

Adaptive Parallelization of Model-Based Head Tracking

A Thesis
Presented to
The Academic Faculty
by

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Computer Science

Georgia Institute of Technology
May 1999

Adaptive Parallelization

of Model-Based Head Tracking

Approved:

Irfan A. Essa, Chairman

Christopher G. Atkeson

Karsten Schwan

Date approved _____

Table of Contents

List of Tables and Illustrations.....	iv
Summary	v
1 Introduction	1
1.1 Previous Work	1
1.2 Our Approach	3
2 The Head Tracking Algorithm	4
2.1 The Error Function.....	4
2.2 Special Case: Rigid Transformation and Perspective Projection	5
2.3 Model Parameterization with Uncorrelated Feature Sets.....	6
2.4 Relationship between Uncorrelated Feature Sets and Preconditioning	8
2.5 Gaussian Pyramid	9
2.6 Using OpenGL for Rendering	9
3 Parallel Implementation	10
3.1 Parallelization by Parameter Testing	10
3.2 Minimization Schedule and Generating Test Points	11
4 System Structure and Implementational Details	13
5 Results.....	15
5.1 Hardware OpenGL.....	17
5.2 Intra-Node Parallelism	18
5.3 Network Performance	20
6 Discussion	24
6.1 Reasons For Introducing a New Parallel Convex Minimization Scheme	24
6.2 Future Work.....	25
7 Conclusion.....	26
References	27

List of Tables and Illustrations

<i>Figure 1: Parameterization of the model with nearly uncorrelated feature sets</i>	7
<i>Figure 2: Overview of the parallel minimization algorithm with adaptive test point generation.</i>	12
<i>Table 1: The four estimation steps done for every camera frame.</i>	13
<i>Figure 3: The system structure and the flow of data.</i>	13
<i>Figure 4: The average amount of computation time per cluster node per frame.</i>	15
<i>Figure 5: The decomposition of the total time spent on one frame into pyramid generation, OpenGL, and match computation.</i>	16
<i>Figure 6: Rendering and frame-buffer read speed for various system configurations.</i>	17
<i>Figure 7: Frame rate depending on the number of participating cluster nodes and the model of intra-node parallelism.</i>	19
<i>Figure 8: The various models of intra-node parallelism.</i>	19
<i>Figure 9: Frame rate as a function of the number of cluster nodes and the size of the camera frame (1x = real frame size, 14.4 KB).</i>	21
<i>Figure 10: Delay per frame due to network transport as a function of the number of cluster nodes and the size of the camera frame.</i>	22
<i>Figure 11: Network throughput as a function of the number of cluster nodes and the size of the camera frame</i>	23

Summary

We describe an implementation of a model-based head tracking system on a workstation cluster. The system creates a textured model of the user's head. This model is rendered and matched with the image of the head by finding the six rotation and translation parameters. To find these parameters, the system generates a set of test parameters, which are clustered around the current head position. The test parameters are generated adaptively from the previous motion of the head. Each cluster node then evaluates the matching error and its gradient for some number of test parameters. A central node then pools this information by fitting a quadratic to the matching error data and thereby computes a new parameter estimate.

Chapter 1

Introduction

Computer vision is an area with high computational demands, which naturally lead to implementations on parallel systems. In this paper we show the parallelization of a head tracking system on a workstation cluster. Head tracking is an important processing step for many vision-driven interactive user interfaces. The obtained position and orientation allow for pose determination and recognition of simple gestures such as nodding and head shaking. The stabilized image obtained by perspective de-warping of the facial image according to the acquired parameters is ideal for facial expression recognition [9] or face recognition applications.

In contrast to scientific numerical computations, head tracking requires real-time operation. We use a particular algorithm for head tracking that matches a rendered image of the head with the camera image. We will show how the real-time requirement and the particular algorithm used affects the chosen strategy of parallelization, and we will show a new parallel minimization technique particularly suited to our problem.

1.1 Previous Work

Much research effort has been expended on locating and tracking heads and recognizing pose and facial expressions from video. Face detection is still considered a 2D problem where facial features, facial color, and the shape of the face are obtained from the image plane for locating the head [14, 15]. To extract 3D parameters, a model that encodes head orientation and position must be used. All approaches mentioned here including our own method require some initialization of a model to a face.

Black and Yacoob [4] use a rectangular planar patch under affine transformation as a face model. Similar patches are attached to the eyebrows and the mouth. They follow the movements of the underlying facial patch but detect differential movements of their facial parts. Affine motion, like any 2D model, is limited because it has no concept of self-occlusion which occurs at the sides of the head and around the nose. Affine

transformations also distort the frontal face image when they are used to model larger rotations.

Azarbayejani et al. [1] use feature point tracking projected on an ellipsoidal model to track the head position. Feature point tracking has the drawback that tracking fails when the feature points are lost due to occlusions or lighting variations. New feature points are acquired, but only at the cost of excessive error accumulation.

Jebara and Pentland [12] also use feature point tracking, but with automatically located head features like eyes and mouth corners. The 3D position of the feature points is estimated using a structure from motion technique that pools position information over the image sequence with an extended Kalman filter. The estimate of the feature point position is filtered using Eigenfaces [14] to restrict the measurements to match an expected facial geometry.

Basu, Essa and Pentland [2] couple an ellipsoidal model with general optical flow computation for tracking. First, optical flow is computed independently of face position and orientation using a gradient-based method. Then the motion of an ellipsoidal mesh regularizes the flow. The method's strengths are also its weaknesses. It copes well with large head rotations since it does not rely on any fixed features. For the same reason, it has no means to ground the model to the face, thus the mesh slowly drifts off the face due to error accumulation.

La Cascia, Isidoro and Sclaroff [5] use a textured cylinder as a head model. The approach is most similar to ours because it also uses a three-dimensional textured model. The technique differs from ours in that it uses a cylinder instead of a full head model and it updates its texture during tracking. The lack of fixed features again leads to error accumulation although confidence maps are used to minimize this problem.

DeCarlo and Metaxas [6] use a polygonal head model that is hand-positioned on the subject's face. While our method uses texture, theirs extracts optical flow at some feature points and regularizes it by the model movements. The measurements are stabilized using a Kalman filter. Using optical flow leads to a similar error accumulation as in [2].

However, their system additionally uses face edge information to prevent divergence. This work also extracts face shape and facial expressions.

Parallel computation methods for visual tracking have been used before [13], but there is no work on parallel high-level tracking for user interfaces, such as head tracking.

1.2 Our Approach

We use a 3D textured polygon model that is matched with the incoming video stream. This model is manually aligned with the head in the first camera frame and textured with the facial image of the user. For every camera frame, the color difference between a rendered image of the model and the video image, in conjunction with the image gradient, is then mapped to derivatives of our model parameters. They lead to a local error minimum that is the best possible match between the rigidly transformed model and the real video image. The technique can be seen as a more sophisticated regularization of optical flow, similar in principle to the method presented by Black and Anandan in [3].

