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Summary

We describe an implementation of a model-based head tracking system on a
workstation cluster. The system creates a textured model of the user’s head. This model is
rendered and matched with the image of the head by finding the six rotation and
translation parameters. To find these parameters, the system generates a set of test
parameters, which are clustered around the current head position. The test parameters are
generated adaptively from the previous motion of the head. Each cluster node then
evaluates the matching error and its gradient for some number of test parameters. A
central node then pools this information by fitting a quadratic to the matching error data

and thereby computes a new parameter estimate.



Chapter 1
I ntroduction

Computer vision is an area with high computational demands, which naturally lead to
implementations on parallel systems. In this paper we show the parallelization of a head
tracking system on a workstation cluster. Head tracking is an important processing step
for many vision-driven interactive user interfaces. The obtained position and orientation
allow for pose determination and recognition of simple gestures such as nodding and
head shaking. The stabilized image obtained by perspective de-warping of the facial
image according to the acquired parametersis ideal for facial expression recognition [9]
or face recognition applications.

In contrast to scientific numerical computations, head tracking requires real-time
operation. We use a particular algorithm for head tracking that matches a rendered image
of the head with the camera image. We will show how the real-time requirement and the
particular algorithm used affects the chosen strategy of parallelization, and we will show
anew paralel minimization technique particularly suited to our problem.

1.1 Previous Work

Much research effort has been expended on locating and tracking heads and
recognizing pose and facial expressions from video. Face detection is still considered a
2D problem where facial features, facial color, and the shape of the face are obtained
from the image plane for locating the head [14, 15]. To extract 3D parameters, a model
that encodes head orientation and position must be used. All approaches mentioned here
including our own method require some initialization of amodel to aface.

Black and Yacoob [4] use arectangular planar patch under affine transformation as a
face model. Similar patches are attached to the eyebrows and the mouth. They follow the
movements of the underlying facial patch but detect differential movements of their facial
parts. Affine motion, like any 2D model, is limited because it has no concept of self-

occluson which occurs at the sides of the head and around the nose. Affine



transformations also distort the frontal face image when they are used to model larger
rotations.

Azarbayejani et al. [1] use feature point tracking projected on an ellipsoidal model to
track the head position. Feature point tracking has the drawback that tracking fails when
the feature points are lost due to occlusions or lighting variations. New feature points are
acquired, but only at the cost of excessive error accumulation.

Jebara and Pentland [12] aso use feature point tracking, but with automatically
located head features like eyes and mouth corners. The 3D position of the feature points
is estimated using a structure from motion technique that pools position information over
the image sequence with an extended Kalman filter. The estimate of the feature point
position is filtered using Eigenfaces [14] to restrict the measurements to match an
expected facial geometry.

Basu, Essa and Pentland [2] couple an ellipsoida model with genera optical flow
computation for tracking. First, optical flow is computed independently of face position
and orientation using a gradient-based method. Then the motion of an ellipsoidal mesh
regularizes the flow. The method’s strengths are also its weaknesses. It copes well with
large head rotations since it does not rely on any fixed features. For the same reason, it
has no means to ground the model to the face, thus the mesh slowly drifts off the face due
to error accumulation.

La Cascia, Isidoro and Sclaroff [5] use a textured cylinder as a head model. The
approach is most similar to ours because it also uses a three-dimensional textured model.
The technique differs from ours in that it uses a cylinder instead of a full head model and
it updates its texture during tracking. The lack of fixed features again leads to error
accumulation although confidence maps are used to minimize this problem.

DeCarlo and Metaxas [6] use a polygonal head model that is hand-positioned on the
subject’s face. While our method uses texture, theirs extracts optical flow at some feature
points and regularizes it by the model movements. The measurements are stabilized using
a Kalman filter. Using optical flow leads to a similar error accumulation as in [2].



However, their system additionally uses face edge information to prevent divergence.
Thiswork aso extracts face shape and facial expressions.

Parallel computation methods for visual tracking have been used before [13], but there
isno work on parallel high-level tracking for user interfaces, such as head tracking.

