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Abstract. This paper explores gait recognition for various walking speeds.
Normal-constant speed is one of the assumptions being made in many
current gait recognition techniques. However, some techniques do not
scale well when certain gait conditions such as walking speed varies. We
demonstrate the characteristics of time-distance gait parameters, stride
length and cadence, with respect to walking speed at the inter- and
intra-individual variation levels. The speed normalization or adjustment
of gait features are studied and presented in details along with the ex-
pected recognition results. Our study of walking speed variations allows
us to ascertain systematically the expected recognition-performance of
time-distance gait parameters (stride length and cadence). In addition,
we show the levels of measurement noise which can be tolerated in mea-
suring these gait features without losing useful identity information.

1 Introduction

In recent years, human identification research has shown many effective tech-
niques to automatically identify or authenticate people based on their unique
physiological or behavioral characteristics. Gait as a biometric is appealing be-
cause of its unobtrusiveness and information can be observed at a distance.
There are numerous computer vision-based applications that need a system that
automatically identifies people or at least verifies their claimed identity.

Normal walking conditions such as constant and natural walking speed, no
object to carry, level ground walking, etc. are some of the main assumptions made
in most current techniques. Many proposed features and techniques will not work
well if these conditions do not hold. Even though most of the time gait patterns
are repeatable, changes in walking conditions can affect the patterns. There are
many factors from our daily walking activity, such as, locomotor speed, stride
frequency, walking surfaces, load carrying , etc. that can influence the inter-
and intra-individual variations. The understanding of the characteristics of gait
patterns under various gait conditions will help improve and scale the techniques
in the gait research.

We are particularly interested in patterns of time-distance gait parameters
such as stride length and cadence, which are potentially measurable by computer



vision techniques, under various speed conditions. However, rather than concen-
trating on coming up with techniques to recover these parameters, we are more
interested in studying various properties of these features themselves especially
when walking speed is changing. In particular, if people are allowed to walk at
arbitrary speeds,

– Which gait features provide more unique individual characteristics? Does
combining them help improve the recognition?

– How do we normalize or map time-distance features across speeds to improve
the recognition?

– How much noise can be tolerated in these features, so they still yield rea-
sonable recognition performance?

– How much of the redundancy between these features can be exploited in the
presence of noise in the measurement?

In this paper, we present our study of inter- and intra-individual gait pattern
variations under different walking speeds among a group of normal people. Since
measurements of gait patterns directly from video sequences is still coarse and
noisy, we propose to investigate, identify, and quantify the gait variations ob-
served from gait cycles using 3D movement analysis system. Analyzing gait data
in this aspect allows (without much concern about measurement noise) us to
investigate what types of features contain significant individual characteristics.

2 Related and Previous work

Humans can walk up to 4 m/s [10], but natural transition between walking and
running is roughly 2.2 m/s [10, 11]. [13, 12] study the influence of walking speed
on gait parameters to find out their normal ranges. The results can be used as a
reference for comparison with other pathological cases. From a human identifi-
cation perspective, human gaits are observed in various situations, for examples,
side-, frontal-, or arbitrary-views, and indoor versus outdoor scenes [1, 2]. Many
features are proposed in the literature for gait recognition tasks including opti-
cal flow, joint angles, silhouette, etc. Example works include appearance based
approaches where the actual appearance of the motion is characterized [3–5].
Several works extract parameters of body and gait, such as, stride length, ca-
dence, height, joint angles to use in the classification tasks [1, 6, 7]. In [8], they
analyze the identity information contained in the lower-body joint-angle trajec-
tories using the data measured with 3D motion capture system.

The study of speed effects in gait recognition has not been emphasized much.
There are not many works [6, 14] that exploit the relationship of gait features
with respect to walking speeds in their techniques to help deal with walking speed
variations of people. In [14], they present a method that focuses on distinguishing
normal walking movement from other non-walking movements using low-level
stride-based features. In [6], they present a model-based technique that estimates
stride length and cadence as gait features and use the linear relationship between
stride length and cadence in their recognition step.