Our system allows for extraction of all six degrees of freedom of rigid motion, but is slower than simpler 2D models, which do not account for accurate head shape and hidden surfaces. We use two methods to improve the speed of our system.

We exploit graphics hardware to perform rendering and hidden surface removal in our algorithm. While special hardware such as user-programmable DSPs to accelerate vision applications is still expensive and not present in an ordinary PC, graphics hardware is ubiquitous. For further speed-up we implemented this system on an 8-node workstation cluster to achieve real-time performance.

Chapter 2

The Head Tracking Algorithm

For initialization, the user's head in the video stream is manually aligned with a generic polygonal head model. Our model is a male head from Viewpoint Data Labs, which we simplified to contain 500 triangles. The model is taken as is and is not customized to the test user's head.

The head model is textured with the facial image of the user. Tracking is achieved by rotating and translating the now textured model so that the rendering of the model matches the image of the head in the video-stream.

2.1 The Error Function

In this section we derive our algorithm for the case of an arbitrary camera transformation and arbitrary motion model. For our application, we approximate the camera transformation with a pinhole model and a rough estimate of the focal length. The parameter set $\{\alpha_i\}$ is six-dimensional, for the six degrees of freedom of rigid motion. This specialization of the algorithm for our application will be shown in Section 2.2.

Let $\{\mathbf{p}\}$ be the set of visible points on the 3D head model with an associated texture intensity $M(\mathbf{p})$, and let $I(\mathbf{x})$ be the intensity at point \mathbf{x} in the camera picture. Let the transformation T represent any motion and projection model, which maps from some model point \mathbf{p} to screen coordinates with a parameter set $\{\alpha_i\}$. We minimize the sum over the robust difference between the projected texture points and the corresponding points in the camera image:

$$E = \sum_{\{\mathbf{p}\}} \rho(I(T(\mathbf{p}, \{\alpha_i\})) - M(\mathbf{p})),$$

where ρ is the Geman & McClure robust error norm [11] defined as

$$\rho(x) = \frac{x^2}{\sigma + x^2}.$$

Here, σ controls the distance beyond which a measurement is considered an outlier [3]. The error function derived with respect to a particular parameter α_i is

$$\frac{dE}{d\alpha_j} = \sum_{\{\mathbf{p}\}} \psi(I(T(\mathbf{p}, \{\alpha_i\})) - M(\mathbf{p})) \frac{dI(T(\mathbf{p}, \{\alpha_i\}))}{d\alpha_j},$$

where ψ designates the derivative of ρ . Expanding the second term to evaluate it as a linear combination of the image intensity gradients gives

$$\begin{aligned} \frac{dI(T(\mathbf{p}, \{\alpha_i\}))}{d\alpha_j} &= \frac{dI(T(\mathbf{p}, \{\alpha_i\}))_x}{dT(\mathbf{p}, \{\alpha_i\})_x} \cdot \frac{dT(\mathbf{p}, \{\alpha_i\})_x}{d\alpha_j} \\ &\quad + \frac{dI(T(\mathbf{p}, \{\alpha_i\}))_y}{dT(\mathbf{p}, \{\alpha_i\})_y} \cdot \frac{dT(\mathbf{p}, \{\alpha_i\})_y}{d\alpha_j}. \end{aligned}$$

The first factors of the terms are just the image intensity gradient at the position $T(\mathbf{p}, \{\alpha_i\})$ in the x and y directions, written as I_x and I_y :

$$\begin{aligned} \frac{dI(T(\mathbf{p}, \{\alpha_i\}))}{d\alpha_j} &= I_x(T(\mathbf{p}, \{\alpha_i\})) \cdot \frac{dT(\mathbf{p}, \{\alpha_i\})_x}{d\alpha_j} \\ &\quad + I_y(T(\mathbf{p}, \{\alpha_i\})) \cdot \frac{dT(\mathbf{p}, \{\alpha_i\})_y}{d\alpha_j}. \end{aligned}$$

We use the Sobel operator to determine the intensity gradient at a point in the image. Note that in this formulation the 3D model, its parameterization, and the 3D to 2D transformation used are arbitrary provided the model can be rendered onto the screen.

2.2 Special Case: Rigid Transformation and Perspective Projection

For our more specific case we use the transformation matrix, written in homogeneous coordinates, going from 3D to 2D:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & f^{-1} & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot R_z R_y R_x,$$

with R_x , R_y , and R_z being rotation matrices around the x , y , and z axis, for some angles r_x , r_y , and r_z respectively. t_x , t_y , and t_z are translations along the axes. We assume that the

focal length f is known, but found that a rough estimate gives good results. Without loss of generality, we assume that $r_x=r_y=r_z=t_x=t_y=t_z=0$, which corresponds to a camera at the origin looking down the positive z-axis. Note that in this case the order of rotations does not affect our calculations.

Omitting the parameters of I , I_x , and I_y , we obtain as derivatives of the intensity with respect to our parameters for a particular model point $\mathbf{p} = (p_x, p_y, p_z)^\top$

$$\frac{dI}{dr_x} = -f \frac{I_y(p_y^2 + p_z^2) + I_x p_x p_y}{p_z^2},$$

$$\frac{dI}{dr_y} = f \frac{I_x(p_x^2 + p_z^2) + I_y p_x p_y}{p_z^2},$$

$$\frac{dI}{dr_z} = f \frac{I_y p_x - I_x p_y}{p_z},$$

$$\frac{dI}{dt_x} = -f \frac{I_x}{p_z},$$

$$\frac{dI}{dt_y} = -f \frac{I_y}{p_z},$$

$$\frac{dI}{dt_z} = f \frac{I_x p_x + I_y p_y}{p_z^2}.$$

For color video footage we use the Geman & McClure norm on the distance in RGB space rather than on each color channel separately. σ is set such that anything beyond a color distance of 50 within the 256^3 color cube is considered an outlier. We sum the results of each color channel to obtain a minimum error estimate.

2.3 Model Parameterization with Uncorrelated Feature Sets

The parameterization given above is not adequate for implementation because the rotations and translations of the camera used in the parameterization look very similar in the camera view resulting in correlated feature sets. For example, rotating around the y -axis looks similar to translating along the x -axis. In both cases the image content slides horizontally, with slight differences in perspective distortion. In the error function space

this results in long, narrow valleys with a very small gradient along the bottom of the valley. It destabilizes and slows down any gradient-based minimization technique.

A similar problem is translation along and rotation around the z -axis, which causes the image of the head not only to change size or to rotate, but also to translate if the head is not exactly in the screen center.

To overcome these problems we choose different parameters for our implementation than those given in 2.2. They are illustrated in Figure 1.

