chains. We
believe that complex services favor even more
deployments at a higher level of abstraction (such
as with language- and model-based approaches).

Complexity, dependencies, configuration space,
and requirements for performance, availability, and
scalability of services are all dimensions that bear on
our conclusions. Simple service configurations lend
themselves to manual or script-based deployment,
but more complex services with more requirements
are better suited for model-based deployment.

Comparison
Ultimately, no universally optimal solution exists —
the best approach is the one that closest matches

the deployment need. When the number of
deployed systems is small or systems’ configura-
tions rarely change, a manual solution is the most
reasonable approach. For services with more com-
prehensive configuration changes, a script-based
deployment strategy offers several benefits. In
larger environments in which changes involve
dependencies, language-based solutions are likely
a better choice. If the changes also involve signif-
icant perturbations to the underlying service’s
design, the model-based approach is probably
ideal. From the perspective of documentability,
manual deployment offers poor support; scripts
offer minimal support for the deploy-time
changes; language-based approaches support
incremental documentability based on inheritance
and composition; and model-based approaches
add runtime documenting by virtue of capturing
all the changes in the deployed service’s lifetime.
Table 2 shows a high-level comparison of deploy-
ment approaches in terms of applicability.

Table 3 (next page) provides a more detailed,
qualitative comparison between manual, script-,
language-, and model-based deployment solutions
in terms of automation, self-management, expres-
siveness, and barriers to first use.

Automation (Self-Management)
Scripts introduce deployment automation through
their ability to repeat a set of steps specified in a
file and to form closed control loops through
events. Language-based solutions extend this abil-
ity by introducing lifecycle management through
the use of dependencies (for example, order of
deployment or redeployment upon failures).
Model-based solutions extend automation to
design time by enabling dynamic creation of
deployment instantiations.

Self-Healing
As an extension of self-management, self-healing
enables a system to react to failures. Scripting has

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 77

Approaches for Service Deployment

Table 2. Applicability of deployment approaches.*

Characteristics Deployment approaches
Manual Script-based Language-based Model-based

Change Simple Configuration Dependency Design
Repeat/scale Rare/small Many/large Many/large Many/large
Complexity Simple Simple Complex Complex
Documentability None Deploy time +Incremental +Runtime

*(darker fonts represent preferable choices; plus signs represent incremental support from the cell to the left)

some ability to react to events and trigger han-
dlers; language-based solutions build on this
ability by exploring dependencies and handling
redeployment in a more sophisticated way. Model-
based solutions can change the deployed system’s
design as a reaction to the failure.

Expressiveness (Ease of Use)
Expressiveness is of particular interest when
deploying large-scale, complex systems. Language-
based approaches introduce inheritance, name
scoping, and lazy evaluation (the ability to dynam-
ically resolve link references to actual names at
runtime) for easier (re)configuration. The model-
based approach introduces model- and policy-
based support that better captures runtime state
and best practices. As a result, going from a man-
ual to a model-based approach brings an increas-
ing level of reuse, correctness, and maintenance.

Barriers to First Use
Manual deployment usually requires little or no
a priori knowledge. Scripts are relatively straight-
forward and require little effort to get started with,
although some script programs are quite sophisti-
cated. Language-based approaches require a certain
amount of education before a system administrator
can use them — for example, the system adminis-
trator should learn the syntax and semantics of the
language, component model, and APIs. Model
development is the largest barrier to the model-
based approach, but front-end tools partially alle-
viate this obstacle.

From the perspective of our programming-
language-inspired methodology, the four

deployment approaches differ in nature, yet are
synergistic. The manual approach is imperative;
the script-based one is automated imperative; the
language-based one is declarative; and the model-
based one is goal-driven. Ease of use and barriers
to first use typically determine the optimal choice,
but to define the best deployment method in an
SOC environment, our results favor the trend
toward using a model-based approach because
each successful service composition increases total
system complexity as well as scale.

We didn’t present as rigorous an evaluation of
the model-based approach (prototyping or exper-
imentation) as we did for the other deployment
approaches, because model-based deployment
tools still aren’t widely available for SOC. Howev-
er, our qualitative comparison is useful because it’s
based on our practical experience with using mod-
els. Similarly, we omitted some other aspects of
deployment (such as exceptions), but we didn’t
lose the generality of our conclusions. Exceptions
are an important topic for deployment, but
addressing them is either orthogonal to the com-
parison we made or well aligned with the results
— moving to higher levels of abstraction such as
language- and model-based, for example, might
make it harder to understand some of the errors
that occurred at the lower levels of abstraction.
That said, though, the deployment system should
analyze failures at an appropriate level of abstrac-
tion and deal with them accordingly.