3 Speed-control experiment

To quantitatively assess the effects of speed variation on gait parameters dur-
ing walking movements, we design an experimental setup to gather movement
information, which allows people to walk naturally on the ground level floor
and at the same time achieve and remain at certain speeds. The details of our
experimental setup can be found in our technical report [9]. A motion capture
system is also part of our setup because we want to evaluate the efficacy of gait
parameters at various speeds where their values can be measured as accurate as
possible.

There are 15 subjects (12 males and 3 females) with normal healthy condition
participating in this study. For each session, the subjects are required to walk
at four different speeds (0.7, 1.0, 1.3, and 1.6 m/s). Three walking trials are
captured for each speed. To verify the validity and consistency of the data, each
subject is asked to participate in 3 sessions. The second session is arranged
right after the first. A third session takes place at least a day later. There are
15∗4∗3∗3 = 540 walking trials collected from this experiment. For each walking
trial, one full walking cycle mostly in the middle of the trial is segmented.

4 Characteristics of time-distance features respect to
speed

General parameters specific to gait activity such as time-distance parameters
are potentially measurable from images by computer vision techniques. These
parameters usually include stride length, cadence, stride time, and speed. Several
approaches use these features in their recognition techniques with a normal,
constant speed assumption. We argue that when people change their speeds,
their gait patterns do change. And it is reasonable to assume people do change
their speeds. Therefore, it is necessary to understand the expected performance
of these features when used in general speed conditions and how to handle them
with respect to speed differences.

Since speed is related directly to stride length, cadence and stride time pa-
rameters, our speed-control data allow us to look at these parameters more
closely in their characteristics respect to speed. From our speed-control setup
with the 3D motion capture system, stride length and stride time can be mea-
sured directly from the 3D walking data. Stride length is defined as the distance
between one heelstrike to the next of the right foot in the walking plane. Stride
time is computing by dividing the number of data samples of each walk cycle by
the sampling rate (120 Hz in our case). Cadence (strides/min) is calculated by
dividing 60 seconds by a stride time (seconds).

Normally when people increase their walking speeds, both their stride and
cadence are adjusted accordingly. It is known that stride length increases mono-
tonically as walking speed increases. In gait recognition, however, we need to
know the relationship between these features at the individual level in order to
find a way to adjust, normalize, or map features across speeds for the recognition
tasks.
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Fig. 1. Linear relationships between stride length and speed of 15 subjects. For each subject,
4*3*3=36 data points are plotted and a mean line is fitted through them.

Figure 1 shows the linearity between stride length and walking speed from
all trials of 15 subjects. Moreover, we can see that the fitted mean lines of the
subjects have different slopes. Figure 2 (row (a)) shows all data from 15 subjects
(left), the fitted mean lines plotted together give us a better view of the similari-
ties and differences between individuals (middle), and the coefficients (slope and
y-intercept) of the 15 lines in the coefficient space (right). One observation about
the slopes of the fitted mean lines is that if a person has a narrow stride length
at small speeds, he/she has to increase stride length more at the higher speed
to be able to cover a certain distance in a certain amount of time. Therefore,
the slopes tend to be steeper than the slopes of those who have a wide stride
length at small speed. Similar linear relationships can be found also in the cases
of [cadence, speed] and [stride length, cadence] pairs (figure 2 row (b) and (c)).

0 20 40 60 80 100
0

0.5

1

1.5

2

Cadence (strides/min)

St
rid

e 
Le

ng
th

 (m
)

0 20 40 60 80 100
0

0.5

1

1.5

2

Cadence (strides/min)

St
rid

e 
Le

ng
th

 (m
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
3

2

1

0

1

2

3

Coefficient (b1)

C
oe

ffi
ci

en
t (

b0
)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Coefficient (b1)
0 0.5 1 1.5 2

0

20

40

60

80

100

Speed (m/s)

C
ad

en
ce

 (s
tri

de
s/

m
in

)

0 0.5 1 1.5 2
0

20

40

60

80

100

Speed (m/s)

C
ad

en
ce

 (s
tri

de
s/

m
in

)

C
oe

ffi
ci

en
t (

b0
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coefficient (b1)
0 0.5 1 1.5 2

0

0.5

1

1.5

2

Speed (m/s)

St
rid

e 
Le

ng
th

 (m
)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Speed (m/s)

St
rid

e 
Le

ng
th

 (m
)

C
oe

ffi
ci

en
t (

b0
)

(a)

(b)

(c)

Fig. 2. Row (a), Left: All stride length and cadence data from 15 subjects plotted altogether.
Middle: Individual fitted mean lines. Right: Distribution of the coefficients of 15 lines. Row (b) and
(c) are the similar plots for [cadence, speed] and [stride length, cadence] pairs.