We again assume that the camera is at the origin, looking along positive z , and that the object is at some point (o_x, o_y, o_z) . Note that the directions of the rotation axes depend on the position of the head. r_{cx} and r_{cy} have the same axis as r_{ox} and r_{oy} , respectively, but rotate around the camera as opposed to around the object. r_{cx} and r_{ox} are orthogonal to both the connecting line between the camera and the head, and to the screen's vertical axis. Rotation around r_{cx} causes the head image to move vertically on the screen, but it is not rotating relative to the viewer and it does not change its horizontal position. Rotation around r_{ox} causes the head to tilt up and down, but keeps its screen position unchanged.

r_{cy} and r_{oy} are defined similarly for the screen's horizontal coordinate. Note that r_{cy}/r_{oy} and r_{cx}/r_{ox} are not orthogonal except when the object is on the optical axis. However, the pixel movement on the screen that is caused by rotation around them is always orthogonal. It is vertical for the r_{cy}/r_{oy} pair and horizontal for the r_{cx}/r_{ox} pair.

Rotation around r_{co} causes the head's image to rotate around itself, while translation along t_{co} varies the size of the image. Neither changes the head screen position.

The parameterization depends on the current model position and changes while the algorithm converges. Different axes of rotation and translation are used for each iteration step.

We now have to find the derivatives of the error function with respect to our new parameter set. Fortunately, in Euclidean space any complex rotational movement is a combination of rotation around the origin and translation. We have already calculated the derivatives for both in section 2.2. The derivatives of our new parameter set are linear combinations of the derivatives of the naïve parameter set.

The parameterization change does not eliminate the long valleys we started with. Instead, they are now oriented along the principal axes of the error function space. Simple parameter scaling can convert the narrow valleys to more circular-shaped bowls; these allow for efficient nonlinear minimization. We visually inspect the shape of the minimum in 2D subspace plots of the error function and adjust the scaling appropriately. Any minimization technique that uses error value and gradient information can now be used to find the error minimum in the space of rigid head motions. Our a priori efforts to find good parameters and suitable scales exploit the underlying structure of the problem and are crucial for speeding up convergence.

2.4 Relationship between Uncorrelated Feature Sets and Preconditioning

Using uncorrelated features is equivalent to making the Hessian matrix, the second derivative of the error function, almost diagonal near the error function minimum.

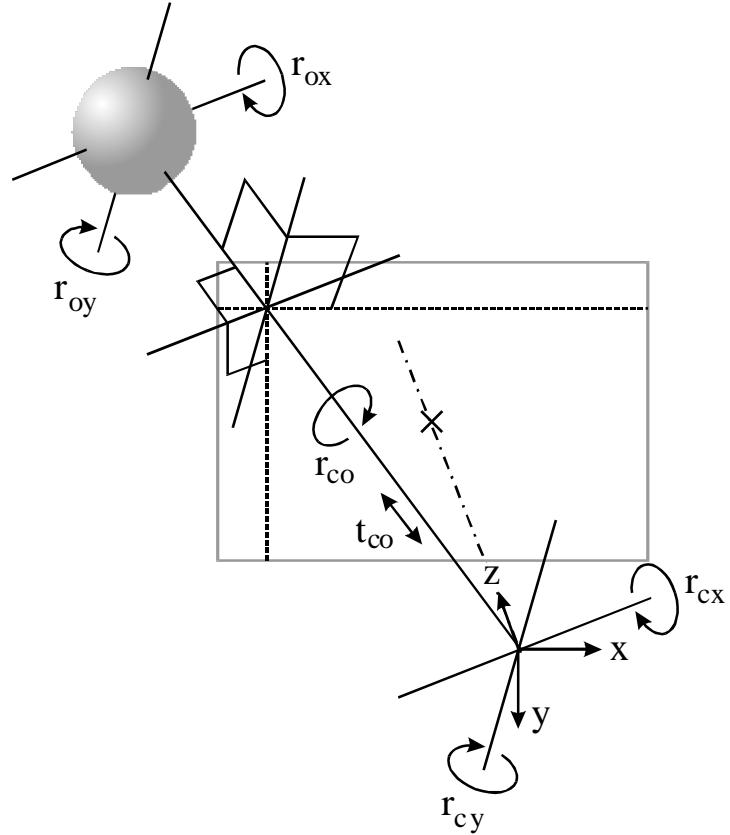


Figure 1: Parameterization of the model with nearly uncorrelated feature sets

Choosing an appropriate scale for each of the parameters brings the condition number of the Hessian matrix close to unity, which is the goal of preconditioning in a general nonlinear minimizer. In our case we use a priori knowledge to avoid any analysis of the error function during run-time.

2.5 Gaussian Pyramid

To allow larger head motions, a 2-level Gaussian pyramid is used. First, the model is rendered at a lower resolution, and is compared with a lower resolution camera image. Once the minimization is completed at this level, the minimizing parameter set is used as a starting point for the minimization process at full resolution.

2.6 Using OpenGL for Rendering

For each evaluation of the error gradient, two OpenGL renderings of the head are performed. The first rendering is for obtaining the textured image of the head using trilinear mipmapping to cope with the varying resolution levels of the pyramid. The second rendering provides flat-filled aliased polygons. Each polygon has a different color for visible surface determination in hardware. All transformations into camera and screen coordinates and the calculations of gradients to compute the parameter derivatives are done only for visible surfaces of the model.

Chapter 3

Parallel Implementation

Using conjugate gradient with adaptive step size as a sequential minimization algorithm on a single machine we obtain a computation time of .9 frames/s. To get real-time performance we ported the algorithm to a PC cluster.

3.1 Parallelization by Parameter Testing

We need to exploit the additional computation power to search the six-dimensional space of rigid head-motions for an error minimum. We parallelize the system by performing multiple evaluations of the matching error and the gradient in parallel and pool the information from all evaluations to obtain a better estimate of the error minimum. This has the advantage of incurring only a single round-trip communication per evaluation. In addition, all information specific to a single evaluation is local to a specific node.

We evaluate the error and its gradient at some test points distributed around the current head position. We then find the test point with lowest error, and estimate the Hessian at this point by fitting a quadratic to this point and its six nearest neighbors. Let

$$\{(\mathbf{x}_i, e_i, \mathbf{g}_i) \mid i=1\dots7\}$$

be the set of seven test points with lowest error where \mathbf{x}_i is the i th parameter vector, e_i is the corresponding error and \mathbf{g}_i is the error gradient, with $e_i \leq e_j$ for $i \leq j$. We assume without loss of generality $\mathbf{x}_1 = \mathbf{0}$. Then the parameters of the quadratic

$$\mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = 0$$

are $c = e_1$, $\mathbf{b} = \mathbf{g}_1$ and

$$\begin{aligned}
A = \min_A w_E \sum_{i=2}^7 & \left\| \mathbf{x}_i^T A \mathbf{x}_i + \mathbf{b}^T \mathbf{x}_i + c - e_i \right\|^2 \\
& + w_g \sum_{i=2}^7 \left\| A \mathbf{x}_i + \mathbf{b} - \mathbf{g}_i \right\|^2
\end{aligned}$$

The quadratic matches the error and the gradient of the lowest test point exactly, and approximates the gradient and error at the rest of the points in a least square sense. By plotting some slices through the error function we validate that a quadratic is a good fit for the error function close to the minimum. By matching the error and gradient at the lowest test point we assure that the quadratic will be an accurate fit around the lowest point, which is the best indication of the minimum location that we have.