Integration with development tools such as
Eclipse (www.eclipse.org) should both improve
ease of use and decrease barriers to first use
because of graphical user interfaces combined with
default configuration templates. We also plan fur-
ther examination of deployment in different

78 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Table 3. Comparison of deployment approaches.*

Characteristics Deployment approaches
Manual Script-based Language-based Model-based

Solution based on Human language Configuration, files, scripts Declarative language Models and policies
Automation None Event-based closed loops +Lifecycle management +Automated design
Self-healing None Minimal +Redeployment, +Change design

dependencies
Expressiveness None Partial: dependencies Significant: +inheritance, Complete: +reuse,

and constraints lazy evaluation correctness, and
maintenance

Barriers to first use None Low High Very high

*(plus signs indicate incremental support in each row compared to the cells on the left)

underlying environments such as PlanetLab, Grid,
and Enterprise.

There is an opportunity to develop more elabo-
rate quantitative comparisons, potentially based on
software metrics, such as those in software engi-
neering.11 We plan to pursue some of these
approaches in the future. Although such techniques
will increase our evaluation’s precision, we expect
the general conclusions to remain unchanged. Our
future work in the area of deployment is moving in
two primary directions. First, we’re exploring loose-
ly coupled decentralized architectures for building
deployment services in wide area systems. We plan
to explore the use of Web services standards and
then extend and decentralize them, as appropriate,
for large-scale systems. Second, we intend to con-
tinue using models to extensively automate the
deployment and self-healing within complex sys-
tems and to increase scalability and ease of use. We
plan to integrate the work on models with the loose-
ly coupled architecture described earlier, to create a
scalable deployment service for next-generation
computing systems.

Acknowledgments
This article is based on a longer paper that will appear in the

Proceedings of the 25th IEEE International Conference on Dis-

tributed Computing Systems (ICDCS 05). We’re indebted to

Munindar Singh and Michael Huhns for reviewing the article;

their comments significantly improved its contents and presen-

tation. Paul Anderson, Martin Arlitt, Jamie Beckett, Patrick

Goldsack, Steve Loughran, Jim Rowson, and Carol Thompson

reviewed earlier versions of the article. Julie Symons offered the

scenario.

References

1. M.N. Huhns and M.P. Singh, “Service-Oriented Computing:

Key Concepts and Principles,” IEEE Internet Computing,

vol. 9, no. 1, 2005, pp. 75–81.

2. J. Wilkes, J. Mogul, and J. Suermondt, “Utilification,” Proc.

ACM European SIGOPS Workshop, ACM Press, 2004, pp.

34–40.

3. IBM Systems J., special issue on utility computing, vol. 43,

no. 1, 2004; www.research.ibm.com/journal/sj43-1.html.

4. I. Foster and C. Kesselman, The Grid: Blueprint for a New

Computing Infrastructure, 2nd ed., Morgan Kaufmann, 2004.

5. J. Humphreys et al., Service-Centric Computing: An Infra-

structure Perspective, Outlook, and Analysis, tech. report

28934, Int’l Data Corp., Mar. 2003.

6. D.A. Patterson et al., Recovery-Oriented Computing (ROC):

Motivation, Definition, Techniques, and Case Studies, tech.

report UCB/CSD-02-1175, Dept. of Computer Science, Univ.

of Calif., Berkeley, 15 Mar. 2002.

7. A. Carzaniga et al., A Characterization Framework for Soft-

ware Deployment Technologies, tech. report CU-CS-857-98,

Dept. of Computer Science, Univ. of Colo., Boulder, Apr.

1998.

8. P. Goldsack et al., “Configuration and Automatic Ignition

of Distributed Applications,” 2003 HP Openview Univ.

Assoc. Workshop, Hewlett-Packard Labs, 2003; www.hpl.

hp.com/research/smartfrog/papers/SmartFrog_Overview

_HPOVA03.May.pdf.