5 Expected performance of time-distance features

All linear relationships between the features in the previous section hold at the
individual level as well as at the group level. In gait applications, if there are
several walking examples at different speeds for each individual, the individual
fitted mean line can be approximated and used to predict the stride length



or cadence of that individual at any speed (within a reasonable range). From
the point of view of implementing a gait recognition system, we normally will
not have individual slopes to compensate for speed differences. In the following
paragraph we compare the use of individual fitted mean lines to the global one
(the fitted mean line of the whole group) to see if we can use the global line in
the mapping process.

To perform a recognition task across speeds, one way is to normalize or map
all data to a particular speed (template speed), and then use pattern recognition
techniques to classify them. We used the simple nearest neighbor algorithm with
Euclidean distance as measurement criteria. The results are presented in the
form of the Cumulative Match Characteristic (CMC) curves, which indicate the
probability that the correct match is included in the top n matches.
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Fig. 3. In the stride length case. Left: map all the data from 4 different speed settings to be at their
respective exact speeds. Middle: map all data to 1.3 m/s using the individual mean lines. Right: map
data using the global mean line.

Stride length and cadence
Figure 3 (left) shows the analysis of the performance of the stride length

feature at a chosen template speed. For example, if the template speed is 0.7 m/s,
then we adjust the stride length data captured from each subject at around 0.7
m/s in our experiment to be at exactly the speed at 0.7 m/s using the individual
fitted mean lines. In our case, 15(people)*3(trials per suit-up)*3(suit-ups)=135
data points are mapped to the template speed and they are considered a probe
set. The gallery set is constructed by taking the stride length values from the
individual fitted mean lines at the template speed (0.7 m/s). Therefore, there are
15 stride length values in the gallery set at any speed representing 15 individuals.
Each probe data point is compared against the data in the gallery set using the
nearest neighbor algorithm to find the match. To validate the results, we select 4
different speeds as the template speeds for comparison. Figure 4 (frame (a), solid
curves) shows the CMC curves obtained from using the stride length feature.
Their similarities suggest the expected recognition-performance of the feature
regardless of any speed.

From the linear relationships in the previous section, if we have the gallery
set at one particular speed, and the probe set at other speeds, the recognition
would be poor. A normalization is needed to deal with the speed differences.
We investigate two mapping techniques, using the individual and global fitted
mean lines. Figure 3 (middle and right) shows the mapping process using both
methods. We select 1.3 m/s to be the template speed. The gallery set at 1.3 m/s
is the same as before, but the probe sets are the data at the speeds 0.7, 1.0, and



1.6 m/s mapped to 1.3 m/s. Figure 4 (frame (a) dash and dots curves) represents
the CMC curves using both normalization methods. Using the individual fitted
mean lines as the mapping tools yields good results (dash and solid curves are
close to each other). Using the global fitted mean lines yields slightly worse
performances (especially at the small speed (0.7m/s) where people have more
variations in executing their gaits). However, without enough examples of a
person to obtain the individual mean line, the global mean line gives a reasonable
way for mapping the data across speeds.
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Fig. 4. Frame (a): CMC curves in the stride length case (Solid: at a particular speed (no mapping
across speeds), Dash: with speed adjustment to 1.3 m/s using the individual mean lines, Dots: using
the global mean line). Frame (b): the cadence case. Frame (c): the case of using both stride length
and cadence.

The same protocol is applied to the analysis of cadence feature. The simi-
larities of the CMC curves (figure 4, frame (b), solid curves) also suggests the
expected recognition-performance of the feature regardless of speed. With the
knowledge of the individual fitted mean lines, the mapping process can be done
reasonably well. If the individual fitted mean lines are not available, then the
global mean line can still be used to help normalize the data closer to its likely
value at the template speed (figure 4 frame (b), dash and dots curves).