If the minimum of the quadratic is within some distance r from the lowest point, the position of the minimum is the new error function minimum estimate. If the minimum of the quadratic is farther away, or does not exist at all because the quadratic is concave, the lowest point of the quadratic with the distance r is taken as the new minimum. This corresponds to the trust region approach used for general nonlinear minimization. We use the hook-step approximation for our implementation [7].

3.2 Minimization Schedule and Generating Test Points

To find an initial estimate of the error minimum, when a new camera frame is processed, an adaptive method is used to generate the test points. It takes the previous head position as its starting point and uses an adaptive set of test points that are generated along the linearly extrapolated path of head motion. If the head motion is faster and the extrapolated path is longer, more points are generated to keep the distance between test points approximately equal. As described only the test point with lowest error and the 6 points closest to this one are used for the quadratic interpolation. Figure 2 shows the position of the generated points and some other algorithm features for an equivalent scheme in 2D.

To refine the initial estimate, a different point generation method uses the previous estimate as a starting point. Instead of adaptively selecting test points this method always

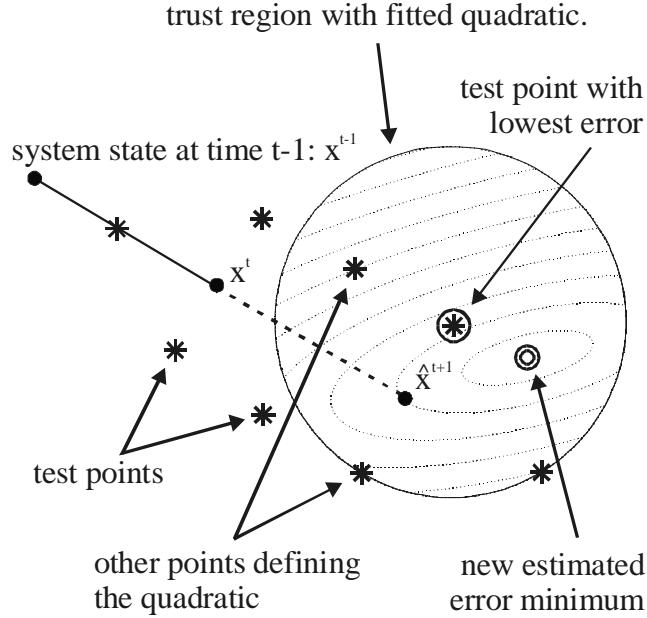


Figure 2: Overview of the parallel minimization algorithm with adaptive test point generation.

uses seven test points arranged in a six-dimensional triangle or tetrahedron, with the previous estimate at the center of gravity. The orientation of the tetrahedron is chosen arbitrarily. Since there are only seven points all test points are used to fit the quadratic.

For every camera frame, four estimates are obtained. Table 1 shows the distance between test points (step length) and the level of the Gaussian pyramid that is used for every step.

Step	Starting Point	Step Length	Pyramid Level	Point Generation
1	Estimate of previous frame	4 units	low res	adaptive
2	Estimate of 1 st step	2 units	low res	tetrahedron
3	Estimate of 2 nd step	2 units	high res	tetrahedron
4	Estimate of 3 rd step	1 unit	high res	tetrahedron

Table 1: The four estimation steps done for every camera frame.

Chapter 4

System Structure and Implementational Details

The data flow of the system is shown in Figure 3. The user and the camera are located at the console. The console does not perform any error and gradient computations. This is a realistic scenario since head tracking is not a stand-alone application, but used as input for videoconferencing or virtual reality applications, that run on the console and take up computation time as well.

The camera picture taken at the console is distributed to all cluster nodes. Every node computes the Gaussian pyramid. This is redundantly done at every cluster node, and is not parallelized because of the short computation time for this operation. The pyramid is not computed on the console because the camera frame data is considerably smaller, and thus faster to distribute than all of the pyramid data.

Next, the console generates test points and sends them to the cluster nodes for evaluation. The test points are evenly distributed over the available computing nodes. The cluster nodes compute the matching error and the error function derivative and send those

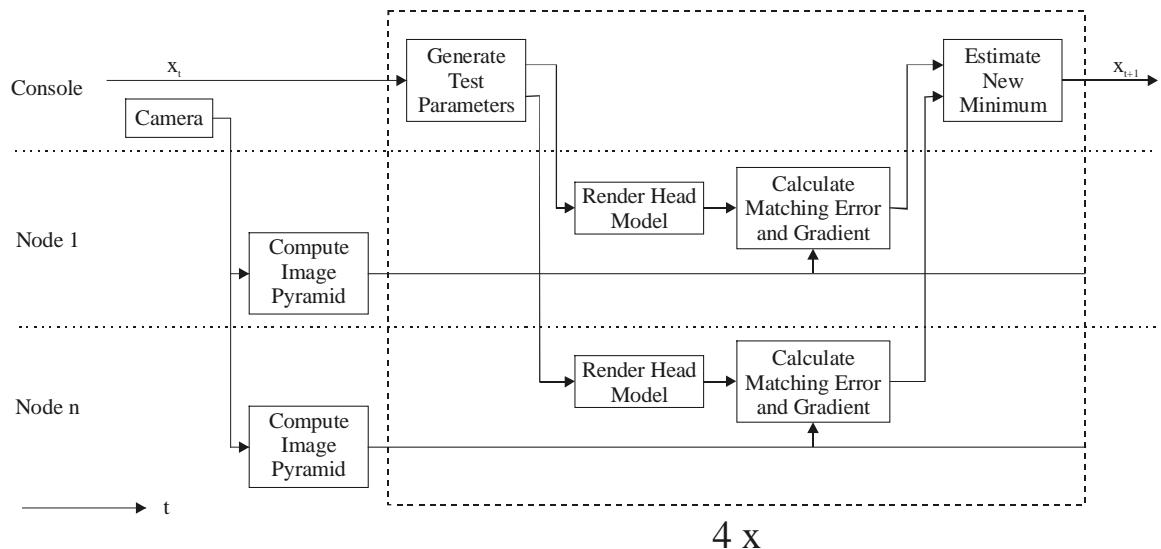


Figure 3: The system structure and the flow of data.

results back to the console, where the quadratic is fitted into the measured data points and a new minimum estimate is calculated.

This process is repeated four times, with parameters as shown in Table 1, for every camera frame. Then a new camera frame is read.

We implemented the system on a 8-node cluster of Pentium Pro 200 Mhz PCs with 4 processors each. The operating system is Windows NT. One node is used as the console, and one to seven other nodes are used for computation. For message passing we use the DataExchange system [8] that is implemented on top of the WinSock API, and for multithreading the NT-native Win32 threads.

We use an image resolution of 80x60 pixels, with a second Gaussian pyramid level of 40x30 pixels. We use both live video feeds and prerecorded sequences. All our footage is in color.