1.2 Our Approach

We use a 3D textured polygon model that is matched with the incoming video stream.
This model is manually aligned with the head in the first camera frame and textured with
the facial image of the user. For every camera frame, the color difference between a
rendered image of the model and the video image, in conjunction with the image
gradient, is then mapped to derivatives of our model parameters. They lead to a local
error minimum that is the best possible match between the rigidly transformed model and
the real video image. The technique can be seen as a more sophisticated regularization of
optical flow, similar in principle to the method presented by Black and Anandan in [3].

Our system allows for extraction of all six degrees of freedom of rigid motion, but is
sower than ssmpler 2D models, which do not account for accurate head shape and hidden
surfaces. We use two methods to improve the speed of our system.

We exploit graphics hardware to perform rendering and hidden surface removal in our
algorithm. While special hardware such as user-programmable DSPs to accelerate vision
applications is still expensive and not present in an ordinary PC, graphics hardware is
ubiquitous. For further speed-up we implemented this system on an 8-node workstation
cluster to achieve real-time performance.



Chapter 2
The Head Tracking Algorithm

For initialization, the user's head in the video stream is manually aligned with a
generic polygonal head model. Our model is a male head from Viewpoint Data Labs,
which we simplified to contain 500 triangles. The model is taken as is and is not
customized to the test user’s head.

The head model is textured with the facial image of the user. Tracking is achieved by
rotating and translating the now textured model so that the rendering of the model
matches the image of the head in the video-stream.

2.1 TheError Function

In this section we derive our algorithm for the case of an arbitrary camera
transformation and arbitrary motion model. For our application, we approximate the
camera transformation with a pinhole model and a rough estimate of the focal length. The
parameter setdj} is six-dimensional, for the six degrees of freedom of rigid motion.
This specialization of the algorithm for our application will be shown in Section 2.2.

Let {p} be the set of visible points on the 3D head model with an associated texture
intensity M(p), and letl(x) be the intensity at point in the camera picture. Let the
transformationT represent any motion and projection model, which maps from some
model pointp to screen coordinates with a parameter egt Ve minimize the sum over
the robust difference between the projected texture points and the corresponding points in

the camera image:
E=Y AI(TE.{a}) - M),
{p}

wherepis the Geman & McClure robust error norm [11] defined as

X2

P ="



Here, ocontrols the distance beyond which a measurement is considered an outlier

[3]. The error function derived with respect to a particular parameter ag; is

di (T :
a0 S22 w(1(T(pAai}) - M(p))M

where (¢ designates the derivative of p. Expanding the second term to evaluate it as a

linear combination of theimage intensity gradients gives
di (T(p.{a})) _ dI(T(p.{ai}))« DdT(p,{ai})x

da'j B dT(pa{ai})X dal
+d| (Tr.{ai}))y dT(P.{ai})y
dT(p.{ai})y da;

The first factors of the terms are just the image intensity gradient at the position

T(p.{ ai}) inthe x and y directions, written as |, and |y:

dl (T(p.{a;})) dT(p,{a;})y
T—lxmp{ P a
T(.{a;})

+1,(Tp{a }))Biy

daJ

We use the Sobel operator to determine the intensity gradient at a point in the image.
Note that in this formulation the 3D model, its parameterization, and the 3D to 2D

transformation used are arbitrary provided the model can be rendered onto the screen.

2.2 Special Case: Rigid Transformation and Per spective Projection

For our more specific case we use the transformation matrix, written in homogeneous

coordinates, going from 3D to 2D:

o o omf 292 °%§
[l 1 0 tyD
01 0 o IRR,R,,
B o it Hn 2L kg
oo 10

with Ry, Ry, and R, being rotation matrices around the X, y, and z axis, for some angles
Iy, I'y, @nd r, respectively. ty, ty, and t, are trandations along the axes. We assume that the



focal length f is known, but found that a rough estimate gives good results. Without 1oss
of generality, we assume that r,=r,=r~t,=t,=t,=0, which corresponds to a camera at the
origin looking down the positive z-axis. Note that in this case the order of rotations does