The expected performance when using both stride length and cadence to-
gether can be seen from the similarities of the curves in figure 4 (frame (c),
solid curves). The similar conclusions about the normalization techniques can
be observed from the CMC curves in figure 4 (frame (c), dash and dots curves).

There is, however, one interesting observation from our analysis of these
expected performances. By considering any particular speed, for example, at 0.7
m/s (top-left), if we plot CMC curves obtained from using only stride length
alone, cadence alone, and both features together, we can see that they are not
much different from one another (figure 5). This result suggests that in the
noise-free measurements, using both features does not yield significantly better
recognition performance than using either one alone.
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Fig. 5. CMC curves at 4 different speeds (Solid: using stride length feature alone, Dash: using
cadence alone, Dots: using both features).

Noise analysis
The data we use in this analysis are 3D motion capture data which are

considered to be accurate. This allows us to explore the real values of the features
themselves. However, when obtained from images, these features are expected
to be coarse and noisy. We want to know how much measurement noise can be
tolerated in order to still yield useful recognition performances.

For example, given that a person walks at the speed of exactly 1.3 m/s, but
a vision algorithm can measured the stride length with some level of noises.
We simulate this situation by taking the data in the probe set at the speed
1.3 m/s and adding random noises which have normal distribution (zero mean
and standard deviation ranging from 0 cm to 48 cm). We match this noisy
probe set against the gallery set at 1.3 m/s. Then we calculate the CMC curve.
For each level of noise, we simulate the results 30 times and then average all
the CMC curves. We show the averaged CMC results in figure 6 (frame (a))
with the noise level incremented by 3 cm in each step. Another simple way to
compare these CMC curves is to calculate their area under the curves (right
plot). We can see that the more noise in the measurement, the more random the
data will be and the CMC curve will be closer to the diagonal line (or the area
under the CMC curve will be closer to 0.5). From the plots, we can see that the
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Fig. 6. Frame (a), Left: CMC curves when different levels of noises (from 0-48 cm/s) are added to
the stride length measurement at the speed of 1.3 m/s. Right: Area under the CMC curves from the
left figure (normalized to be from 0 to 1) plotted according to different levels of noise (0-48 cm/s).
Frame (b), in the case of cadence.

.

stride length feature still yields useful information until the standard deviation
of measurement noise is about 9-12 cm. Similar noise analysis of the cadence
feature is also shown in figure 6 (frame (b)), where The standard deviation of
noises added to the original measurements are from 0-20 strides/min.

In the case of noisy measurement, however, knowing both features might
be better than knowing one feature alone. Since it is difficult to show the CMC
curves when noises are added to both features. Only plots of the area under those
CMC curves are shown in figure 7. The more noises included in the measurement,
the worse recognition performances reflected in the lower CMC curves. However,
in figure 7, (b)-(d) the plots suggest that using both features in the noisy mea-
surements yields better CMC curves than using either one noisy feature alone.
Therefore, the redundancy between these two features help the recognition per-
formance in the presence of noise in the measurement.
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Fig. 7. (a) Plots of area under the CMC curves when noises are added in the measurement of
stride length (0-48 cm/s) and cadence (0-20 strides/min). (b) Comparison of the area under the
CMC curves between solid (using only stride length as the feature alone and noises are added to
the measurement) and dots (using both features, but noises are only added to the stride length
measurement). (c) Similar to (b) but both curves represent cadence instead. (d) Similar to (b), dots
(noises are added to both features which is the diagonal values of the surface in (a)).



6 Summary and conclusions

This paper presents the detailed analysis of time-distance gait parameters espe-
cially stride length and cadence across walking speeds. We have shown the lin-
ear relationships of these features at the levels of the inter- and intra-individual
variations and their expected recognition-performance. In dealing with speed
variations, we conclude that the normalization using the global mean line is a
reasonable thing to do in a general case where individual mean lines are unavail-
able. We show the levels of measurement noises which can be tolerated in these
gait parameters and the redundancy between them that can be exploited in the
presence of noise.
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