Our model is a male head from Viewpoint Data Labs, which we simplified to contain 500 triangles. The model is taken as is and is not customized to the test user's head.

Our implementation uses Microsoft OpenGL under Windows NT for rendering. This implementation only uses a single processor even on multiprocessor machines. It also does not allow multiple threads to issue commands to the same OpenGL window.

Chapter 5

Results

The system works best on seven processors. The tetrahedron scheme generates seven test points and is always used for estimation iterations two to four. The adaptive scheme generates a multiple of seven points, but is only used for the first estimate of every camera frame. With our test sequence, the adaptive scheme generated 7 points for 40 % of the frames, 14 for the rest.

We first used only a single processor in every machine. Figure 4 shows the distribution of workload. For seven nodes, the work is evenly distributed. With six nodes,

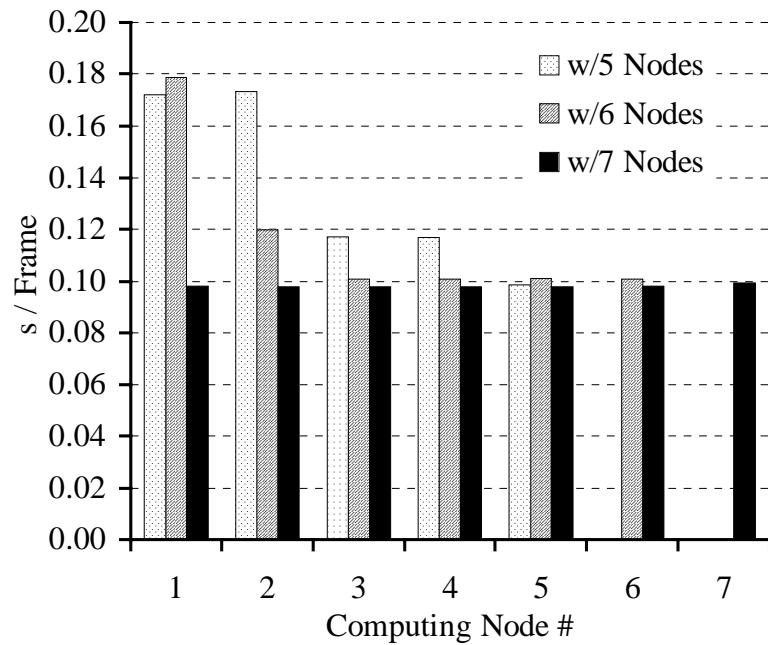


Figure 4: The average amount of computation time per cluster node per frame. With seven nodes, the work is evenly distributed. With six nodes, every node but the first mostly evaluates one point. The first node evaluates two points. With five nodes, the first two mostly evaluate two points. The resulting unevenness in the workload can be seen in the chart.

for the frequently used tetrahedron scheme the first node always gets two test points to evaluate, all others get one, and for the tetrahedron scheme, the first two nodes get three points and the others two. This is clearly visible in the graph. A similar pattern exists for all node counts, but it is less noticeable for node counts smaller than 5. As a consequence, the frame rates with five and six nodes are almost equal, and with seven nodes the frame rate increases sharply.

Figure 5 decomposes the sum of processor time of all the nodes into the time spent on Gaussian pyramid generation, OpenGL rendering, and the calculation of the matching error and gradient. Note that the total time is about equal for different numbers of nodes, for more numbers of nodes it is just more distributed among the nodes. This chart also does not include network overhead and processor time on the console. The time spent on Gaussian pyramid generation grows with the number of nodes, because this operation is done on every node. About 75 % of the total time is spent on OpenGL operations. As part of our effort to make efficient use of the machine resources, we looked for ways to speed

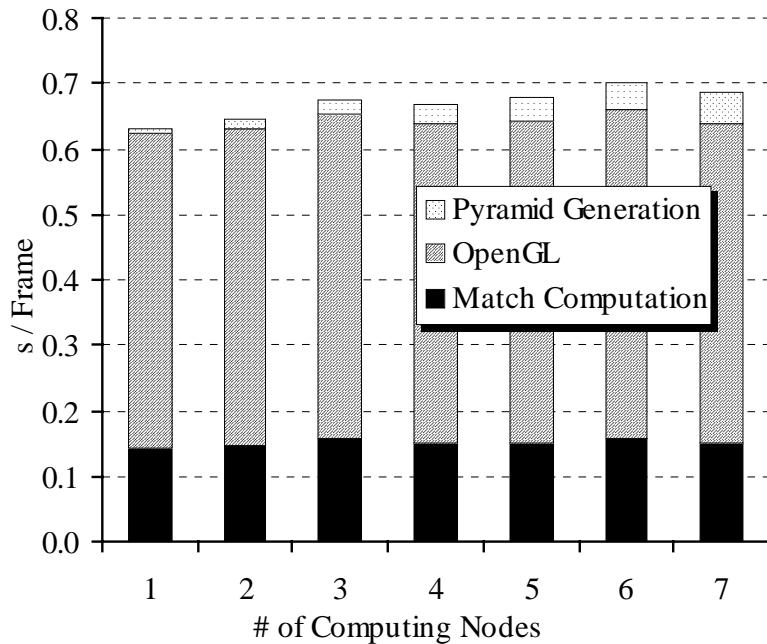


Figure 5: The decomposition of the total time spent on one frame into pyramid generation, OpenGL, and match computation.

up this most expensive part of our algorithm. The Microsoft software implementation of OpenGL under NT does not make any use of multiprocessing and the use of different threads to render different tiles of the image seemed unattractive because of the geometry overhead. A natural way to speed up OpenGL is to make use of hardware acceleration.

5.1 Hardware OpenGL

Instead of using OpenGL for displaying purposes, rendering is used in our system as part of the computation. After rendering, the image is copied out of the frame buffer into main memory for further processing using a `glReadPixels` call. For software OpenGL, the frame buffer is located in main memory, while hardware solutions only render into their on-board memory, which our program then reads from.

We use a Diamond FireGL 1000pro PCI with the 3Dlabs Permedia 2 accelerator chip in one of our cluster nodes. We also tried the AGP version of the same card in a 400 Mhz Pentium II Xeon, an ATI Rage Pro AGP card in the same machine, and finally an SGI 320 workstation with a 450 MHz Pentium II, representing the state of the art in hardware