not affect our calculations.
Omitting the parameters of I, Iy, and |y, we obtain as derivatives of the intensity with

respect to our parameters for a particular model point p = (px, Py, pz)T

d_ 1P+ PD) * PPy

dry p2

d I (pE+p2) +1,pp

2 X\ Mx z y Px Py
dry pg '
d—I:f Iypx_lxpy

dr, P, ’

a __x

dt, p,’

a _ . ly

dt, p,’

d_. IxPy + 1ypy

dt, g

For color video footage we use the Geman & McClure norm on the distance in RGB
space rather than on each color channel separately. ois set such that anything beyond a
color distance of 50 within the 256° color cube is considered an outlier. We sum the

results of each color channd to obtain a minimum error estimate.

2.3 Model Parameterization with Uncorrelated Feature Sets

The parameterization given above is not adequate for implementation because the
rotations and trandations of the camera used in the parameterization look very similar in
the camera view resulting in correlated feature sets. For example, rotating around the y-
axis looks similar to trandating along the x-axis. In both cases the image content slides

horizontally, with dight differences in perspective distortion. In the error function space



this results in long, narrow valleys with a very small gradient along the bottom of the
valley. It destabilizes and slows down any gradient-based minimization technique.

A smilar problem is trandation along and rotation around the z-axis, which causes the
image of the head not only to change size or to rotate, but also to trandate if the head is
not exactly in the screen center.

To overcome these problems we choose different parameters for our implementation
than those given in 2.2. They areillustrated in Figure 1.

We again assume that the camera s at the origin, looking along positive z, and that the
object is at some point (0, 0y, 0;). Note that the directions of the rotation axes depend on
the position of the head. rx and rey have the same axis as rox and roy, respectively, but
rotate around the camera as opposed to around the object. re and rqx are orthogonal to
both the connecting line between the camera and the head, and to the screen’s vertical
axis. Rotation aroundy causes the head image to move vertically on the screen, but it is
not rotating relative to the viewer and it does not change its horizontal position. Rotation
aroundrox causes the head to tilt up and down, but keeps its screen position unchanged.

Iy andrqy are defined similarly for the screen’s horizontal coordinate. Note d/ay
andr/rox are not orthogonal except when the object is on the optical axis. However, the
pixel movement on the screen that is caused by rotation around them is always
orthogonal. It is vertical for the,/ro, pair and horizontal for the,/ro pair.

Rotation around, causes the head’s image to rotate around itself, while translation
alongt., varies the size of the image. Neither changes the head screen position.

The parameterization depends on the current model position and changes while the
algorithm converges. Different axes of rotation and translation are used for each iteration
step.

We now have to find the derivatives of the error function with respect to our new
parameter set. Fortunately, in Euclidean space any complex rotational movement is a
combination of rotation around the origin and translation. We have already calculated the
derivatives for both in section 2.2. The derivatives of our new parameter set are linear
combinations of the derivatives of the naive parameter set.



The parameterization change does not eliminate the long valleys we started with.
Instead, they are now oriented along the principal axes of the error function space. Simple
parameter scaling can convert the narrow valleys to more circular-shaped bowls; these
allow for efficient nonlinear minimization. We visually inspect the shape of the minimum
in 2D subspace plots of the error function and adjust the scaling appropriately. Any
minimization technique that uses error value and gradient information can now be used to
find the error minimum in the space of rigid head motions. Our a priori efforts to find
good parameters and suitable scales exploit the underlying structure of the problem and

are crucia for speeding up convergence.

2.4 Relationship between Uncorrelated Feature Sets and Preconditioning

Using uncorrelated features is equivalent to making the Hessian matrix, the second
derivative of the error function, almost diagonal near the error function minimum.

rcy

Figure 1: Parameterization of the model with nearly uncorrelated feature sets



Choosing an appropriate scale for each of the parameters brings the condition number of
the Hessian matrix close to unity, which is the goal of preconditioning in a genera
nonlinear minimizer. In our case we use a priori knowledge to avoid any analysis of the

error function during run-time.