9. P. Anderson et al., “SmartFrog Meets LCFG: Autonomous

Reconfiguration with Central Policy Control,” Proc. Usenix

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 79

Approaches for Service Deployment

Service Deployment Standards

Major standardization bodies such as
the Distributed Management Task

Force (DMTF; www.dmtf.org), the Global
Grid Forum (GGF; www.gridforum.org),
the Organization for the Advancement of
Structured Information Standards (OASIS;
www.oasis-open.org), and the World Wide
Web Consortium (W3C; www.w3.org)
continue to address service deployment.
The GGF’s Configuration Description,
Deployment, and Lifecycle Management
working group (CDDLM), for example, is
actively pursuing Web service deployment
based on SmartFrog (SF), but adapted to
the Web services (see https://forge.grid
forum.org/projects/cddlm-wg). SOAP and
WSDL have replaced the remote method

invocation (RMI) transport, an XML-based
language replaces the SF language, and Web
services replace RMI-based distributed
engines. The CDDLM deployment is an
extension of the OASIS Web Services Dis-
tributed Management interfaces, and OASIS
is exploring deployment in the larger con-
text of the Web Services Resources Frame-
work (WSRF).

The Installable Unit for Deployment
Descriptor (IUDD) group,with representa-
tives from InstallShield Software, IBM,Nov-
ell, and Zero G Software, has submitted a
deployment schema to W3C (see www.
w3.org/Submission/2004/SUBM-Installable
Unit-DD-20040712/). The schema is an
XML document describing the relevant

characteristics of an installable unit of soft-
ware for its deployment, configuration, and
maintenance. IUDD also describes the
aggregation of installable units at all levels of
the software stack, including middleware,
applications, and the logical topology of
deployment targets.

The DMTF Application working group
has dealt with model aspects of service
deployment (see www.dmtf.org/about/
committees/applicationsWGCharter.pdf),
developing Common Information Models of
services relevant for deployment. Signifi-
cantly more service deployment research
and development is occurring within stan-
dardization bodies, which is beyond this
article’s scope.

Large Installation System Administration Conf. (LISA)

Usenix Assoc., 2003, pp. 173–180.

10. V. Talwar et al., “Comparison of Approaches to Service

Deployment,” to be published in Proc. 25th Int’l Conf. Dis-

tributed Computing Systems, 2005.

11. W.D. Itzfeldt, “Quality Metrics for Software Management

and Engineering,” Managing Complexity in Software Engi-

neering, IEE Computing Series 17, R.J. Mitchell, ed., Short

Run Press, 1990, pp. 127–151.

Vanish Talwar is a member of the Internet Systems and Storage

Lab at Hewlett-Packard Laboratories. His technical inter-

ests include distributed systems, operating systems, and

computer networks, with a current focus on distributed sys-

tems management technologies. Talwar has an MS in com-

puter science from the University of Illinois at Urbana

Champaign, where he is currently pursuing a PhD in the

same subject. Contact him at vata@hpl.hp.com

Qinyi Wu is a PhD student at Georgia Tech, where she is also a

member of the Distributed Data Intensive Systems Lab in

the university’s College of Computing. Her technical inter-

ests include workflows, transaction processing, and Web

services. Wu has an MS in computer science from the Bei-

jing Institute of Technology, Bejing, China. Contact her at

qxw@cc.gatech.edu.

Calton Pu is the John P. Imlay Jr. Chair in Software at Georgia

Tech. His research interests include operating systems,

transaction processing, and Internet data management. Pu

received a PhD in computer science from the University of

Washington. He is a member of the ACM, a senior member

of the IEEE, and a fellow of the AAAS.

Wenchang Yan is a research scientist in the College of Com-

puting at Georgia Tech. His research interests include dis-

tributed systems, quality of service, and adaptive middle-

ware. Yan has an MS in computer science from Florida

State University. Contact him at wyan@cc.gatech.edu.

Gueyoung Jung is a PhD student in the computer science

department at Georgia Tech. His technical interests include

distributed and data-intensive systems, autonomic com-

puting, and general distributed systems, in particular peer-

to-peer computing, distributed information monitoring,

and data stream processing. Jung has an MS in computer

science from Georgia Tech. Contact him at helcyon1@

cc.gatech.edu.

Dejan Milojicic is a project manager and a senior researcher at

Hewlett-Packard Laboratories. His technical interests

include distributed systems, operating systems, systems

management, and mobile systems. Milojicic has a PhD in

computer science from the University of Kaiserslautern,

Germany. He is a member of the ACM, the IEEE, and

Usenix. Contact him at dejan@hpl.hp.com.

80 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