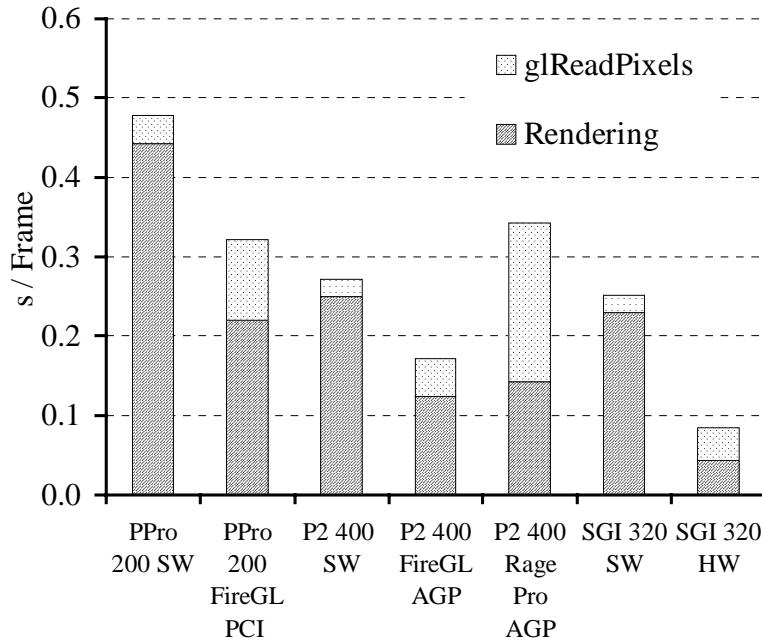


Figure 6: Rendering and frame-buffer read speed for various system configurations.

rendering. All machines are used as a single computation node. For comparison purposes, we also tested software rendering performance on all machines. Figure 6 shows the time spent on OpenGL per camera frame.

Hardware rendering is faster than software rendering, except for the ATI Rage Pro card. Unfortunately, reading the frame buffer for hardware rendering is always slower than for software rendering and uses up some of the rendering speed increase. The fact that the data has to go over the I/O bus, whether it is PCI or AGP, seems not to be the decisive factor. The SGI 320 workstation, which has a UMA architecture, is about as fast as the FireGL AGP card. Some measurements with the GLPerf benchmark yielded around 6 Mpixels/s for the FireGL AGP card, much less than the AGP bus bandwidth allows.

We found an indication that there are inefficiencies in the OpenGL drivers contributing to the problem. We performed all the hardware speed measurements using the GL_RGB pixel format. If the Microsoft-proprietary GL_BGR_EXT format is used, which only differs by a swapped byte order, glReadPixels performance drops by a factor of 14 for the FireGL, and by a factor of 30 for the SGI 320, making hardware rendering unusable. The Rage Pro card does not show this anomaly, but glReadPixels is in general very slow with this card.

Despite the performance flaws, the results show that using hardware OpenGL is worth doing. The appearance of benchmarks that give more detailed information, like GLPerf, will hopefully make driver deficiencies more apparent, and encourage video card manufacturers to deliver consistently performing drivers.

5.2 Intra-Node Parallelism

The second largest part of the computing time is the computation of the matching error and the gradient. We make use of the four processors per machine to speed up this computation. We tried two models of parallelism. The first just distributes the match computation to all n processors by processing the i^{th} scanline of the image by the

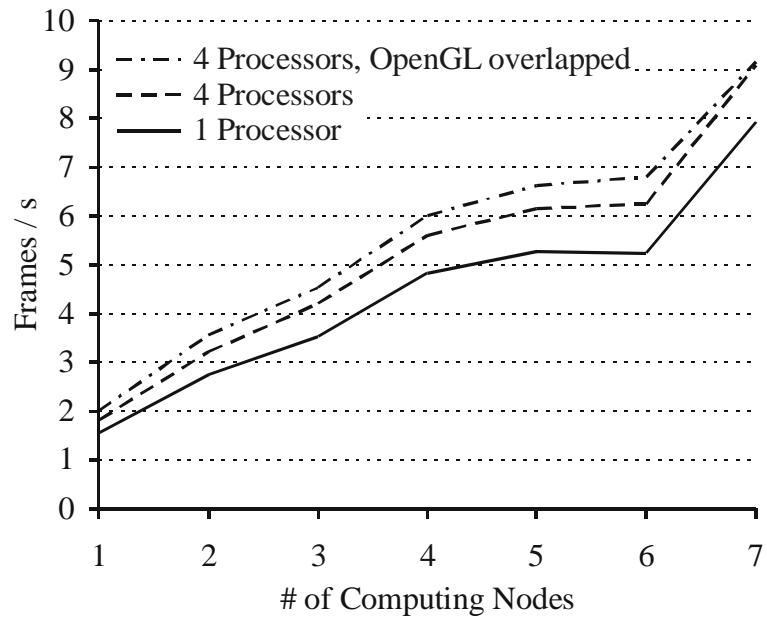


Figure 7: Frame rate depending on the number of participating cluster nodes and the model of intra-node parallelism.

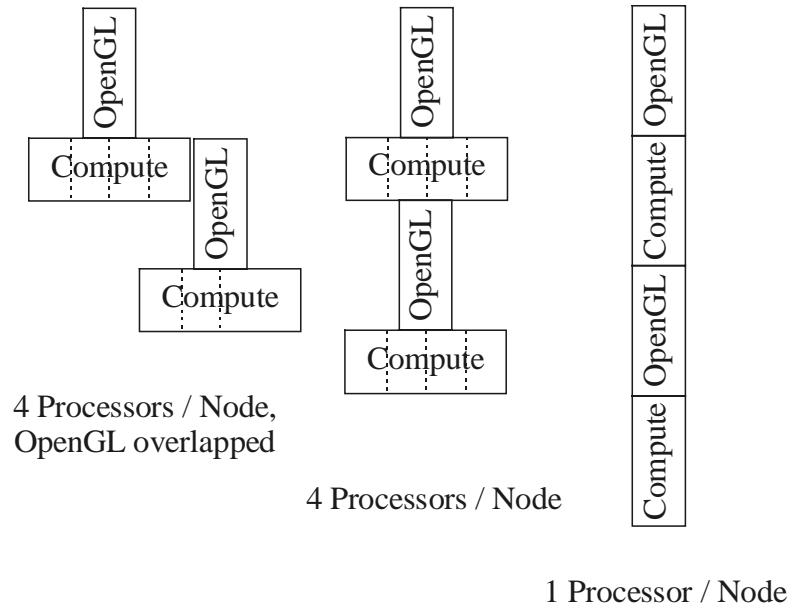


Figure 8: The various models of intra-node parallelism.

$(i \bmod n)^{\text{th}}$ processor. With this scheme the computation time for matching is reduced to a third on a four-processor machine. We then overlapped this computation with the OpenGL rendering process to utilize some of the other processor's time while the single-thread OpenGL rendering is running. Figure 8 compares the modes of intra-node parallelism that we used and Figure 7 shows the performance of our system.

The performance gain from switching from one to four processors is as expected. The benefits of overlapping OpenGL with computation are especially small for seven nodes because in this case every node mostly calculates a single matching error and gradient. Overlapping OpenGL is only rewarded when the adaptive scheme generates 14 test points and every node evaluates two points.

5.3 Network Performance

The system uses the network to distribute frame data and to exchange requests and answers of data point evaluations. For each of the four estimation iterations a batch of requests is sent out to every node. For the first evaluation cycle the request batch includes the new frame data. The cluster nodes send their results back, and once all results have arrived a new estimate is generated and new batches of requests are sent out.