2.5 Gaussian Pyramid

To allow larger head motions, a 2-level Gaussian pyramid is used. First, the model is
rendered at a lower resolution, and is compared with a lower resolution camera image.
Once the minimization is completed at this level, the minimizing parameter set is used as

a starting point for the minimization process at full resolution.

2.6 Using OpenGL for Rendering

For each evaluation of the error gradient, two OpenGL renderings of the head are
performed. The first rendering is for obtaining the textured image of the head using
trilinear mipmapping to cope with the varying resolution levels of the pyramid. The
second rendering provides flat-filled aliased polygons. Each polygon has a different color
for visible surface determination in hardware. All transformations into camera and screen
coordinates and the calculations of gradients to compute the parameter derivatives are

done only for visible surfaces of the model.



Chapter 3
Parallel Implementation

Using conjugate gradient with adaptive step size as a sequential minimization
algorithm on a single machine we obtain a computation time of .9 frames/s. To get real-
time performance we ported the algorithm to a PC cluster.

3.1 Parallelization by Parameter Testing

We need to exploit the additional computation power to search the six-dimensional
space of rigid head-motions for an error minimum. We paralelize the system by
performing multiple evaluations of the matching error and the gradient in parallel and
pool the information from all evaluations to obtain a better estimate of the error
minimum. This has the advantage of incurring only a single round-trip communication
per evaluation. In addition, all information specific to a single evaluation is local to a
specific node.

We evaluate the error and its gradient at some test points distributed around the
current head position. We then find the test point with lowest error, and estimate the
Hessian at this point by fitting a quadratic to this point and its six nearest neighbors. Let

{(xi, &, 0)|i=1...7}
be the set of seven test points with lowest error where x; is the ith parameter vector,

is the corresponding error and g; is the error gradient, with e < g for i < j. We assume

without loss of generality x; = 0. Then the parameters of the quadratic
X' AX+b'x+c=0

aec=e, b=g and
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;
A=miny Wg ZHxiTAxi +bTxi +c—e,H2
i=2
I7 )
+wy Y |Ax; +b-g
i=2

The quadratic matches the error and the gradient of the lowest test point exactly, and
approximates the gradient and error at the rest of the points in a least square sense. By
plotting some dlices through the error function we validate that a quadratic is a good fit
for the error function close to the minimum. By matching the error and gradient at the
lowest test point we assure that the quadratic will be an accurate fit around the lowest
point, which is the best indication of the minimum location that we have.

If the minimum of the quadratic is within some distance r from the lowest point, the
position of the minimum is the new error function minimum estimate. If the minimum of
the quadratic is farther away, or does not exist at all because the quadratic is concave, the
lowest point of the quadratic with the distance r is taken as the new minimum. This
corresponds to the trust region approach used for general nonlinear minimization. We use
the hook-step approximation for our implementation [7].

3.2  Minimization Schedule and Generating Test Points

To find an initial estimate of the error minimum, when a new camera frame is
processed, an adaptive method is used to generate the test points. It takes the previous
head position as its starting point and uses an adaptive set of test points that are generated
along the linearly extrapolated path of head motion. If the head motion is faster and the
extrapolated path is longer, more points are generated to keep the distance between test
points approximately equal. As described only the test point with lowest error and the 6
points closest to this one are used for the quadratic interpolation. Figure 2 shows the
position of the generated points and some other algorithm features for an equivalent
schemein 2D.

To refine the initial estimate, a different point generation method uses the previous

estimate as a starting point. Instead of adaptively selecting test points this method always
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trust region with fitted quadratic.

& test point with
lowest error
system state at time t-1: X~

X [ %
L’ b
test points
other points defining new estimated
the quadratic error minimum

Figure2: Overview of the parallel minimization algorithm with adaptive test point

generation.

uses seven test points arranged in a six-dimensional triangle or tetrahedron, with the
previous estimate at the center of gravity. The orientation of the tetrahedron is chosen
arbitrarily. Since there are only seven points all test points are used to fit the quadratic.
For every camera frame, four estimates are obtained. Table 1 shows the distance
between test points (step length) and the level of the Gaussian pyramid that is used for

every step.
Step Starting Point Step Length  Pyramid Level  Point Generation
1  Estimate of previous frame 4 units low res adaptive
2  Estimateof 1% step 2units  lowres tetrahedron
3 Estimateof 2" step 2units  highres tetrahedron
4  Estimate of 3 step 1 unit high res tetrahedron

Table1l: Thefour estimation steps done for every camera frame.