We tested the influence of network performance on our system. The evaluation request messages and results are on the order of a hundred bytes. The only sizable messages are those that distribute the frame among all cluster nodes. A typical frame has 80x60 pixels resolution with 24 bit color depth, which results in 14.4 KB frame size. We test the impact of network traffic by using frame sizes of 28.8 KB (2x original), 43.2 KB (3x), 144 KB (10x) and 576 KB (40x). To avoid side effects these frame sizes are tested by padding the network packets, not by actually using a higher resolution. Besides the frame rate (Figure 9), we also measured how much the network delays the computation (Figure 10). This measurement is calculated as the time the console spends waiting for the network minus the longest time any computing node spends on its computation. The console's waiting time can sometimes be shorter than the computation time of the longest computing node. This is because instead of idling the console did some useful work

processing results arriving early. This explains the low network delays for five and six nodes (see Figure 4 and the discussion in chapter 5).

There are two other effects affecting network delay. If less computing nodes do all the computation and have to send all the answers back to the console, then more time per node is spent on network operations, which leads to higher network delay. On the other hand, distributing the frame data takes longer for more nodes, which also leads to higher network delay. Therefore, disregarding the anomalies for five and six frames, the network delay graph is U-shaped, with a minimum at three nodes, or at two nodes for 3x frame size.

Figure 11 shows the network throughput. In general, the bandwidth requirement increases quadratically with the number of nodes because the frame is sent to every node individually for every frame, and the frame rate increases linearly as well. With frame

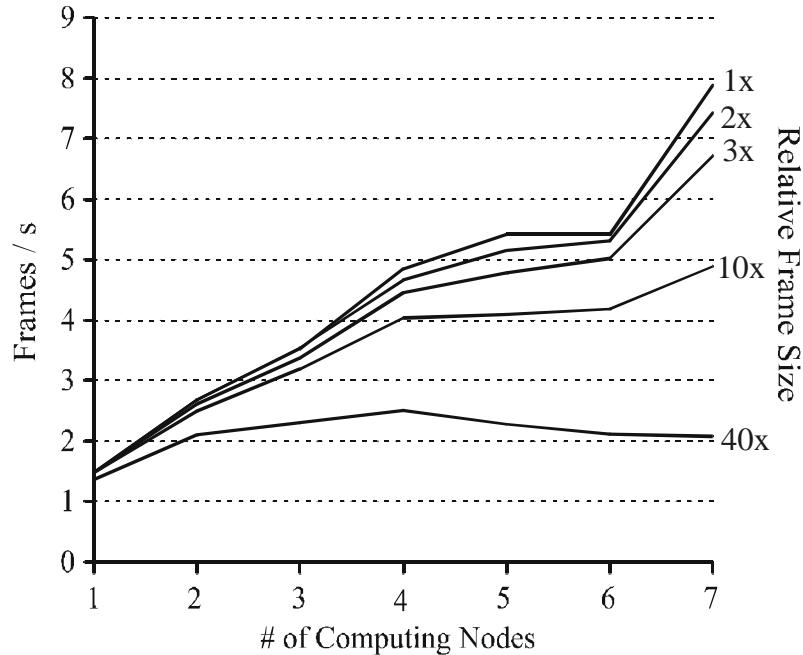


Figure 9: Frame rate as a function of the number of cluster nodes and the size of the camera frame (1x = real frame size, 14.4 KB). For small frame sizes, the speed-up is almost linear. For larger frame sizes, the performance becomes bandwidth-limited.

sizes of 10x and larger, though, the 100 Mbit/s bandwidth limitation of the network becomes apparent. For 40x the original frame size, bandwidth limitations lead to a decrease in frame rate when more than 4 nodes are used.

Our underlying message library, DataExchange, does not support multicast or broadcast. Such capabilities could be used to decrease traffic, but the speed-up would be minor for the regular frame size.

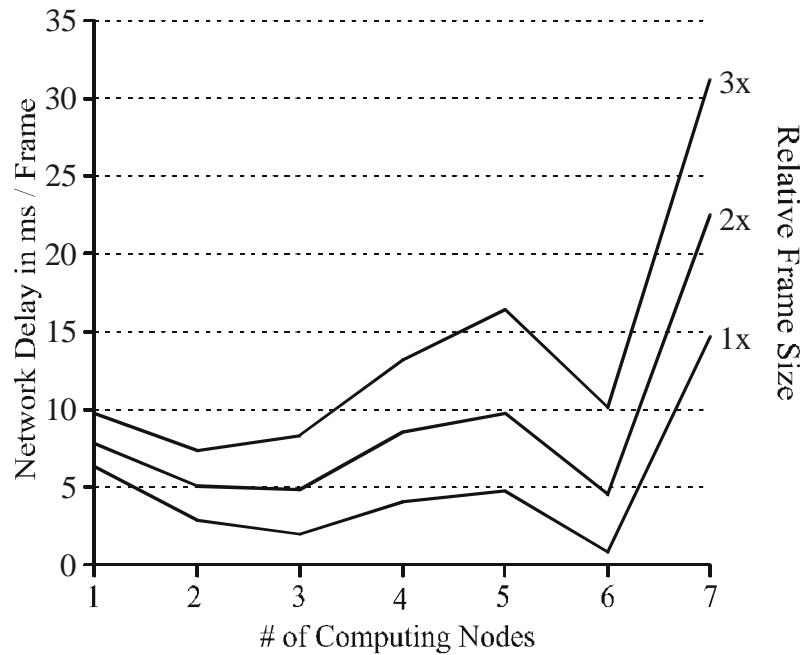


Figure 10: Delay per frame due to network transport as a function of the number of cluster nodes and the size of the camera frame (1x = real frame size, 14.4 KB). On one hand, for a small number of nodes a single node has to send many answers, which increases delay. On the other hand, for more nodes distributing the frame data takes longer. Therefore, the network delay graph is in general U-shaped

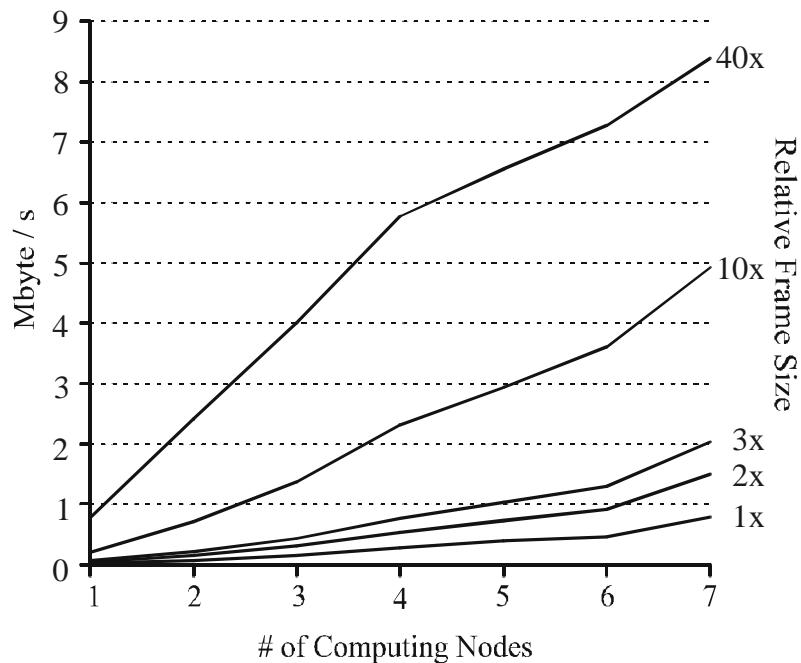


Figure 11: Network throughput as a function of the number of cluster nodes and the size of the camera frame (1x = real frame size, 14.4 KB). The network throughput increases quadratically because the frame rate and the traffic per frame both increase linearly. For large frame sizes the network limits the throughput.