12



Chapter 4
System Sructure and | mplementational Details

The data flow of the system is shown in Figure 3. The user and the camera are |located
at the console. The console does not perform any error and gradient computations. Thisis
areadlistic scenario since head tracking is not a stand-alone application, but used as input
for videoconferencing or virtual reality applications, that run on the console and take up
computation time as well.

The camera picture taken at the console is distributed to all cluster nodes. Every node
computes the Gaussian pyramid. This is redundantly done at every cluster node, and is
not parallelized because of the short computation time for this operation. The pyramid is
not computed on the console because the camera frame data is considerably smaller, and
thus faster to distribute than all of the pyramid data.

Next, the console generates test points and sends them to the cluster nodes for
evaluation. Thetest points are evenly distributed over the available computing nodes. The
cluster nodes compute the matching error and the error function derivative and send those

________________________________________________________________

Console ™
Cdculate
Matching Error
Node 1 Compute | and G;adl ent
> Image :
Pyramid | !
Cdculate
> Rer;\c/ljir dl;ead —» Matching Error
Node n and Gradient
Compute | | ?
L Image :
Pyramid | .
bt e
4 x

Figure 3: The system structure and the flow of data.
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results back to the console, where the quadratic isfitted into the measured data points and
anew minimum estimate is cal cul ated.

This process is repeated four times, with parameters as shown in Table 1, for every
cameraframe. Then anew cameraframeisread.

We implemented the system on a 8-node cluster of Pentium Pro 200 Mhz PCs with 4
processors each. The operating system is Windows NT. One node is used as the console,
and one to seven other nodes are used for computation. For message passing we use the
DataExchange system [8] that is implemented on top of the WinSock API, and for
multithreading the NT-native Win32 threads.

We use an image resolution of 80x60 pixels, with a second Gaussian pyramid level of
40x30 pixels. We use both live video feeds and prerecorded sequences. All our footage is
in color.

Our model is amale head from Viewpoint Data Labs, which we smplified to contain
500 triangles. The model is taken as is and is not customized to the test user’s head.

Our implementation uses Microsoft OpenGL under Windows NT for rendering. This
implementation only uses a single processor even on multiprocessor machines. It also

does not allow multiple threads to issue commands to the same OpenGL window.
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Chapter 5
Results

The system works best on seven processors. The tetrahedron scheme generates seven

test points and is always used for estimation iterations two to four. The adaptive scheme

generates a multiple of seven points, but is only used for the first estimate of every

camera frame. With our test sequence, the adaptive scheme generated 7 points for 40 %

of theframes, 14 for there<t.

We first used only a single processor in every machine. Figure 4 shows the

, the work is evenly distributed. With six nodes,

distribution of workload. For seven nodes,

w/6 Nodes

w/7 Nodes

4 5
Computing Node #

3

Figure4: The average amount of computation time per cluster node per frame. With

seven nodes, the work is evenly distributed. With six nodes, every node but the

first mostly evaluates one point. The first node evaluates two points. With five

nodes, the first two mostly evaluate two points. The resulting unevenness in the

workload can be seen in the chart.

15



for the frequently used tetrahedron scheme the first node aways gets two test points to
evaluate, all others get one, and for the tetrahedron scheme, the first two nodes get three
points and the others two. Thisis clearly visible in the graph. A similar pattern exists for
all node counts, but it isless noticeable for node counts smaller than 5. As a consequence,
the frame rates with five and six nodes are almost equal, and with seven nodes the frame
rate increases sharply.