Chapter 6

Discussion

6.1 Reasons For Introducing a New Parallel Convex Minimization Scheme

The naive way to parallelize convex nonlinear optimization is to stick to a sequential algorithm, but to parallelize the computation of the gradient. The number of iteration steps required for convergence remains unchanged. The sequential version of our algorithm uses conjugate gradient minimization with adaptive step size and requires on average 42 error and gradient evaluations at the lower resolution and 35 evaluations at the higher resolution of the Gaussian pyramid to converge. For every camera frame the image has to be distributed across the cluster. Also, for every iteration step round-trip message costs are incurred to send out messages to all the cluster nodes and to get the results back. Using the NetPerf benchmark, we calculated that for a single computation node the network overhead would be at least 33 ms per camera frame, compared to 6 ms in practice for our current implementation. Another issue is that OpenGL rendering had to be parallelized by rendering a tile of the whole frame per node. This does not scale well, because clipping and geometry transformations have to be done for every cluster frame. The only exploitable parallelism is the scan conversion. All in all, distributed error and gradient evaluation is not an attractive option.

In order to obtain more coarse-grain parallelism, common parallel implementations of convex nonlinear minimization techniques rely on partitioning the problem space into subspaces of smaller dimensionality. These subspaces are minimized individually on each node with periodic synchronization between processors. Several variants of this technique exist; they belong to the class of Parallel Variable Transformation (PVT) algorithms [10]. These rely on the assumption that the computational load is proportional to the number of partial derivatives computed. In our case, we have to render the head model entirely, which takes a large constant amount of time, no matter the dimensions of the subspace in which the derivative is computed. Also, the number of processors has to

be considerably smaller than the number of dimensions. Otherwise, each processor receives only a trivially small subspace. This would result in each processor spending much less time on minimization of the subspace than on sequential synchronization between processors. Unfortunately, in our case the number of dimensions is small since rigid motion has only six degrees of freedom, which is in the order of the number of nodes.

6.2 Future Work

Our approach uses efficiently up to 7 cluster nodes, because a quadratic is defined in 6D by a minimum of 7 points. For large head motions, more cluster nodes are adaptively used if available.

All minimization methods require some model of the error space, and they become more efficient if a better-suited model is used. Steepest descent is outperformed by quadratic methods, which again are surpassed by tensor methods. Likewise, to exploit more parallelism for small-dimensional problems an even better model of the error space will be necessary to make use of a greater number of parallel gradient evaluations. Future work may explore self-adjusting models like neural networks. These may be a good choice for a real-time system similar to the one discussed in this paper that has to do a large number of minimizations in a similar error space. It can learn how to generate a good set of test points and to calculate a new estimate of the minimum from the results of the tests.

Likewise, the performance for less than seven nodes is not satisfactory. The system should generate a set of test points that is as large as the number of available nodes, pool the information, and then generate the next suitable test set. This would generate equal load on all the nodes, and should have the potential to converge faster, because new information is incorporated into the solution earlier and can influence the location of subsequent test points.

Chapter 7

Conclusion

We believe that real-time speed is a major requirement for successful and usable vision systems. Unfortunately, for a long time to come, real-time implementations of some vision systems will be impossible on a single desktop machine. Parallel algorithms for real-time vision will remain an active area of research.

We presented model-based head tracking as an example of a low-dimensional real-time minimization problem, and its parallel solution using a test point based minimization scheme. We looked at some of the factors that influenced our design decisions and affected the performance of our system. With 9 frames/s on the available hardware, we achieved our goal of real-time head tracking. Using current OpenGL hardware like the SGI 320 graphics pipeline, or a consumer-level accelerator like the Riva TNT, we expect to be able to process up to 30 frames/s. The presented tracking technique is not specific to heads. By using a different 3D model, it is generally applicable for parallel model-based rigid as well as non-rigid tracking.

By using OpenGL for rendering we can leverage off the current growth of hardware rendering acceleration. Currently, graphics performance is growing much faster than processor speed, so the gap between hardware and software rendering will widen even more in the future.

References

- [1] A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland. Visually controlled graphics. *PAMI*, 15(6), 1993.
- [2] S. Basu, I. Essa, A. Pentland. Motion regularization for model-based head tracking. *ICPR*, 1996.
- [3] M. Black, P. Anandan. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. TR P93-00104, Xerox PARC, 1993.
- [4] M. J. Black, Y. Yacoob. Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motions. *ICCV*, 1995.
- [5] M. La Cascia, J. Isidoro, S. Sclaroff. Head tracking via robust registration in texture map images. *CVPR*, 1998.
- [6] D. DeCarlo, D. Metaxas. The Integration of Optical Flow and Deformable Models with Applications to Human Face Shape and Motion Estimation. *CVPR* 1996.
- [7] J. E. Dennis, R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, ch. 6. Prentice-Hall 1993.
- [8] Greg Eisenhauer, Beth Plale, Karsten Schwan. DataExchange: High Performance Communication in Distributed Laboratories. *Journal of Parallel Computing*, Number 24, 1998, pages 1713-1733.
- [9] I. Essa, A. Pentland. Coding analysis, interpretation, and recognition of facial expressions. *PAMI*, 19(7): 757-763, 1997.
- [10] Masao Fukushima. Parallel Variable Transformation in Unconstrained Optimization. *SIAM J. Optim.*, Vol. 8. No. 4, pp. 658-672, August 1998.
- [11] S. Geman, D. E. McClure. Statistical methods for tomographic image reconstruction, *Bull. Int. Statist. Inst.* LII-4, 5-21, 1987.
- [12] T. S. Jebara, A. Pentland. Parameterized Structure from Motion for 3D Adaptive Feedback Tracking of Faces. *CVPR* 1997.

- [13] M. Mirmehdi, T. J. Ellis. Parallel Approach to Tracking Edge Segments in Dynamic Scenes. *Image and Vision Computing* 11: (1) 35-48, 1993.
- [14] A. Pentland, B. Moghaddam, T. Starner. View-Based and Modular Eigenspaces for Face Recognition. *CVPR* 1994.
- [15] H. A. Rowley, S. Baluja, T. Kanade. Human Face Detection in Visual Scenes. *CVPR* 1998.