Figure 5 decomposes the sum of processor time of al the nodes into the time spent on
Gaussian pyramid generation, OpenGL rendering, and the calculation of the matching
error and gradient. Note that the total time is about equal for different numbers of nodes,
for more numbers of nodes it is just more distributed among the nodes. This chart also
does not include network overhead and processor time on the console. The time spent on
Gaussian pyramid generation grows with the number of nodes, because this operation is
done on every node. About 75 % of the total timeis spent on OpenGL operations. As part
of our effort to make efficient use of the machine resources, we looked for ways to speed

081
074 e IRRPPPES
0.6 ---

05 | [ Pyramid Generation

% | = OpenGL

8047 Match Computation] =

» 0.3 1 S B R
0.2
01
0.0 -

1 2 3 4 5 6 7
# of Computing Nodes

Figure5: The decomposition of the total time spent on one frame into pyramid

generation, OpenGL, and match computation.
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up this most expensive part of our agorithm. The Microsoft software implementation of
OpenGL under NT does not make any use of multiprocessing and the use of different
threads to render different tiles of the image seemed unattractive because of the geometry
overhead. A natural way to speed up OpenGL isto make use of hardware acceleration.

5.1 Hardware OpenGL

Instead of using OpenGL for displaying purposes, rendering is used in our system as
part of the computation. After rendering, the image is copied out of the frame buffer into
main memory for further processing using a glReadPixels call. For software OpenGL,
the frame buffer is located in main memory, while hardware solutions only render into
their on-board memory, which our program then reads from.

We use a Diamond FireGL 1000pro PCI with the 3Dlabs Permedia 2 accelerator chip
in one of our cluster nodes. We aso tried the AGP version of the same card in a 400 Mhz
Pentium 11 Xeon, an ATl Rage Pro AGP card in the same machine, and finally an SGI
320 workstation with a 450 MHz Pentium 11, representing the state of the art in hardware

0.6 g~
1 glReadPixds
0.5 4------me s
Rendering
04 4 -
[}
&
L0341 (- |~
@

0

OO = T T T
PPro  PPro P2400 P2400 P2400 SGI 320 SGI 320
200SwW 200 SW FreGL Rage SW HW
FireGL AGP Pro
PCI AGP

Figure6: Rendering and frame-buffer read speed for various system configurations.

17



rendering. All machines are used as a single computation node. For comparison purposes,
we also tested software rendering performance on all machines. Figure 6 shows the time
spent on OpenGL per cameraframe.

Hardware rendering is faster than software rendering, except for the ATl Rage Pro
card. Unfortunately, reading the frame buffer for hardware rendering is always sower
than for software rendering and uses up some of the rendering speed increase. The fact
that the data has to go over the I/O bus, whether it is PCI or AGP, seems not to be the
decisive factor. The SGI 320 workstation, which has a UMA architecture, is about as fast
as the FireGL AGP card. Some measurements with the GLPerf benchmark yielded
around 6 Mpixels's for the FireGL AGP card, much less than the AGP bus bandwidth
allows.

We found an indication that there are inefficiencies in the OpenGL drivers
contributing to the problem. We performed al the hardware speed measurements using
the GL_RGB pixel format. If the Microsoft-proprietary GL_BGR_EXT format is used,
which only differs by a swapped byte order, glReadPixels performance drops by a factor
of 14 for the FireGL, and by a factor of 30 for the SGI 320, making hardware rendering
unusable. The Rage Pro card does not show this anomaly, but glReadPixels isin general
very slow with this card.

Degspite the performance flaws, the results show that using hardware OpenGL is worth
doing. The appearance of benchmarks that give more detailed information, like GLPerf,
will hopefully make driver deficiencies more apparent, and encourage video card
manufacturersto deliver consistently performing drivers.

5.2 Intra-Node Parallelism

The second largest part of the computing time is the computation of the matching error
and the gradient. We make use of the four processors per machine to speed up this
computation. We tried two models of paralelism. The first just distributes the match
computation to all n processors by processing the i scanline of the image by the

18
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Frames/ s

1 2 3 4 5 6 7
# of Computing Nodes

Figure 7: Frame rate depending on the number of participating cluster nodes and the
model of intra-node parallelism.

OpenGL
OpenGL

Compute

Compute

OpenGL

—
Q
= o
Compute 5

Compute

4 Processors/ Node,
OpenGL overlapped

Compute| OpenGL |Compute| OpenGL

4 Processors/ Node

1 Processor / Node

Figure 8: The various models of intra-node parallelism.
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(i mod n)™ processor. With this scheme the computation time for matching is reduced to a

third on a four-processor machine. We then overlapped this computation with the
OpenGL rendering process to utilize some of the other processor’s time while the single-
thread OpenGL rendering is running. Figure 8 compares the modes of intra-node
parallelism that we used and Figure 7 shows the performance of our system.

The performance gain from switching from one to four processors is as expected. The
benefits of overlapping OpenGL with computation are especially small for seven nodes
because in this case every node mostly calculates a single matching error and gradient.
Overlapping OpenGL is only rewarded when the adaptive scheme generates 14 test
points and every node evaluates two points.

5.3 Network Performance

The system uses the network to distribute frame data and to exchange requests and
answers of data point evaluations. For each of the four estimation iterations a batch of
requests is sent out to every node. For the first evaluation cycle the request batch includes
the new frame data. The cluster nodes send their results back, and once all results have
arrived a new estimate is generated and new batches of requests are sent out.

We tested the influence of network performance on our system. The evaluation request
messages and results are on the order of a hundred bytes. The only sizable messages are
those that distribute the frame among all cluster nodes. A typical frame has 80x60 pixels
resolution with 24 bit color depth, which results in 14.4 KB frame size. We test the
impact of network traffic by using frame sizes of 28.8 KB (2x original), 43.2 KB (3x),

144 KB (10x) and 576 KB (40x). To avoid side effects these frame sizes are tested by
padding the network packets, not by actually using a higher resolution. Besides the frame
rate (Figure 9), we also measured how much the network delays the computation (Figure
10). This measurement is calculated as the time the console spends waiting for the
network minus the longest time any computing node spends on its computation. The
console’s waiting time can sometimes be shorter than the computation time of the longest
computing node. This is because instead of idling the console did some useful work
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processing results arriving early. This explains the low network delays for five and six
nodes (see Figure 4 and the discussion in chapter 5).

There are two other effects affecting network delay. If less computing nodes do al the
computation and have to send all the answers back to the console, then more time per
node is spent on network operations, which leads to higher network delay. On the other
hand, distributing the frame data takes longer for more nodes, which also leads to higher
network delay. Therefore, disregarding the anomaliesfor five and six frames, the network
delay graph is U-shaped, with a minimum at three nodes, or at two nodes for 3x frame
Size.

Figure 11 shows the network throughput. In general, the bandwidth requirement
increases quadratically with the number of nodes because the frame is sent to every node
individualy for every frame, and the frame rate increases linearly as well. With frame

Frames /s
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# of Computing Nodes

Figure9: Frame rate as a function of the number of cluster nodes and the size of the
camera frame (1x = real frame size, 14.4 KB). For small frame sizes, the
speed-up is almost linear. For larger frame sizes, the performance becomes
bandwidth-limited.
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sizes of 10x and larger, though, the 100 Mbit/s bandwidth limitation of the network
becomes apparent. For 40x the origina frame size, bandwidth limitations lead to a
decrease in frame rate when more than 4 nodes are used.

Our underlying message library, DataExchange, does not support multicast or
broadcast. Such capabilities could be used to decrease traffic, but the speed-up would be

minor for the regular frame size.
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Figure 10: Delay per frame due to network transport as a function of the number of
cluster nodes and the size of the camera frame (1x = real frame size, 14.4
KB). On one hand, for a small number of nodes a single node has to send
many answers, which increases delay. On the other hand, for more nodes
distributing the frame data takes longer. Therefore, the network delay graph
isin general U-shaped
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Figure 11: Network throughput as a function of the number of cluster nodes and the size
of the camera frame (1x = real frame size, 14.4 KB). The network throughput
increases quadratically because the frame rate and the traffic per frame both

increase linearly. For large frame sizes the network limits the throughpui.
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Chapter 6
Discussion

6.1 Reasons For Introducing a New Parallel Convex Minimization Scheme

The naive way to parallelize convex nonlinear optimization is to stick to a sequential
algorithm, but to parallelize the computation of the gradient. The number of iteration
steps required for convergence remains unchanged. The sequential version of our
algorithm uses conjugate gradient minimization with adaptive step size and requires on
average 42 error and gradient evaluations at the lower resolution and 35 evaluations at the
higher resolution of the Gaussian pyramid to converge. For every camera frame the
image has to be distributed across the cluster. Also, for every iteration step round-trip
message costs are incurred to send out messages to al the cluster nodes and to get the
results back. Using the NetPerf benchmark, we calculated that for a single computation
node the network overhead would be at least 33 ms per camera frame, compared to 6 ms
in practice for our current implementation. Another issue is that OpenGL rendering had
to be parallelized by rendering a tile of the whole frame per node. This does not scale
well, because clipping and geometry transformations have to be done for every cluster
frame. The only exploitable parallelism is the scan conversion. All in all, distributed error
and gradient evaluation is not an attractive option.

In order to obtain more coarse-grain parallelism, common parallel implementations of
convex nonlinear minimization techniques rely on partitioning the problem space into
subspaces of smaller dimensionality. These subspaces are minimized individualy on
each node with periodic synchronization between processors. Several variants of this
technique exist; they belong to the class of Parallel Variable Transformation (PVT)
algorithms [10]. These rely on the assumption that the computational 1oad is proportional
to the number of partial derivatives computed. In our case, we have to render the head
model entirely, which takes a large constant amount of time, no matter the dimensions of
the subspace in which the derivative is computed. Also, the number of processors has to
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be considerably smaller than the number of dimensions. Otherwise, each processor
receives only a trivially small subspace. This would result in each processor spending
much less time on minimization of the subspace than on sequential synchronization
between processors. Unfortunately, in our case the number of dimensions is small since
rigid motion has only six degrees of freedom, which is in the order of the number of

nodes.

6.2 Future Work

Our approach uses efficiently up to 7 cluster nodes, because a quadratic is defined in
6D by a minimum of 7 points. For large head motions, more cluster nodes are adaptively
used if available.

All minimization methods require some model of the error space, and they become
more efficient if a better-suited model is used. Steepest descent is outperformed by
quadratic methods, which again are surpassed by tensor methods. Likewise, to exploit
more paralelism for small-dimensiona problems an even better model of the error space
will be necessary to make use of a greater number of parallel gradient evaluations. Future
work may explore self-adjusting models like neural networks. These may be a good
choice for areal-time system similar to the one discussed in this paper that has to do a
large number of minimizations in a smilar error space. It can learn how to generate a
good set of test points and to calculate a new estimate of the minimum from the results of
the tests.

Likewise, the performance for less than seven nodes is not satisfactory. The system
should generate a set of test points that is as large as the number of available nodes, pool
the information, and then generate the next suitable test set. This would generate equal
load on all the nodes, and should have the potential to converge faster, because new
information is incorporated into the solution earlier and can influence the location of

subsequent test points.
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Chapter 7
Concluson

We believe that real-time speed is a major requirement for successful and usable
vison systems. Unfortunately, for a long time to come, real-time implementations of
some vision systems will be impossible on a single desktop machine. Parallel algorithms
for real-time vision will remain an active area of research.

We presented model-based head tracking as an example of a low-dimensional real-
time minimization problem, and its parallel solution using a test point based minimization
scheme. We looked at some of the factors that influenced our design decisions and
affected the performance of our system. With 9 frames/s on the available hardware, we
achieved our goal of real-time head tracking. Using current OpenGL hardware like the
SGI 320 graphics pipeline, or a consumer-level accelerator like the Riva TNT, we expect
to be able to process up to 30 frames/s. The presented tracking technique is not specific to
heads. By using a different 3D model, it is generally applicable for parallel model-based
rigid as well as non-rigid tracking.

By using OpenGL for rendering we can leverage off the current growth of hardware
rendering acceleration. Currently, graphics performance is growing much faster than
processor speed, so the gap between hardware and software rendering will widen even

more in the future.
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